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Abstract 

The behavior of the implementation of Craig Tarver’s reactive flow model for high 
explosives in a hydro code’ is investigated. The model produces the correct shock 
propagation rates. The effects of geometry, zoning and artificial viscosity are compared 
in one (1D) and two (2D) dimensions. Sensitivities to the solution scheme of the hydro 
equations are also investigated. A comparison with an experimentally verified, analytic 
theory is presented for the speed of spherically diverging reactive flow fronts. We show 
that for LX-14 the reactive flow results obey that theory and a lag of about 1.5 to 2.0 mm 
is produced in a spherical system in about 5 cm of travel from the origin compared to 
programmed burn. Reactive flow is shown to produce a more strongly developed Mach 
stem than does conventional, programmed lighting assisted by beta burn. The reactive 
flow results appear to be close to convergence for zone sizes of l/16 mm. Several 
numerical anomalies in code/model behavior are shown and their limited effects are 
discussed. Some one-dimensional results for LX-17 are also briefly discussed. 

Introduction 

The use of a reactive flow model for the propagation of HE detonation is becoming more 
important for B Division work. We have analyzed the results of a series of hydro code 
runs involving reactive flow to investigate their validity and to determine the code input 
parameters that produce the most reliable results. The particular reactive flow model 
employed was that originated by Craig Tarver.’ 

The runs fall into three categories, all involving LX-14 as the explosive. In the first 
category, we modeled propagation in a cylinder, lit in the middle of one end, in which a 
plastic sphere was imbedded. This problem is discussed in Section I “Application in 2D” 
and was the configuration of a recent experiment in which x-radiographs of the 
detonation front were obtained as it proceeded around the sphere and underwent a self 
interaction on the far side. No comparisons to experiment are presented here; our intent 
was to investigate the code’s treatment of reactive flow for this geometry. In the second 
category, discussed in Section II “Test Runs in lD,” both the lighting and the mesh 
properties were such that quantities varied in only one dimension. We used a slab mesh 
with planar lighting, a cylindrical mesh with lighting on the axis, and a spherical mesh 
with lighting at the origin. In the third category, discussed in Section III “Comparison of 
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1D and 2D Results,” we looked at propagation in one half of a sphere of HE, lit at a 
point, calculated in cylindrical geometry. Section IV “Reactive flow and Programmed 
Burn,” compares reactive flow with programmed bum in the 2D application problem. In 
addition, we did some 1D test runs with LX-17 that are summarized in Section II. 

In all cases, the HE was divided into a detonator section consisting of HE modeled with 
programmed-burn (pbHE) and a main portion consisting of HE modeled with reactive 
flow (rfEE). This was done because rfHE requires something to initiate it. The pbHE 
extended 4 mm from the lighting plane, line, or point, and we used the same EOS, 
density, and detonation speed for it as for the reaction products in the rfHE (McAbee- 
Haselman High CT), except that we gave it 50% more initial chemical energy. This 
means of lighting appeared adequate to get the rfHE detonation proceeding in a 
reasonable fashion within a few millimeters and was better than others we had tried. 
However, this may not be a realistic representation of a detonator. Finding an optimal 
representation of a detonator when one may not want to model its actual characteristics, 
may be worthy of a future effort. 

When reactive flow is employed, the hydrodynamics code solves chemical reaction rate 
equations to determine the release rate of explosive energy as it depends on specific 
energy and density of the HE (See Tarver, et al.‘) The shock front accompanying the 
detonation compresses and heats the unexploded HE (which has its own EOS), thereby 
causing the energy release through the induced chemical reactions. In principle, at least, 
this is a more realistic procedure than modeling detonation by programmed lighting 
and/or beta burn. In particular, it offers the possibility of direct calculation of detonation 
velocity dependence on detonation front curvature and curvature of the detonation path. 
Further, it should give a more accurate representation of interacting detonation fronts. 

In this study, we varied the numerical means of solving the hydrodynamics equations 
employed by the code, characteristics of the artificial viscosity, and the mesh spacing for 
each of the problem categories. We determined the effects of variations in numerical 
method and geometry on the detonation speed, pressure pulse wave shape, energy 
release, impulse, calculational noise, and Mach stem shape, All artificial viscosities 
employed were monotonic and used a coefficient for the quadratic term of 0.75 and a 
coefficient of 0.5 for the linear term. 

In summary, we have determined the following, A zone size of about l/16 mm or smaller 
is required for accurate results at least in the first four or tive cm of detonation-front 
travel after ignition to establish the pulse. With this zoning, the detonation speed is 
calculated accurately, as well as its dependence on detonation front curvature. Once 
detonation has begun in reactive-flow LX-14 in a diverging geometry, it takes a few 
millimeters to a few centimeters of travel for the detonation to achieve a steady state in 
regard to peak pressure, pulse shape and detonation speed. This distance is a function of 
the zone size as well. FOT a stationary Eulerian mesh, as we employed, the most accurate 
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and least noisy detonation fronts (considering all orientations relative to the mesh) were 
produced by a numerical algorithm that face-centered the velocities (as opposed to 
corner-centered) along with an artificial viscosity that was both tensoria! and monotonic 
Such a combination also gave a reasonable Mach stem in the application problem. ALE 
numerics on a stationary Eulerian mesh appeared to offer no substantial improvement 
except for a slightly better agreement of the position of the shock front with a ID 
calculation. However, near the forty-five degree line the ALE hydro shared the same 
pronounced noise characteristics that were seen in the comer-centered hydro. 

Some anomalies were found, including a small high-pressure region (localized in two 
dimensions) that followed the detonation front and left a low-pressure “wake” (for face 
centered, scalar Q), as well as fronts with pressure spikes (“checkerboarding,” see 
below). 

I. Application in 2D 

First, we discuss a series of calculations in 2D as indicated above. We took this 
opportunity to test the effects of velocity centering in the mesh as well as the artificial 
viscosity. The problem is shown in Fig. Al and the Mach stem in Fig. A2. For all runs, 
zoning details are given in Tables I and II which summarize the pertinent runs that we 
made. 

Table I. Runs Made in 2D (Cylindrically symmetric mesh, point lighting). 



Table II. Runs Made in 1D (Corner-centered velocities). 

Comments: Tables I and 11 

* 

# 

% 
$ 

T 
R 
> 
S 

Mode! of full cylindrical x-ray experiment, rest are HE only. 
HE is fully programmed burn (LX-14, Haselman ‘93, high CJ, normal parameters, 
shadow velocity = detonation velocity = 0.883 cm/ps), rest are reactive flow with 
programmed burn detonator. 
Had tensor Q, rest had scalar Q, 
Smaller zones for O.O-0.4cm, larger zones for 2.0-20.0 cm with ratio zoning in 
between to match. See also Table III. 
Cylindrical radius. 
Spherical radius. 
Eulerian mesh with “ALE” hydro-numerics. 
The “ruby solitaire” appeared in this run. 

Axis lighting: lighting is along the axis of the cylinder. 

The detonators are 0.4 cm of programmed burn LX-14 (Haselman ‘93, high CJ) with 1.5 
times the normal value of the energy parameter. 

Values of the energy release time chosen for programmed burn HE (detonators and main 
HE when applicable) are close to 1.5 x zone-sizel(0.883 cm&s). When the zone size was 
smaller than the reaction zone thickness, then the reaction zone thickness was used 
instead of the zone-size. 

A!! problems with a dimensionality of 1 have three zones in the cross direction 
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Effect of Artificial Viscosity 

Runs were made on the full 2D problem to ascertain the effect of the artiticia! viscosity 
(Q). For face-centered velocities, the effect of a scalar Q (m16) was compared with a 
tensoria! Q (run m23). The Mach stem area for run m23 (Fig. A3) shows greater 
smoothness than for run ml6 (Fig. A2). An overlay of the contours from these two runs 
(Fig. A4) shows that the effect of a tensoria! viscosity is limited to greater contour 
smoothness with no appreciable effect on the shock propagation rate. A certain amount of 
undercutting of the backside of the Mach stem near the axis in run ml6 is also evident. 
This effect is removed by the tensoria! Q as can also be seen by comparing Figs, A2 and 
A3. 

The same comparison was made for corner centered velocities using runs m41 (scalar Q) 
and m42 (tensoria! Q), Fig. A5 shows the overlay of the contours. The tensoria! Q is seen 
to very slightly advance the shock in time compared to the scalar Q. The amount of shift 
is comparable to the amplitude of the noise in the contours of run ml6 compared to run 
m23 (Fig. A4). We note here that tensoria! Q aggravates checkerboarding fOT corner- 
centered velocities which is discussed next. The least overall noise, however, occurs for 
face-centered velocities and monotonic, tensoria! Q. 

Checkerboarding 

In 2D calculations it was noted that patterns of alternate zones ahead of the main shock 
reach high pressures (Fig. A2). This “checkerboarding” seems to be highly dependent 
upon the choice of velocity centering. For face-centered velocities, checkerboarding is 
more dominant near the axis as illustrated in Fig. A2. Figure A6 illustrates 
checkerboarding near the forty-five degree line in a problem that uses comer-centered 
velocities. There the high-pressure zones appear in diagonally linked chains ahead of the 
main shock. These leading overshoots tend to be more severe in the corner centered 
zoning on the forty-five degree line than in the face-centered zoning near the axis. 
However, when the velocities are corner centered, the checkerboarding disappears near 
the axis of symmetry. Spherical expansions that were calculated on a 2D mesh showed 
the same checkerboarding pattern so that no effect due to boundary conditions in run m41 
is indicated. For face-centered velocities with scalar Q, a single (or sometimes a few) 
clustered high pressure zones were seen to wander through the mesh near the shock front. 
We consider this to be a form of checkerboarding. The change in the checkerboarding 
and in the genera! computational noise by the artificial viscosity is discussed below. 

Effect of Velocity Centering in 2D 

Figure A7 shows an overlay of the contours of m23 (face centered, tensor Q) and m41 
(comer centered, scalar Q). The agreement between these two runs is remarkable. 
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Checkerboarding in m4l is limited to the 45 degree direction and is absent near the axis 
-unlike ml6 (face-centered velocities, scalar Q). We, therefore, conclude that the 
centering of the velocities does not affect the signal propagation in a major way. Face- 
centered velocities, however, are more prone to develop noise that produces some 
structure near the axis on the backside of the shock. This feature can be reduced by using 
a tensoria! Q. Sphericity and pressure levels seem to be unaffected by the centering when 
identical zoning is used. 

II. Test Runs in 1D 

While performing the 2D runs, several questions arose about the timing of the shock. To 
answer these questions a number of calculations were performed in ID because of zoning 
flexibility and the ability to run physically large problem with ease. We first explore the 
reactive flow as a function of geometry. 

Shock Velocity and Pulse Shape as a Function of Geometry 

Problems m38-m40 permitted comparison for planar, as well as cylindrically and 
spherically divergent shocks. Typical shock pressures were 0.38 Mb. Shock positions 
were defined by finding the position of pressure values of 0.05 Mb in the shock front. A 
test was made to determine whether defining the shock position at the point where the 
shock pressure reaches half maximum would affect our results. No appreciable difference 
was found. 

Figure Bl shows snap shots of the pressure profiles for the three geometries at 
corresponding times. It is apparent that spherical divergence gives a more severe 
rarefaction behind the shock which results in a more sharply peaked pressure pulse than 
in the planar case. We also note the genera! broadening of all pulses in time as well as the 
constant pressure level between the back of the pulse and the closed boundary. The 
initiation region occupies only 0.4 cm of the 20 cm system length or radius. Figures B2, 
B3 and B4 show qualitatively similar behavior in the density, energy and particle velocity 
respectively. 

In the cylindrical case, a simple exponential tits the release portion of the pulse. Fits for 
the other release profiles were not attempted but they do not appear to be substantially 
different in character. This fact, together with the simple appearance of the solutions, is 
strongly suggestive of the existence of at least an approximate analytic solution for this 
problem. 

A close-up of the final pulses in Fig. BS shows several features of interest. A flattening at 
the top of the planar pulse is clearly visible. The planar shock also shows noise. We 
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hypothesize that this noise is related to the “checkerboarding” that we have seen in 2D. It 
is also clear that the pulses are displaced with respect to one another. Fig B6 shows the 
shock positions as a function of time for the three geometries. Differentiation of these 
positions with respect to time leads to Figs. B7 and B8. The latter figure is the result of a 
single pass with a simple, area-preserving, smoothing algorithm. The last figure makes it 
clear that asymptotically the shock speeds approach the same value irrespective of the 
geometry. The differences, however, appear to lie in the time required to reach this speed 
from the initial lighting. Fig. B9 shows the difference in shock positions between the 
planar case and the other two cases. It is apparent that the differences in position 
approach an asymptotic value. Again, we see that differences in velocity and hence 
position are limited to the early shock formation in divergent geometries. 

To attempt to gain an understanding of why this should be the case when in all three 
geometries the HE is lit with programmed burn for a material thickness of 0.4 cm (about 
0.45 ps) we look at several factors that appear to be related to this issue. Fig. BIO shows 
a succession of pressure profiles both in slab geometry (solid lines) and in spherically 
divergent geometry (dashed lines). We see in the spherically divergent case that the 
pressure in the pulse takes some time to build up after entering the reactive flow region; 
this, despite the fact that pressures in the programmed burn portion are initially higher. 
For the slab geometry case, there is only a relatively small change in the pulse shape and 
amplitude resulting from the transition from programmed burn to reactive flow. 

We attribute this behavior to the greater steepness of the release behind the shock in 
divergent geometries which decays the pulse from behind in the early stages of shock 
formation. This phenomenon delays the formation of the full shock, thus lowering the 
early shock pressures, These lower pressures, in turn, cause the pulse to travel more 
slowly, thus leading to the time delay in establishing the full shock speed. 

Zone Refinement 

Several problems were calculated that run to 20 cm in about 22 ps. These runs were made 
in 1D in spherically diverging geometry to facilitate tests of zoning sensitivity especially 
in the regions of early ignition and pulse formation. These runs are m40, m54, m55, m56, 
m58 and m65 (see Table III). The programmed lighting occurs in the first 4mm in 
uniform zoning as described earlier. Outside a radius of 2 cm the radial zoning is again 
uniform with the two regions being linked by zoning of constant ratio. The results are 
compared in Fig. Cl. The more finely zoned calculations (m40, m56 and m65) show 
some amount of overshoot at the leading edge of the pulse. Overshoots for run m65 (320 
zones/cm) at early times reach pressure levels of 0.518 Mb well in excess of 0.381 Mb 
for this high explosive. No explanation has been found so far for this behavior which 
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seems to have a slight effect on the propagation. The overshoots for the other calculations 
do not seem to have a noticeable effect on the propagation rate. 

Fig. C2 shows how much the shock front in these calculations lags behind the shock 
position predicted by programmed bum using the ideal detonation speed. The lag clearly 
approaches an asymptotic value (ordinate in Fig. CZ) in the range of one to two mm for 
zoning of 160 zones/cm or finer while zoning of 80 zones/cm and less produces 
noticeably more noise and a greater lag behind the programmed burn, 

Theory and Experiment in Sphericrl Divergence 

Green and James’ conducted experiments to test a theory by Wood and Kirkwood that 
relates the propagation rate of burn fronts in high explosives to the curvature of the wave 
front. In particular, they find that the propagation rate is given by dR/dt = D-(1-3Sa*/R) 
where R is the radius of curvature of the burn front in spherical geometry and a’ is the 
thickness of the reaction zone. D_ is the asymptotic propagation rate of the detonation 
front and t is the time, 

A convenient method for fitting this equation to our numerical results was constructed as 
follows. First, the relation was integrated to obtain R = R,, + D_ t - 3.5D_ a* jdt/R where 
all integration constants have been absorbed into R,. The integral in this relation was 
evaluated using the numerical time integral of the calculated shock positions (such as 
shown in Fig. B6). A least squares fit of this integral relation to the numerical shock 
positions versus time was obtained which yielded values for a* and D_ Compared to 
finding the full analytic integral of the differential equation, this representation has the 
advantage that these constants of interest appear only linearly, The limits of the domain 
of the fits in all cases were taken to be 0.8 ps and 22.5 ks. The reason for the choice of 
the lower limit is that at this time the detonation pulse has pretty well emerged from the 
domain that is governed by the programmed burn portion of the high explosive and has 
fully entered the regime of reactive flow. The resulting values are given in Table III. We 
note that the inferred reaction zone thickness a* is a model parameter and not an input of 
experimental data. We further note, however, that the values in the table for a’ are within 
the range of values for the reaction zone thickness for HMX explosives given in Ref. 4. 
Furthermore, all inferred values of the asymptotic detonation speed agree well with the 
nominal value of 0.883 cm/+s for the equation-of-state, density and chemical energy that 
we used. 

Fits of the analytic shock speeds to the derivatives of the shock positions versus time are 
given in Figs. C3, C4, and CS for problems m40, m56, and m65. The slightly higher 
asymptotic shock speed for m65 (see table) is probably related to the linearity in the 
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shock position that is seen in Fig. C2 beginning at a time of about 8 vs. This time 
correlates with the observation of substantial overshoots in the pressure profiles discussed 
above and visible in Fig. Cl (black curve). 

Table III. Coefficieuts for the analytic fit to the shock speeds for LX-14 in spherical 
divergence. D_ is the asymptotic shock speed, a+ is the inferred thickness of the 
reaction zone. The number of zones per centimeter is given for radii less than 0.4 cm 
and greater than 2 cm. The two zoning regions are joined by ratio zoning. The 
number of zones per inferred reaction zone thickness is also given as is the radius of 
the reaction front from the origin when the shock speed D reaches 99% of its 
asymptotic value D_. 

Several similar runs were conducted for LX-17 (TATB). Time constraints and some code 
problems, probably related to boundary conditions in the metric version of the code when 
small spherical sectors are used, prevented us from achieving definitive results. This is a 
rarely used code option and a code fix was not pursued. However, our preliminary results 
indicate that LX-17 behaves in a very similar way with 99% of the detonation velocity 
being achieved in about 26 ps after the initial lighting. 

III. Comparisou of 1D and 2D Results 

Several comparisons were made of a 1D problem run on 2D meshes as well as a 1D 
spherical mesh. The problem is the same as already discussed above in the section of 1D 
problems. To establish a basis for comparison, Fig. Dl shows a close-up of thepressure 
front for several 1D spherical problems as a function of the zoning at a time of about 
2.134 ps. Apparently problem m65 with its zoning of l/32 mm has achieved a high 
degree of convergence. 

A number of problems were calculated as illustrated in Fig. D2 which shows an overlay 
of pressure contours for runs m26 and m47 calculated on a stationary Eulerian mesh. As 
noted in the figure caption, this plot compares face-centered velocities with corner- 
centered velocities, both for a scalar Q. The corner-centered run displays 
checkerboarding which does not appear to affect sphericity. For purposes of comparing 
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results with true 1D runs, plotlines were chosen in this type of 2D problem at about the 3 
and 87 degree lines and at the 45 degree line. The next figures show comparisons 
between several such profile plots. 

Figures D3 and D4 show the effect of scalar and tensorial Q for face-centered and corner- 
centered velocities respectively. The noise in the latter plot is on the forty-five degree line 
and it is amplified by using a tensorial Q as already mentioned. The face-centered case 
also shows some amount of phase difference resulting from the choice of Q at this early 
time of 2.13 bs. 

Figure D5 compares pressure profiles resulting from using ALE hydro and standard 
hydro, both with comer-centered velocities and Eulerian meshes. Both suffer from severe 
noise on the forty-five degree line to a comparable degree. The ALE hydro enjoys as its 
only advantage the fact that the near-axis and the forty-five degree results are more nearly 
coincident. 

Figure D6 shows the comparison between ALE hydro and the 1D run m65 which was 
performed on a spherical, metric mesh. Except for overshoots, sphericity and the 
agreement between 1D and 2D are excellent. Figure D7 makes the same comparison with 
run m43 that employed face-centered velocities and a tensorial Q. Some amount of phase 
shift is noticeable. However, for the 2D case, the near axis and the forty-five degree 
results are in close agreement, indicating good sphericity and the relative absence of 
noise. It is for this reason and the reduced presence of checkerboarding that we 
recommend face-centered velocities and a monotonic tensorial Q for calculating reactive 
flow at this point of code and model development. 

Code Anomaly 

Some spherical 1D problems were run using the code’s metric option (curved zone faces 
are used in this option). Late in time, an angular asymmetry was observed. Furthermore, 
pressure spikes were observed in some of the calculations. This is in addition to the 
checkerboarding that has already been discussed. Causes for these anomalies were not 
pursued in the context of this work. 

IV. Reactive Flow and Programmed Buru 

The application described earlier was calculated using reactive flow in run m83 (set up 

like run m23) and was compared to a run that used programmed lighting augmented with 
beta bum (run m82). Figure El shows the positions of the shock that result from reactive 
flow and the predicted shock positions using programmed lighting (shortest optical paths 
resident in the explosive) at the same times. No corrections for shadowing (burn along 
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inert surfaces) were made in the programmed burn. Reactive flow clearly lags in time for 
reasons elaborated upon above. Except for this timing difference the two treatments give 
equally spherical results early in time; however, shadow velocities that are inherent in the 
reactive flow model increase this lag and induce changes of shape in the shock front 
compared to that predicted by programmed burn. Possible shadow corrections in 
programmed burn for lighting paths that are tangent to the sphere were not considered 
here for reasons of lack of data for such a high value of curvature. 

Figure E2 shows a comparison of shock locations between programmed burn and reactive 
flow in the nearly asymptotic region well beyond the plastic sphere. The pseudo color 
plot is representative of the pressures at t = 7.0 us. Figure E3 shows the effect of 
calculating the shock propagation with programmed burn that,is assisted by beta burn. It 
is also seen to grow in a manner similar to that observed in the reactive flow calculations. 
The pseudo color plot shows the pressure at time t = 6.8 ps. Comparison with the 
previous plot shows considerable similarity between the result of the reactive flow 
calculation and the programmed burn calculation in terms of pressure levels and overall 
structure of the Mach stem region. In the reactive flow problem, however, the pressures 
are more uniformly high along the shock front than is the case in the programmed burn. 
Figure E4 compares shock positions calculated with reactive flow and beta burn-assisted 
programmed burn. The pseudo color plot shows pressures from the reactive flow 
calculation at t = 7.0 ,us. It is apparent that the reactive flow produces a flatter shock front 
and that the Mach stem region is larger than for the programmed burn. A slightly faster 
rate of travel of the Mach stem calculated with reactive flow as compared to programmed 
bum with beta burn is also noticeable. While these differences are small, they are viewed 
as significant from a design standpoint when reflected shocks in burning high explosive 
are important. 

Conclusions 

Comparing geometry effects such as planar versus cylindrically and spherically 
expanding flow shows that asymptotic shock propagation speeds and maximum pressures 
are nearly the same in all geometries. The main differences are the slower propagation 
rate and the somewhat lower pressures during the early stages in divergent flow as well 
as the pulse shapes. A useful measure of the thickness of this ignition region in spherical 
coordinates is that it requires about 5 ps for the shock front to reach 99% of the 
asymptotic velocity or a radius of about 4.5 cm for LX-14. This result is consistent with 
an analytic theory in spherically divergent geometry. A preliminary calculation for LX-17 
showed a similar result except that 26 ps were required for the shock front to reach 99% 
of the asymptotic speed. 
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A design problem that generates a Mach stem was calculated using reactive flow and 
compared to the results obtained using programmed burn augmented by beta burn. The 
differences were found to be small but significant in that the reactive flow produced a 
flatter shock front with more uniformly high pressures and exhibited a more extensively 
developed Mach stem which traveled slightly faster. It is suggested that thiscan have an 
important effect on designs that involve shock reflections in burning high explosive. 

Zoning 

It was found that zoning has to be carefully controlled, ID problems calculated on a 2D 
mesh (spherical expansion on a stationary square mesh) compare well to the same 
problem run on a 1D mesh with comparable zoning. In lD, zone refinement tends to 
speed up the shock, but refinement beyond 160 zones/cm produces no major change in 
the answers except that severe overshoots develop after some time at the leading edge of 
the shock which may be the result of boundary condition problems (see below). 

In 2D, these overshoots appear to lead to “checkerboarding.” “Checkerboarding” is a 
noise phenomenon that appears to be nearly harmless to the shock propagation rate and 
pressure levels of the main shock. Checkerboarding is the occurrence of alternately 
spaced high pressure zones at or slightly ahead of the leading edge of the shock. The 
location of this checkerboarding is affected by the choice of velocity differencing 
schemes. Face-centered velocities give checkerboarding near the axis in front of the 
shock. Corner-centered velocities (both the usual corner-centered velocities as well as the 
ALE treatment applied to the same stationary Eulerian mesh) give diagonally linked 
chains near the forty-five degree line. Another form of checkerboarding manifests itself 
in the appearance of single high-pressure zones or sometimes a few closely spaced high- 
pressures zones that wander through the mesh near the shock front when face-centered 
velocities are used. Because of the appearance of these zones on color plots of the 
pressure, we have dubbed this phenomenon “ruby-solitaire” checkerboarding. 

Artificial Viscosity 

Artificial viscosity (Q) has only a limited effect on the results, Tensorial, monotonic Q 
with face-centered velocities smoothes all checkerboarding and slightly retards the 
velocities (bringing them in closer coincidence with 1D results) compared to the same 
problem run with scalar Q. Tensoriai Q run with comer-centered velocities accentuates 
the checkerboarding compared to scalar Q. 

Anomalous Code Behavior 
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Anomalous code behavior was limited to checkerboarding (including solitaires) and the 
apparently associated overshoots of pressure pulses in 2D. If the zoning is too tine, a 
slight change in the evolution of the shock speed in spherically divergent systems is 
noted. The exacerbation of “checkerboarding” and overshoots when using comer- 
centered velocities was not expected. In lD, spherical zoning that was too tine seemed to 
lead to overshoots. This may simply be the enhanced result of imperfect boundary 
conditions. 

How to Run the Code 

We find that a differencing scheme using face-centered velocities with a monotonic, 
tensorial Q gives the best, all-around results. Furthermore, for LX-14, zoning of 160 
zones/cm produces consistent results as regards the shock formation and its propagation 
rate. Finer zoning changes the results only very slightly, 
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Figure Al. Color plot of pressures for application problem m16. The cylinder of high.explosive is 
lit at z q 0 and r = 0 and burns around a plastic sphere (circle in the middle). 



0.10 

0.05 

0 

r 

4.40 4.‘45 4.jo 4.&o ’ 4.65 
Z (cm1 

Figure A2. Color plot of pressures in the Mach stem region for run ml6 (face-centered velocities, 
scalar Q). Checkerboarding ahead of the Mach stem and noise in the Mach stem region are clearly 
visible. 
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Figure A3. The Mach stem region smoothed by tensorial Q in run m23 (face-centered’velocities, 
tensorial Q). Otherwise this run is identical to ml6 (face-centered velocities, scalar Q, Fig. A2). A 
certain amount of undercutting of the backside of the Mach stem in run ml6 has disappeared in 
this run. 
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Figure A4. Contour overlay comparing runs ml6 (scalar Q, light contours) and m23 (tensorial Q, 
heavy contours). Smoothing of noise seems to be the principal effect of tensorial Q near the axis 
for face-centered velocities. 
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Figure A5. Comparison of the effect of scalar Q (run m41, light contours) versus tensorial Q (run 
m42, heavy contours) on the contours in the Mach stem region for corner centered velocities. 
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Figure A6. Checkerboarding chains near the 45” line for corner-centered velocities in run m41. 
The amplitude of the checkerboarding exceeds the pressures of the main pulse which are 
consistent with other calculations such as expanding spheres. 
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Figure A7. Comparison of pressure contours in the Mach stem region for face-centered velocities 
and a tensorial Q (run m23, light contours) and corner-centered velocities with a scalar Q (run 
m41, heavy contours). For run m41 diagonal checkerboarding is illustrated in Figure A6. 
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Figure 81. Snap shots of the pressure profiles at three different times for planar (run,m38), 
cylindrical (run m39) and spherical (run m40) geometries. The solid lines are the planar problem, 
the dashed lines are the cylindrical problem and the dotted lines are for the spherical problem. 
Pulse broadening in time is very obvious. 
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Figure B2. Density profiles for the pulses in Figure 81. 
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Figure 83. Energy profiles for the pressure pulses in Figure El. 
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Figure 84. Velocity profiles for the pressure pulses in Figure Bl. 
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Figure B5. A close-up of the pressure pulses in Figure Bl. The pulses for the cylindrical and 
spherical problems lag behind the planar one. The lag for the spherical case is greatest because 
of the higher divergence. 



r 

_I_ 

i- 
I I , I I I , )  , 

0.00 5.00 10.00 
Time (ps) 

15.00 20.00 

Figure B6. The shock positions versus time for the problems of Figure Bl. 
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Figure 88. The shock speeds of Figure 87 smoothed. It is apparent that geometric divergence, 
both cylindrical and spherical, retard the early buildup of the shock speed. The horizontal line 
shows the theoretical shock speed of 0.883 cm/ps. 
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Figure 69. The difference in the shock positions of the problems in Figure 61. Run m38 serves as 
a reference run from which the other twos are subtracted. It is apparent from this figure and from 
Figure 84 that the spherically divergent case (curve E) takes longest to establish its steady state 
propagation rate. 
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Figure 610. Pulse shapes for runs m50 (planar, solid lines) and m85 (spherically divergent, 
dashed lines) are compared every 0.2 ps. The discontinuity in pulse shapes from the programmed 
lighting portion (first 0.4 cm) to the reactive flow portion is apparent for the spherically divergent 
case. It is also clear that the narrowness of the pulses in spherical geometry reduces the available 
impulse. Furthermore, for spherical geometry the pulse height takes time (or reduced divergence) 
to build its amplitude even in the programmed burn region. 
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Figure Cl. Close-up of the pressure profiles for spherically diverging problems m40, m54, m55, 
m56, m58 and m65 that differ only in zoning (see Table I). The finest zoning gives the most 
advanced pulse and the coarsest zoning gives the most retarded pulse. The finer zoning also is 
susceptible to overshoots as is seen for the pulse from problem m65. These overshoots appear to 
be persistent once they make their appearance. The Chapman-Jouget pressure for this high 
explosive is 0.381 Mb when density = 1.835 g/cc, E, = 0.101 e.u./cc, and the Haselman high CJ eos 
is used. 
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Figure C2. Differences in shock positions versus time for spherically diverging problems (m40, 
m.54, m55, m56, m58 and m65) run on a spherical, metric mesh. The shock positions calculated 
from reactive flow are diminished from the programmed burn positions that would be achieved 
with a detonation speed of 0.883 cm@. The more finely zoned problems (curves H, K and M for 
runs m40, m56, and m65 respectively) show clear signs of tending towards an asymptote. The 
obviously linear portion of curve M (run m65) is associated with the existence of the overshoot on 
the pressure pulse which appears at a time of about 7 ps. The most coarsely zoned problem (m58) 
also produces the most noise (curve L) and lags behind the programmed burn the most. 
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Figure C3. Numerical derivatives of the shock positions versus time for problem m40 and the 
analytic fit (dashed curve) of the theory. The fitting constants are given in Table Ill. 
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Figure C4. Numerical derivatives of the shock positions versus time for problem m58 and the 
analytic fit (dashed curve) of the theory. The fitting constants are given in Table Ill. 
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Figure C5. Numerical derivatives of the shock positions versus time for problem m65 and the 
analytic fit (dashed curve) of the theory. The fitting constants are given in Table III. 
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Figure Dl. Pressure profiles for the 1D spherical runs in Figure Cl at the earlier time of about 
2.132 ps. Apparently in 1 D, finer zoning speeds up the shock front. Overshoots have not 
developed at this early time. See Table III for zoning information. 
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Figure D2. Overlay of pressure contours for run m26 (face-centered velocities, heavy contours) 
and run m47 (corner-centered velocities, light contours). Both runs use scalar Q. 
Checkerboarding for run m47 manifests itself as a smudged contour near the 45” line. 
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Figure D3. The effect of scalar and tensorial Q for face-centered velocities. Profile plots of 
pressures for problems m26 (scalar Q, solid lines) and m43 (tensorial 0, dashed lines) at a time of 
about 2.13 )LS. The profiles are taken at about 3” and 67” and at 45”. The spacing between the two 
“plus-signs” indicates the length of the zone edges. The tendency to overshoot at the leading 
edge of the shock appears to be mitigated by the choice of face-centered velocities. 
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Figure D4. The effect of scalar Q (run m47, solid lines) and tensorial Q (run m49, dashed lines) for 
corner-centered velocities. The noisy profiles are on the 45” line where it is amplified by 
tensorial Q. 
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Figure D5. Pressure profiles for identical, Eulerian meshes when using corner-centered velocities 
with standard hydro (run m47, dashed lines) and with ALE hydro (run m64, solid lines). Both runs 
use scalar Q and the time is about 2.132 ps. Both runs generate a lot of noise on the 45” line but 
for the ALE run the three profiles are in closer agreement. 
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Figure D6. Pressure profiles for ALE hydro (run m64, solid lines) and run m65 (dashed line) 
comparing 2D ALE hydro results with 1 D spherical metric results. Except for the overshoot on the 
45” line in the ALE hydro, the results are judged to be the same. 
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Figure D7. Pressure profiles comparing run 2D m43 at 3”, 45”, 97” (face-centered velocities, 
tensorial Q, solid lines) with run m65 (1D spherical metric, dashed line). The length of the relevent 
zone edge is indicated by the center-to-center distance between the two “plus” signs. Face- 
centered hydro with tensorial Q closely approximates results from 1D while minimizing internal 
inconsistencies and noise. 



Figure El. Contours of shock positions using reactive flow (run m83, red contours) and predicted 
shock positions using lighting times (yellow contours) every 0.8 KS beginning at 2.0 Fs. Pseudo 
colors of pressures from reactive flow (run m83) are shown at t = 4.4 Fs. The positions of the 
shock front in the reactive flow calculation is determined by the contour line corresponding to a 
pressure of 0.5 Mb. Portions of this contour that result from the open boundary are easily 
distinguished from the shock. The initial lag of the reactive flow front behind the lighting time 
front is apparently increased by the effects of shadowing. 
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Figure E2. Comparison of predicted shock positions using lighting times (black contours, run 
m83) and positions of shock fronts calculated from reactive flow. A pseudo color plot of pressure 
calculated form reactive flow is shown at t = 7.0 us. The contours are shown every 0.2 j.ts. The 
Mach stem is clearly visible and its growth can be inferred from the increasingly longer straight 
section in the reactive shock front near the axis of symmetry. 
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Figure E3. Positions of shock fronts predicted by lighting times (black contours) and positions of 
actual shock fronts obtained from a calculation (m82) that used lighting times assisted by beta 
burn. The pseudo color plot shows pressure values in the calculation (run m82) at t = 6.8 us. Beta 
burn causes the Mach stem to advance more rapidly than programmed burn used alone. 
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Figure E4. Positions of the shock front using beta-burn-assisted programmed burn (black 
contours, run m82) and using reactive flow (red contours, run m83). The pseudo color plot shows 
the pressures obtained from reactive flow at t = 7.0 us. A comparison of the contours shows that 
reactive flow yields a more expansive Mach stem and a generally flatter shock front. An 
inspection of the contours near the axis (Mach stem region) suggests a slightly fester rate of 
travel for the Mach stem that is calculated by reactive flow than is indicated by the calculation 
using programmed burn. 


