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OBJECTIVE 
PURPOSE: Estimate shape of plutonium assemblies using new 
signatures acquired by passive NMlS measurements (no external 
source) 

0 Applications 
Identification of containerized regular shapes of plutonium 

0 Identification by shape without template 
0 Verification of shape for template initialization 
0 Potential utility for estimating shape of holdup in plutonium 

To illustrate the technique and test its feasibility, laboratory 

processing facilities 

measurements have been performed with californium spontaneous 
fission sources as a surrogate for plutonium 



TECHNIQUE HAS A NUMBER OF ADVANTAGES 

0 Passive - requires no external source for plutonium measurements 

0 Stationary - no scanning of the assembly is required 

0 Penetrative - shape is estimated from neutron emissions 

0 Obscurable - spatial resolution can be deliberately degraded by 

0 inexpensive - Majority of NMlS components are commercial 

0 Portable - detection system is transported to the item, not vice 

changing detector size and/or timing resolution 
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TECHNIQUE ESTIMATES PU-240 SPATIAL 
DlSTRl BUTtON USING SUPERPQStTlON 

Principle: estimate shape of distributed source by superposition of 
point sources e% - id Ip -a-+u-J- 
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PASSIVE NMlS MEASUREMENTS OF PLUTONIUM 
Up to five detectors - each 
sensitive to both neutrons and 
gammas 

DETECTORS 

111 
Neutron and gamma counts arise 
from 

Spontaneous fission of Pu-240 
e Fission of Pu-239 induced by Pu- 

240 neutrons 
Detector pulses mark time of 
neu tron/gamma count 
Counts in one detector correlated 
with counts in another detector 

FISSILE ( ~ ~ - 1 3 9 )  ASSEMBLY ~ T H  
INHERENT SOURCE (Pu-240) 

NMlS CORRELATION SIGNATURES 
Average rate of pairs of coincident detector counts 

Distributed over time-delay between individual detectors in pair 

Onrecl 2 3 4 5 6 . .. 
DELAY [i -21 = 3 nsec 

One Pair: Distribution Accumulated Over 1 O6 - 1 O9 Pairs 

Three kinds of pairs 
Gamma-gamma pairs (C-C): short time-delays 
Gamma-neutron pairs (C-N): intermediate time-delays 
Neutron-neutron pairs (N-N): long time-delays 



FASSiVE NMlS MEASUREMENT OF 
SPONTANEOUS FiSSiON SOURCE 

1E-6 I 
€ 0-0 PAE3 

-50 4 -30 -20 -10 0 10 20 30 40 50 

TIME-DELAY 11-21 (nsec) 

NMlS EXPERIENCE WITH PLUTONIUM 
0 NMlS has been perceived as a strictly active method 

0 Recent experience has demonstrated that NMlS is capable o f  
performing passive identification of plutonium components 

0 NMlS scored 5 for 5 in DSWA-sponsored blind tests with pits at 
LANL 

Detected all false declarations 
0 Determined true identity of falsely declared items - including (cut) 

source substituted for one pit 

0 More recent measurements at PANTEX were equally successful at 

0 Subsequent analyses have demonstrated that passive 

identiwing pits 

measurements can estimate mass using a californium-252 source 
as the only calibration standard 



PASSIVE NMlS MEASUREMENTS SCALE DIRECTLY 
WITH SPUNTANEOUS FISSION RATE 

Passive NMlS measurements o f  four Cf-252 spontaneous fission 
sources o f  nearly identical mass 

Passive Coincidence Distribution 
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T I E - M U Y  11-21 (nus) 

Area Under Distribution vs 
Cf-252 mass 

HIGHER ORDER CORRELATIONS 
Previous correlation signatures are second-order 

0 Measure distribution of two-way coincidence 
0 (count rate is  first-order in this context) 

Method recently generalized to measure higher order correlations 

0 Third- and fourth-order correlation analyses have been 

Third-order correlation analysis has been applied to 

First implementation and application o f  higher order correlations 

N-th order correlation: distribution of N-way coincidence 

implemented in NMIS 

measurements of uranium 

in nuclear measurements - NMlS 1997 



HIGHER ORDER CQRRELATlONS 
ARE MORE SENSITIVE TO FISSILE MASS 
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THIRD-ORDER CORRELATION SIGNATURES 3 

0 Average rate of triplets of coincident counts (bicoincidence) 
0 Distributed over time-delays between 

0 First and second detection 
0 First and third detection 

DETECTOR1 1 I @ I I j I I ]  

DETECTOR31 I I I 6 B I I I I  
DETECTOR21 I I I I 691 I j +TIME 

Onsecl 2 3 4 5 6 ... 
DELAY 11-21 = 3 nsec 
DELAY [l-31 = 2 nsec 

One Triplet: Distribution Accumulated Over 1 O6 - 1 O9 Triplets 



THIRD-ORDER CORRELATION SIGNATURES 
0 Four kinds of triplets 

Gamma-gamma-gamma triplets (C-C-C) 
0 Three gammas counted in rapid succession 
0 Short time-delays between counts 

Gamma-gamma-neutron triplets (G-C-N) 
0 Two gammas counted in rapid succession, neutron counted later 
0 Short time-delay between two gammas, longer time-delay to neutron 

Gamma counted first, two neutrons counted later 
0 Long time-delays between gamma and each neutron 

Long time-delays between each neutron count 

0 Gamma-neutron-neutron triplets (G-N-N) 

Neutron-neutron-neutron triplets (N-N-N) 
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NEUTRON TIME-OF-FLIGHT SPECTRUM 
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Fission neutrons incident on the 
detector are counted according to 
its efficiency 

Neutrons emerge from source 
according to its fission spectrum 

NEUTRON Tl M E-0 F- FLf CHT SPECTRUM 
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MEASURING NEUTRON FUCHT DISTANCE 

0 s 10 16 ?o m a0 

NEUTRON FLIQHT THE (nwc) 

0 Neutron flight time from source to detector is distance / speed 
0 Time-of-flight spectrum is dilated by flight distance 

Time-of-flight spectrum provides a measure of distance to the source 



CONCEPT FOR POINT SOURCE LOCATION 
0 Analogous to CPS 

Source: point fission source 
Receivers: uncollimated radiation 

0 Detectors measure distance from 

0 Source and detectors in same 

detectors 

source 

plane (shown at right) 
Requires three measurements of 
relative distance - (R,, R,, R,) 
Source lies at single point common 
to three circles 

0 General case: four detectors 
required to determine source 
location in 3D-coordinates 

@ SOURCE 

u DETECTOR 

PASSIVE MEASUREMENTS OF SPONTANEOUS 
FISSION POINT SOURCE 

0 Small Cf-252 spontaneous fission source 
Measured at seven positions by three 100 x 100 x 100 mm3 detectors 



NEUTRON FUGHT SPEED DlSTRlBUTlON 
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0 Three G-C-N ridges extracted from each of seven measurements 
0 Time-of-flight spectrum converted to speed distribution 
0 Empirical fit to average yielded distance-independent calibration 

NEUTRON FLIGHT DISTANCE ETiMATES 
0 Neutron flight distances estimated 

from each measurement using 
single calibration 

estimates flight distance within 
(-27. +13) mm of actual (+- 1 196) 

0 Good estimation for simple model 
- treats detectors as points 

0 Extrapolation to short flight times 
used to eliminate contamination 
by gamma triplets 

0 More sophisticated models will fit 
G-C-G peak and C-C-N ridge 
simultaneously to improve 
extrapolation 

0 Empirical flight speed model 
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POINT SOURCE POSITON ESTIMATES 
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Distance from each detector used to estimate source location 
0 Simple model estimates correct position to within 33 mm 

GENE IN1  SOURCES 
TO DlSTRtBUTED SOURCES 

Distributed source: superposition of point sources 
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