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Summary

Energy-momentum conserving methods are developed for rigid body dynamics with
contact. Because these methods are unconditionally stable, they are not time step dependent and,
hence, are well suited for incorporation into structural mechanics finite element codes. Both penalty
and Lagrange  multiplier methods are developed herein and are the extension of the energy-
momentum conserving integration schemes for rigid bodies given by Simo and Wong [1].

Introduction

The rigid material idealization is often exploited in finite element analysis to save
computational time since rigid materials do not require constitutive evaluations and vastly reduce
the number of degrees of freedom in the problem. Yet, the algorithms for integrating the equations
of motion of these rigid bodies are more complicated than those for deformable solid elements due
to presence of angular momentum. Furthermore, in an explicit setting, it is difficult to evaluate a
critical time step for the rigid material unlike the deformable materials. In an implicit setting, the
conventional integration algorithms and contact methods don't guarantee stability and can often
gain energy in a dynamics problem. In this work we extend the implicit time integration algorithms
for rigid bodies given in [1] to include the constraints and generalized forces from contact and
show that the resulting formulation is energy-momentum conserving for a system of rigid bodies
free of external forces. The resulting algorithms can be shown to be unconditionally stable in the
energy sense [2].

We develop both Lagrange multiplier and penalty methods for versatility. The forward
increment Lagrange multiplier method [3] is used with the appropriate application of contact
forces/moments and an algorithmic velocity constraint to simulate elastic contact (i.e. the coefficient
of restitution e = 1) [4]. The Lagrange multiplier method was implemented into the explicit finite
element code DYNA3D [5]. We prefer the implicit rigid body dynamics algorithm in the otherwise
explicit code since the iterations can be done locally and no time step constraint is imposed on the
system by the rigid material. The penalty method was implemented in the implicit finite element
code NIKE3D [7]. The penalty method uses an algorithmic gap given in [6] and the appropriate
midstep configuration for application of forces/moments to mitigate penetration.  These DYNA3D
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and NIKE3D implementations are general in that they include flexible - flexible, flexible - rigid and
rigid - rigid contact. Although we have included friction in our implementation, the work presented
here is frictionless.

In what follows: the notion of algorithmic energy-momentum conservation is defined,  the
time integration methods are shown, the special contact treatment is presented and finally a few
simple examples are illustrated.

Energy-Momentum Conservation

Consider the free body motion of N rigid bodies with contact. Using the midpoint rule, the
discretized momentum equations for the ith body are given by:

    pn + 1
i - pn

i = Σ j = 1
Nc (fn + 1 / 2

i )j ∆t
     

    hn + 1
i - hn

i = Σ j = 1
Nc (Ri)j × (fn + 1 / 2

i )j ∆t
(1)

where    pn
i = M i vn

i
 is the linear momentum,     hn

i = In
i ⋅ ωωn

i  is the angular momentum, v is the velocity
of the center of mass,  ωω  is the rotation rate,  M is the mass, I is moment of inertia,   (f)j is the
contact force on the jth node,   (R)j

 is the appropriately defined moment arm measured from the
center of mass to the jth node, and  Nc  is the number of nodal contact forces applied. Conservation
of the discretized system linear and angular momentums is represented by:

    pn
iΣi = 1

N
= P                    

    Xi × pn
i + hn

iΣi = 1

N
= H (2)

where  P  and  H  are constants and  X  is the location of the center of mass. Energy conservation is
given by:

    Tn + Un = E where Tn = pn

i ⋅ vn

i
+ hn

i ⋅ ωωn

iΣ
i = 1

N

(3)
where  E  is some constant and  U is some stored potential energy which may be non-zero when
contact is made in the penalty method (   U = 0 in the Lagrange multiplier method). In general, time
stepping methods satisfy (1), but (2) and (3) are only satisfied in the limit as    ∆t → 0 . It remains to
develop the appropriate definitions for f ,  R ,  U and time integration rules such that the
conservation laws (2) and (3) can be satisfied to some desired tolerance.

Integration Rules

The rigid body center of mass and rotation are updated using the following integration rules
from Simo and Wong [1]:

    
Xn + 1 =

∆t
2

(vn + 1 + vn) + Xn (4)
   ΛΛn + 1 = exp [θθn + 1] (5)
   ωωn + 1 = ΛΛn + 1 (

2
∆t

θθn + 1 - ωωn) (6)
    In + 1 = ΛΛn + 1InΛΛn + 1

T
(7)

where θθ  is the incremental rotation and   exp [⋅]  is the exponential map operator which maps the
incremental rotation into SO(3). Solutions to linearized forms (c.f. [1],[8]) of (1) will provide the
incremental displacements and rotations which are used in (4)-(7) to update the kinematics.
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Contact Forces and Moments

For the penalty method, an algorithmic definition of the gap is used in place of the exact
gap. In this method, the closest point projection is made at a modified configuration x  from which
the contact normal νν  and isoparametric coordinates ξξ  are calculated. The algorithmic gap is given
by the recursion [6]:

    gn + 1
d = gn

d + νν ⋅ ((xn + 1
s - xn

s) - (x(ξξ)n + 1
m - x(ξξ)n

m)) (8)
where  xs represents the position of the slave node and   xm is the position of the closest point
projection at a given time. This so called dynamic gap is a second order approximation to the actual
gap. The contact forces on the slave node   fs and the ith master node    (fm)i  are given by [6]:

     f s = p νν and (f m)i = -p νν Ni(ξ) (9)

  
where p =

1
2

Un + 1 - Un

gn + 1
d - gn

d
and U =

k (gd)2 if g < 0

0 otherwise (10)

The nodal points on both the slave and master surfaces of the rigid bodies are calculated at a
modified position given by:

     
x =

1
2

(Xn + 1 + Xn) + R, where R =
1
2

tan (|θθn + 1 | /2)

|θθn + 1 | /2
(Rn + 1 + Rn ),

(11)
 X is the position of the center of mass,  R  is the position to the node from the center of mass and θθ

is the compound rotation. From the nodal positions given by (11), the contact normal νν  and the
moment arm  R are calculated. As shown in Appendix A, use of this modified position along with
the penalty forces from (9)-(10) provides system momentum and energy conservation.

In the forward increment Lagrange  multiplier method, a "predictor" step is taken in which
no contact forces are applied. From the predictor step nodal positions, slave and master facet pairs
are identified. The moment arms   Rp and contact normals νν

 
are calculated by closest point

projection in the predicted state. The contact force is now:

   f = λ νν (12)
where λ  is the unknown Lagrange  multiplier. The following algorithmic  moment arms for the
slave and master nodes are used to conserve angular momentum:

    Rs = Rp
s + ((Xn

s - Xn
m) + (Rp

s - Rp
m)) / 2      Rm = Rp

m - ((Xn
s - Xn

m) + (Rp
s - Rp

m)) / 2 (13)
The Lagrange multiplier is calculated such that the following gap velocity constraint is enforced:

    νν ⋅ (∆vm - ∆vs) = 0 (14)
where   ∆v  is the algorithmic velocity jump of the slave/master node from time n to n+1, and is
given by:

     ∆v = 1/2 (vn + 1 + vn) + (expT (θθn + 1 ) ωωn + 1 + ωωn) × R (15)
Here v  is the velocity of the center of mass. By substituting (15) and (6) into (A1), it can be
shown that the method conserves energy algorithmically. In the limit as    ∆t → 0 , the rotation

    exp(θθ )  tends toward the identity matrix and the continuum result is recovered for an elastic
collision [4].
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The above algorithm is embedded in a nonlinear conjugate gradient algorithm to solve for
the updated position and Lagrange multipliers. The conjugate gradient method employs constraint
planes which enforce the Kuhn Tucker complementary conditions for the contact forces and gaps.
The method used is described in detail in references [8] and [9].

Examples

The penalty method was particularized to solve problems involving rigid spherical contact.
In doing so, spheres can roll smoothly against contact surfaces. In the first example (Figure 1), a
0.274 kg solid ball, radius 1 m,  is placed within a 0.743 kg spherical shell, inner radius 9 m (Fig.
1). Initially, the center of mass is at (0,0,2) for the solid ball and (0,0,10) for the shell. The solid
ball is given an initial velocity of 1m/s in the y direction such that the inner ball rolls smoothly in
the y-z plane. Because the system is entirely free, linear and angular momentum of the system is
conserved (see Fig. 2).The relative error for system kinetic energy, defined as   T / To – 1 , reaches
a maximum 3 × 10-9 while the relative error in x angular momentum (Figure 2) reaches 8.8 × 10-11.
The penalty stiffness was 10,000 and it is noted that some of the energy in the system is potential.

Figure 1. Rigid ball in spherical shell.
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Figure 2. x angular momentum for rigid ball and spherical shell.

In the next example, the Lagrange multiplier method in DYNA3D is used to  model a
moving 1 m long rod confined within a rigid cube (Figure 3). The unconstrained cube, initially
stationary, measures 2 m by 2 m by 2 m and is 0.1 m thick. The rod, initially centered within the
cube and coincidental with the x-axis is made from five collinear beam elements, and its cross
section measures 0.1 m by 0.1 m. It has an initial velocity of    x = (50,2,0)T m/s and

   θθ = (0,40,0)T rads/sec. Both materials have a density of 7.0 × 10-4 kg/m3. The analysis is run for
10 sec with a fixed time step size of 1 × 10-6 sec. During the 107 steps the rod impacts the cube 447
separate times. The relative error for system kinetic energy reaches a peak value of 9.46 × 10-11

while the relative error in y angular momentum reaches 2.86 × 10-5. All other error is within
machine tolerance.

Figure 3. Rigid stick in rigid box.
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Appendix A

Energy Conservation for Penalty Method:
The change in algorithmic kinetic energy from time n to n + 1 is found by premultiplying

the translational and angular momentum equations in (1) by the incremental displacement
   Xn + 1 - Xn  and rotation    θθn + 1 , respectively, and adding the contributions to give:

    Tn +1 - Tn = M (vn + 1)
2 - M (vn)

2 + ωn + 1 ⋅ In + 1ωn + 1 - ωn ⋅ Inωn

    
     = Σ j = 1

Nc ( f n + 1 / 2
i ) j ⋅ (Xn + 1 - Xn + θθn + 1 × R j)

(A1)
where the identity    (I - exp [θθ])⋅θθ = 0  is used. Using the following identity:

     tan (|θθn + 1 | /2)

|θθn + 1 | /2
θθ × 1

2
(Rn + 1 + Rn ) = (Rn + 1 - Rn )

(A2)
along with (11) in (A1) gives:

    Tn + 1 - Tn = Σ j = 1

Nc ( f n + 1 / 2
i ) j ⋅ ((Xn + 1 + Rn + 1

j ) - (Xn + Rn
j))

(A3)
Without loss of generality, it is shown that contact between two rigid bodies at a single master-
slave pair conserves energy. Using (A3), (9) and (10) the total algorithmic potential energy from
both rigid bodies can be shown to be:

    Tn + 1 - Tn = p νν⋅ (Xn + 1
s + Rs

n + 1) - (Xn
s + Rs

n) -

Σ j = 1

4
(N j(ξξ) ⋅ ((Xn + 1

m + Rm
n + 1
j ) - (Xn

m + Rm
n
j))

(A4)
where the master facet is assumed to have four nodes. Now using the definition for the algorithmic
gap in (8) and the contact pressure (10) in (A4), the change in kinetic energy is shown to be the
change in potential energy of contact:

  Tn + 1 - Tn = U(gn + 1
d ) - U(gn

d) (A5)
Conservation of Momentum for Penalty Method:

Linear momentum is conserved by definition in (9). Without loss of generality, the total
algorithmic angular momentum is shown to be conserved for two rigid bodies in contact at a single
master-slave pair such that

    Hn + 1 - Hn = (Xn + 1
s × M svn + 1

s + Xn + 1
m × M mvn + 1

m + In + 1
s ωωn + 1

s + In + 1
m ωωn + 1

m ) -
    (Xn

s × M svn
s + Xn

m × M mvn
m + In

sωωn
s + In

mωωn
m) (A6)

Using (1), (10), (11) and the result     (Xn + 1 - Xn) × M(vn + 1 + vn) = 0  in (A6) with some algebraic
manipulation gives:

    Hn + 1 - Hn = (xs
– x(ξξ)m

) × p νν (A7)
Because the closest point projection is made in the modified position given by (11), the result

    xs
– x(ξξ)m

= g νν  holds and the change of momentum in (A7) vanishes.
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