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RESULTS ON THE EFFECT OF ORDERINGS ON SSOR AND&~CEIVEB 
PRECONDITIONINGS * 

W. JOUBERT t AND E. KNILL t 

Abstract. It is known that for SSOR and ILU preconditionings for solving systems of linear equations, 
orderings can have an enormous impact on robustness, convergence rate and parallelism. Unfortunately, 
it has been observed that there is an inverse relation between the convergence rate and the parallelism of 
typical orderings used in practice. This paper presents some numerical experiments with simple matrices to 
illustrate this behavior as well as a new theoretical result which sheds some light on this phenomenon and 
also gives an upper bound on the convergence rate of a number of preconditioners in popular use. 

K e y  words. linear systems, iterative methods, preconditioning, incomplete factorizations, incomplete 
Cholesky preconditioning, SSOR preconditioning, parallel computation 

A M S  subject classifications. 65F10, 65F15 

1. Introduction. The solution of sparse linear systems of the form 

Au=b 

is vital to many computational modeling and simulation processes of interest. Further- 

more, it is recognized that parallel computers are necessary to solve very large problems of 

importance, necessitating the use of effective parallel linear solver algorithms. 

Well-known preconditioners such as incomplete Cholesky and ILU preconditioning which 

lie at the heart of many linear solvers have been notoriously difficult to parallelize. ILU 

preconditioning with standard natural or reverse Cuthill-McKee orderings are robust and 

lead to rapid convergence of the iterative method in many cases, but they are dfficult to 

parallelize. On the other hand, orderings such as red-black or multicolor orderings, though 

more parallelizable, in many cases lead to slower convergence. This inverse relation between 

parallelism and convergence rate has been observed, for example, by [Dfi/Meurant]. 

The purpose of this paper is to examine the validity of this claim in more detail by the 

use of numerical experiments. We will also present a result for an important prototypical 

* This work was supported in part by the Department of Energy through grant W-7405-ENG-36, with 

t Scientific Computing group, Los Alamos National Laboratory, Los Alamos, NM 87545. Email  
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2 W. JOUBERT, E. KNILL 

model problem showing that a number of preconditionings, including multicolor IC and 
*.:e ;-A c j t' s$%& which have high parallelism, can only improve upon the unpreconditioned case by 

ajo3stant factor for very large problem sizes. Such convergence behavior is qualitatively 

worse than, say, MILU preconditioning with natural ordering, for which the improvement 

Q . 4 y3 4-* 

rl ,yw: k, ..- I .  

4 ...>d -r .. 
-&L. 

:. r. 4 :. oirer the unpreconditioned case grows as the problem size grows. 

The arrangement of this paper is as follows. In Section 2 we give numerical experiments 

to examine the relationship between convergence and parallelism of preconditioned iterative 

methods with orderings. Then in Section 3 we give the new result on the asymptotic 

performance of various preconditioners. 

2. Numerical experiments with small matrices. In principle, it would be desir- 

able to extend the study of [Duff/Meurant] to test all possible orderings of unknowns for 

simple model problems. Unfortunately, the number of orderings of unknowns grows expo- 
nentially with the number of unknowns for certain simple model problems of interest such as 
those of [Duff/Meurant]; thus, such a calculation is not computationally feasible. Nonethe- 
less, looking at the performance of preconditionings under various orderings for very small 

cases, for which it is computationally feasible to examine all orderings, may give some clues 

as to what factors are key in controlling the performance of these methods. 

For these experiments we will consider matrices derived from the 2-D Laplace equation, 

-uzz - uyy = 0 

on a rectangular domain, with homogeneous Dirichlet boundary conditions. The problem 

is discretized with standard central finite differences with (n, + 1) x (ny + 1) grid points, 

leading after elimination of the boundary unknowns to a matrix with five nonzero diagonals 

(before reordering), with 4's on the main diagonal and -1's as the other nonzero entries of 

the matrix. 

For simplicity of analysis, we use the SSOR preconditioner, 

Q = [ ~ / ( 2  - w)] [ ( l /~ )D  + L)D-l[(l/w)D + U], 

with relaxation parameter w = 1 (symmetric Gauss-Seidel). Here, A = D + L + U is the 

decomposition of A into main diagonal, strictly lower triangular and strictly upper triangular 

matrices, and the preconditioned system to be solved is 

Q - ~ A u  = Q-'b. 
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The SSOR and SGS preconditioners have an identical structure to  the no-fill incomplete 

Cholesky ordering for this case, and the SSOR and M/IC methods involve similar conver- 

gence and parallelism issues. 

These experiments are performed on a Sun workstation with 64-bit IEEE floating point 

arithmetic. For each preconditioner, the preconditioned matrix is formed as a dense ma- 

trix, and the condition number is calculated from the extremal*eigenvalues as computed by 

LAPACK routines. For a given choice of n, x ny, we compute all possible orderings of the 

unknowns, and for each ordering, apply the ordering to A, precondition, and then compute 

the resulting condition number. 
The naive approach to enumerating all possible cases is to generate all [(nzny)!] permu- 

tations of the numbered grid points. However, many redundancies exist in such an approach, 

in the sense that, as is known Tyoung], two different orderings can lead to an identical pre- 

conditioner. Furthermore, other symmetries exist due to the nature of the model problem 

(regular grid, constant coefficients). 

To enumerate the possible orderings without redundancies of preconditioner, we use 

the following approach. For any pair of grid points in the grid which are horizontally or 

vertically adjacent, one might draw a small arrow from one point to the other to indicate the 

relative priority of which point is ordered or updated before the other. This approach gives 

rise to 2n=(nv-1)+ny(n=-1) different cases, since each arrow has a choice of two directions. 

This enumeration has exponential order, considerably better than the factorial order of the 

naive approach. 

From these cases, it is necessary to eliminate each case that has a “cycle,” i.e., a path 

through the grid that starts and ends at the same point. After this is done, it is easy to see 

that an ordering can be associated with each case: for the given case, recursively a point 
is found with all out-arrows and that point is numbered and eliminated. Furthermore, this 
scheme covers all possible cases according to poung]. Note that this scheme confirms that 

the number of orderings producing distinct preconditioners is, at most, exponential in the 

number of grid points. 

Since the problem is regular and has constant coefficients, redundancies due to reflections 

in x and y may be removed. If n, = ny, then redundancies from exchanging x and y may 

also be removed. 

The resulting set of orderings still has some redundancies which may be removed, associ- 
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ated with the fact that if the ordering is reversed, the condition number of the preconditioned 

matrix is unchanged. 

These calculations are summarized in Table 1 for a set of small grids. The final column 

of the table is generated empirically by counting the number of unique condition numbers 
which are generated by the code. 

ny 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
1 
2 
3 
4 
5 
6 
7 
8 
1 
2 
3 
4 
5 

- 
47 

1 
1 
I 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
4 
4 
4 
4 

- 

- 

- 

- 

- 

- 
n, . ny (n,n,)! 2n=(n~-l)+ny(n=-1) 

1 1 1 
2 2 2 
3 6 4 
4 24 8 
5 120 16 
6 720 32 
7 5040 64 
8 40320 128 
9 362880 256 

10 3628800 512 
11 39916800 1024 
12 479001600 2048 
13 6.227020e09 4096 
14 8.717829e10 8192 
15 1.307674e12 16384 
16 2.092279e13 32768 
17 3.556874e14 65536 
18 6.402373e15 131072 
19 1.216451e17 262144 
20 2.432902e18 524288 
2 2 2 
4 24 16 
6 720 128 
8 40320 1024 

10 3628800 8192 
12 479001600 65536 
14 8.717829e10 524288 
16 2.092279e13 4194304 
3 6 4 
6 720 128 
9 362880 4096 

12 479001600 131072 
15 1.307674e12 4194304 

# points # perms # update pat 
# update pat 

no cycles 
# update pat # cond 
no cycleslrefl 

1 
1 
3 
4 

10 
16 
36 
64 

136 
256 
528 

1024 
2080 
4096 
8256 

16384 
32896 
65536 

131328 

1 
2 
4 
8 

16 
32 
64 

128 
256 
512 

1024 
2048 
4096 
8192 

16384 
32768 
65536 

131072 
262144 

1 
1 
2 
3 
6 

10 
19 
36 
69 

135 
261 
527 

1030 
2053 
3992 
7706 
- 
- 
- 

524288 262144 
2 1 

- 
1 

14 
98 

686 
4802 

33614 
235298 

1647086 
4 

98 
2398 

58670 
1435414 

8 
686 

58670 
5015972 

3 
17 

101 
639 

4308 

3 
28 

175 
1225 
8428 

58996 
411943 

3 
28 

345 
14839 

360933 
4 

175 
14839 

627829 

- 
2 

17 
168 

7409 

1 
2 
3 
4 

3 
101 

7409 
- 

4 24 8 
8 40320 1024 

12 479001600 131072 
16 2.092279e12 16777216 
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Table 1. Number of distinct orderings for small problems. :::.E 
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Figure 1. Path length vs. condition, grids 1x2, 1x3, 1x4. 
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Figure 2. Path length vs. condition, 1x5 grid. 
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Figure 3. Path length vs. condition, 1x6 grid. 
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Figure 4. Path length vs. condition, 1x7 grid. 
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Figure 5. Path length vs. condition, 1x8 grid. 
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Figure 6. Path length vs. condition, 1x9 grid. 
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Figure 7. Path length vs. condition, 1x10 grid. 
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Figure 9. Path length vs. condition, 1x12 grid. 
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Figure 10. Path length vs. condition, 1x13 grid. 
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Figure 11. Path length vs. condition, 1x14 grid. 
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Figure 12. Path length vs. condition, 1x15 grid. 
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Figure 13. Path length vs. condition, 1x16 grid. 
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Figure 14. Path length vs. condition, grids 2x1, 2x2, 2x3. 
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Figure 15. Path length vs. condition, 2x4 grid. 
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Figure 16. Path length vs. condition, 2x5 grid. 
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Figure 17. Path length vs. condition, 2x6 grid. 
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Figure 18. Path length vs. condition, grids 3x1, 3x2, 3x3. 
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Figure 19. Path length vs. condition, 3x4 grid. 
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Figure 20. Path length vs. condition, grids 4xl,4x2, 4x3. 
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Figure 21. Correlation of condition with squared E'robenius norm, 3x3 grid. 
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Figures 1 through 20 give results of these numerical experiments for a variety of small 
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matrices. For each case, the number of parallel steps (“wavefronts,” “independent sets” or 
“colors”) induced by the ordering is given on the horizontal axis, and the condition number 
of the preconditioned system is given on the vertical axis. 

We may draw several conclusions from these experiments: 

1. As would be expected, larger problem sizes lead to generally larger condition num- 

bers as well as more orderings and potentially more parallel steps. 

2. In every case, the worst performer in terms of condition number is the red-black 

ordering (and equivalent orderings) which has higher condition number than any 

other ordering. 

3. In every case, the best performer is the natural lexicographical ordering (which in 

this case is equivalent to reverse Cuthill McKee). In fact, this ordering is even 

slightly better than orderings with more parallel steps, such as the spiral or snake 

orderings. 

4. The general trend of [Duf€/Meurant] is confirmed, that, generally, the more parallel 

orderings give larger condition numbers than the less parallel orderings, though 

there is much variability around the general trendline. 

5. It is possible to have slightly more than two parallel steps and have much better 
performance than the red-black ordering. On the other hand, there are three-color 

orderings which perform nearly as poorly as two-color orderings. 

6. Some orderings with the largest number of parallel steps perform nearly as well 

as the natural ordering. However, in some cases such orderings perform poorly. 

Therefore, a large number of parallel steps is not necessarily a guarantee of very 

fast convergence. 

7. The “lower envelope” on data values for low numbers of parallel steps seems to form 

a decreasing lower bound on the condition number as the number of parallel steps 

increases. This suggests the result of Section 3. 

The convergence behavior of these methods is often analyzed in terms of the remainder 

matrix R = A - Q. Note that the model problem has constant main diagonal; thus, we 

may scale A to have D = I without changing the performance of the methods. In this case, 

Q = ( I  + L)(I  + U), and thus R = -LU. 
Though it is unclear whether a tight relationship holds between the size of R and the 

condition of Q-IA, it has been observed that the squared Robenius norm lIRll$ and the 
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condition fi  are related. In fact, Figure 21 gives a scatter plot relating these two values for 

the case of the 3x3 grid, and the correlation is almost perfectly linear. In turn, large con- 
tributions to  (lRlI$ are made by “incompatible nodes” [Doi/Lichnewsky] or %on-naturally 

ordered nodes” [Eijkhout], which gives some indication of how the orderings impact the 

convergence rate. 

3. Theoretical limitations on the performance of sparse preconditioners. The 

empirical results of the previous section suggest that it may be possible to put a lower bound 

on the condition number of the preconditioned system based on the number of parallel steps 

implied by the ordering. The theorem presented in this section does just this. It is based on 

the observation that if an ordering has a small number of parallel steps, this in fact puts a 
limit on the sparsity of Q, i.e., the maximal number of nonzeros per row. By showing that 

the condition number of a preconditioned system for which Q’s nonzeros per row is bounded 

independent of problem size is bounded below, we are able to show the desired result, and 

at the same time show a convergence rate for other preconditioners such as certain sparse 

approximate inverse methods. 

Let us begin with definitions. Let Amin(M) and A,a,(M) be the extremal eigenvalues 

of any matrix M with real spectrum. Let the quantity rc(M) = Ama,(M)/Amin(M) be the 

spectral condition number of M. 
The following result applies to d-dimensional regular Laplace equations such as those 

described in the previous section. 

Theorem. Let d, n 2 1. Let A,J be the square sparse matrix of dimension n defined by 

efA,,lei = 1 for 1 5 i 5 n and efA,,lei+l = eZ++,A,,lei = -1/2 for 1 5 i 5 n - 1, with all 

other elements of An,l equal to zero. For fixed d let 

. d  

Let Mn,d be any symmetric matrix such that each row of Mn,d has no more than b entries, 

for some b 2 1. Then there exists a constant C > 0 independent of n such that for all n 2 1, 

K(Mn,dAn,d) 2 cn2- 
Proof: Since the eigenvalues of Mn,dAn,d and Ai!$&&!: are the same, we may equiv- 

alently consider t ~ ( A i $ M ~ , d A i $ ) .  By constant scaling, it is enough to  consider Mn,d 

such that Amaz(A!$Mn,dAi!:) = 1. Thus it is sufficient to show that for such Mn,d, 
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Note that An,d is a diagonal matrix whose entries are [1/2] - [1/(2d)] 
for 15 ki 5 n ana 15 i 5 d. 

cos(kgr/(n t l)), 

Let c = (1/2)(4b)-2/d. Note 0 < c < 1. Let [@$lln] = Fn,d -I- Gn,d, where Fn,d = 

@=iFn,l and 

where I,, is the identity matrix of size LmJ- Note 0 5 LcnJ 5 cn 5 LmJ + 1 5 n, and the 

rank of Fn,d is LcnJd. Then 

Note also 

2 1 / 2  
‘‘Ai>d Gn’d‘12 = (1 - cos(( LmJ + l)n/(n + 1)))  

2 < = c1 
2 < - (1 - cos(mr/(n + 1)) )  - (1 - cos(m/2)) 

is bounded independent of n, thus the 2-norm of the right hand side of (1) is bounded by 

C1, independent of n. 
Now 
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(2) 

Note that Pn,d has entries of magnitude bounded by ( d m ) d .  From this it follows 

that 

for any i, j. Thus there are symmetric matrices M n , d  and M n , d  of the same sparsity pattern 

as Mn,d whose entries are bounded in magnitude by 1 such that 

But by Gershgorin’s theorem, I l f i n , d [ l  and I l f in ,d l l  are each bounded by b. Thus 

This implies 

SO IIMn,dll is bounded. 

Let U n  = Cn,d[@f=lel], the (normalized) eigenvector of An,d corresponding to  the small- 

est eigenvalue. Then 

1 - cos(n/(n + 1)) 
2 

1 - cos(./i/(n + 1)) 
u:Mn,dun 5 2 IIMn,dll- - - 

By Taylor’s theorem, 

7r2 7r4 

4(n+1)215 48(n+l)4’  
I 1 - cos(;,(n + 1)) - 



16 

Thus for n 2 1, 

W. JOUBERT, E. KNILL 

Since Xmaz(A$Mn,dA:!:) = 1 and since IIMn,dll is bounded independent of n, the result 
is shown, with 

1 
n2b 

c = -(1- ~os(n/(4(4b)~/~))) .  

Note that in fact the following bound holds, for c = (1/2)(4b)-2/d: 

1 - (2(&)d 1- (2c)d)b 1 - cos(cnn/(n + 1)) 
b 1 - cos(7r/(n + 1)) K(Mn,d&,d)  2 

1 
n2b 

2 -(1 - c o s ( ~ / ( 4 ( 4 b ) ~ / ~ ) > ) n ~  

Table 2 shows some representative values of the lower bound of the condition number using 

this tighter bound. It is assumed here that the number of elements of An,d, i.e. nd, is lo9. 
Note that the condition numbers for the unpreconditioned systems for d = 1 , 2  and 3, given 

by (1 + cos(~/ (n  + 1)))/(1- cos(n/(n+ l))), are 4.0528e + 17,4.0531e + 08 and 4.0610e+05, 

respectively, suggesting that the bound is weak. 

Tables 3 through 5 give upper bounds for the condition number for the preconditioned 

system using the optimal preconditioner for a given sparsity pattern. The values axe based 

on Chebyshev polynomial preconditioning of the original matrix. These figures are based 

on the fact that the associated spectral radius for degree-k polynomial preconditioning 

is given by l/cosh((k + 1) l o g ( ( 6  - l)/(& + l))), where K. is the condition number of 

the original matrix. Again, the difference between the lower and upper bounds is fairly 

substantial, indicating that the bounds are weak, though the asymptotic behavior of the 

bounds indicate that such preconditioning can only improve the condition number of the 

system by a constant amount irrespective of the problem size. 
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19 
20 
21 
22 
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bound, d = 1 
4.269030439932792e+14 
1.430439665228187e+13 
1.925644271241498e+12 
4.619345477052554e+ll 
1.523435542232577e+ll 
6.148513730152788et 10 
2.853345519941855e+lO 
1.46683276745 1235e+10 
8.154236430678563e+09 
4.821776956584233e+09 
2.997389479188783e+09 
1.941852206587198e+09 
1.302438301834628e+09 
8.997768525540059e+08 
6.376457374211799e+08 
4.620233028072453e+08 
3.413660263764376e+08 
2.566144242327273e+08 
1.959004344586539e+08 
1.516342154863592e+08 
1.188449579287516e+08 
9.420675040977293e+07 
7.545084936784838e+07 
6.100226725721111e+07 
4.974999976031717e+07 
4.089877660773254e-l-07 
3.387161736121851e+07 
2.824468496991656e+07 
2.370304033552378e+07 
2.001015406729655e+07 

bound, d = 2 
6.748544386655379e+06 
9.125899360897805e+05 
2.768998273522413e+05 
1.181606700624436e+05 
6.090618404239972e+04 
3.540282128498064et04 
2.236437040612905e+04 
1.501735487411991e+04 
1.056621528182532e+04 
7.713852431773913e+03 
5.802330105678729e+03 
4.473628423024728e+03 
3.521525491870981e+03 
2.821515277786319e+03 
2.295393593880919e+03 
1.892352481355578e+03 
1.578406337283923e+03 
1.330236426188525e+03 
1.131480641219106e+03 
9.704278090094737e+02 
8*385455934108473e+02 
7.295177085026331e+02 
6.386004785643117e+02 
5.621843546788020e+02 
4.974897717065060e+02 
4.423527603434260e-l-02 
3.950715821205910e+02 
3.542955218269618e+02 
3.189432358839651e+02 
2.881421052333836e+02 

bound, d = 3 
1.667595146195060e+04 
3.61538467608578le+03 
1.44261705743614le+03 
7.470629594715116e+02 
4.472971144458266e+02 
2.937963276729456et02 
2.057759094330227e+02 
1.510904184372026e+02 
1.150201295009818e+02 
9.009815904167844e+Ol 
7.222877142738187e+Ol 
5.902222420273417e+Ol 
4.901254221151281e+01 
4.126234588520582e+Ol 
3.515094870732632e+Ol 
3.025492079562255e+Ol 
2.627785885359187e+Ol 
2.300755825865897e+Ol 
2.028905490699708e+Ol 
1.800717759966682e+Ol 
1.60749741433009Oe+01 
1.442586326643019e+Ol 
1.30082069919169Oe+01 
l.l78148956451273e+Ol 
l.O71358361418229e+Ol 
9.778765199218023e+OO 
8.956253044489959e+OO 
8.229120156699228e+OO 
7.583473584101552e+OO 
7.00782969914493le+OO 

17 

Table 2. Lower bound on condition number. 
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d b  
2 1  
2 5  
2 13 
2 25 
2 41 
2 61 
2 85 
2 113 
2 145 

1 ; ;;; 
2 265 
2 313 
2 365 
2 421 
2 481 
2 545 
2 613 
2 685 
2 761 
2 841 

- 
b 
1 
3 
5 
7 
9 

11 
13 
15 
17 
19 
21 
23 
25 
27 
29 
31 
33 
35 
37 
39 
41 

- 

- 

1.01321 183844980e+17 
4.50316372644356e+15 

' 2.53302959612450e+15 
1.62113894151968e+15 
1.12579093161089e+15 
8.271 11704856980e+ 15 
6.33257399031125ef15 
5.00351525160395e+15 
4.05284735379920ef15 
3.34946062297455e+15 
2.81447732902722ef15 
2.39813452887527ef15 
2.06777926214245ef15 
1.80126549057742e+15 
1.58314349757781ef15 
1.40236932657412e+15 
1.25087881290099e+15 
1.12267239717429e+15 
1.01321183844980e+15 
9.19013005396645e+14 

Jpper bound on condition number, 

bound 
4.05310363247520e+08 
l.O1327592341674e+O8 
4.50344857177101e+07 
2.53318985465594e+07 
1.62124153061923e+07 
1.12586219459801e+07 
8.27164079201994e+06 
6.33297513785550e+06 
5.0038323461 1387e+06 
4.05310432678792e+06 
3.34967311412197e+06 
2.81465598721645e+06 
2.39828685651837e+06 
2.06791069781018e+06 
1.80138007170369e+06 
1.58324428415013e+06 
1.40245868091822e+06 
1.25095858666467e+06 
1.12274406310617e+06 
1.01327658188175e+06 
9.19071791570317e+05 

Table 4. Upper bound on condition number. 
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- 
d 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

- 

- 

b 
1 
7 

25 
63 

129 
231 
377 
575 
833 

1159 
1561 
2047 
2625 
3303 
4089 
4991 
6017 
7175 
8473 
9919 

11521 

bound 

Table 5. Upper bound on condition number. 

The following result allows us to leverage the previous results for application to a larger 

class of matrices of interest, in particular, matrices which are spectrally equivalent to those 
of the previous theorem. 

Theorem. Let d, n 2 1. Let An,d and Mn,d be defined as in the previous theorem. Let 

Bn,d be any symmetric positive definite matrix of dimension nd such that K(Bi,iAn,d) is 
bounded independent of n. Then there exists a constant C' > 0 independent of n such that 

for all n 2 1, IE(Mn,dBn,d) 2 c'n2. 

Proof: Note that for any symmetric nonsingular A, B and M ,  

thus K(MA) 5 K(B-~A)K(MB) .  Therefore, K(Mn,&,d) 1 (c/K(Bi,',A,d))n2, giving the 

result. I 
This result applies directly to discretized differential operators that are spectrally equiv- 
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alent to the diffusion operator in d dimensions. Consider the boundary value problem 

Suppose this is discretized by central (2d+l)-point finite differencing. Then setting ~ ( 2 )  = 1 

gives rise to the matrix described in the first theorem. Furthermore, under appropriate 

conditions on G, the resulting matrix B n , d  satisfies the conditions of the previous theorem. 

The result for such matrices is that any set of sparse preconditioners M n , d  satisfying the 

given sparsity properties must necessarily give condition number growth order n2, whose 

growth rate is no better than that for the unpreconditioned system. 
We will now prove a sequence of results to apply the above theorems. 

Corollary.(Sparse Approximate Inverses.) Let d, n 2 1. Let B n , d  be defined as previously. 

Let M n , d  be a matrix whose sparsity pattern X ( M n , d )  Satisfies C ( M n , d )  = U:=:=,c(A;,,), for 

a fixed value of k 2 0.  Then there exists a constant C' > 0 independent of n such that for 

all 7L 2 1, K ( M n , d B n , d )  2 c'n2- 

proof: k t  bd,k be the maximal number of nonzeros per row of M n , d .  Note bd,k 5 (2k + 
The number bd,k denotes the number of nodes in the graph corresponding to E(&&) that 

can be traversed in no more than k steps. This satisfies the recurrence bd,k = bd-1,k + 
2 Cfci bd-I , i .  In particular, b1.k = 2k + 1, b2,k = 2k(k + 1) + 1, and b3,k = 2k + 1 + 2k(k + 
1)(2k + 1)/3. I 

Corollary.(Polynomial Preconditioning.) Let d, n 2 1. Let B n , d  be defined as previously. 

Let M n , d  be a polynomial of degree no greater than k in B n , d ,  for a fixed value of k 2 0. Then 

there exists a constant C' > 0 independent of n such that for all n 2 1, K ( M n , d B n , d )  2 C'n2. 

Proof- The number of nonzeros per row has bound equal to that for the previous corollary. 

Corollary.(Factorized Sparse Approximate hverses.) Let d, n 2 1. Let B n , d  be defined 

as previously. Let L n , d  be a lower triangular matrix whose sparsity pattern is any subset 

of u:=;= ,c (A i ,d ) ,  for a fixed value of k 2 0. For any diagonal matrix D n , d  let M n , d  = 

L n , d D n , d L : , d -  Then there exists a constant c' > 0 independent of n such that for all n 2 1, 

K ( M n , d B n , d )  2 ctn2- 



EFFECTS OF ORDERINGS ON PRECONDITIONING 21 

Proof The number of nonzeros per row of M n , d  is bounded by [(2k+ 1)d]2.  A tighter bound 

is given by 2k+l (d = 1) (sharp), (k2+k+1)2 (d = 2), and (l+k+2k2+k(k-1)(2k-1)/3)2 

(d = 3). I 

Corollary.(E'ixed-Size Overlapping Subgrid Preconditioning.) Let d, n 2 1. Let B n , d  be 

defined as previously. Let M n , d  be a sum of block diagonal matrices each of which is an 

arbitrary symmetric matrix on a subgrid of the grid and zero elsewhere. The subgrids 

may overlap. Let b bound the rank of any of these subgrid matrices, bounded independent 

of n. Then there exists a constant C' > 0 independent of n such that for all n 2 1, 

K(&,d&,d) 2 c'n2* 

Corollary.(Banded Preconditioning.) Let d,  n 2 1. Let B n , d  be defined as previously. 

Let M n , d  be a banded matrix of bandwidth bounded by b, where b is bounded independent 

of n. Then there exists a constant C' > 0 independent of n such that for all n 2 1, 

K ( M n , d B n , d )  3 c'n2- 

Corollary.(IC/MIC/SSOR.) Let d, n 3 1. Let B n , d  be defined as previously. Suppose a 

2-sided permutation is applied to B n , d ,  and M n , d  represents either IC(O), MIC(0) or SSOR 
preconditioning for B n , d .  Let en be the number of "wavefronts," or parallel steps required 

to apply a forward or backward sweep of h f n , d 7  where 4, is bounded over n. Then there 

exists a constant (3' > 0 independent of n such that for all n 2 1, K , ( M n , d B n , d )  2 C'n2. 

Proof: Let M n , d  = (I - L*)-'D(I - L)-', for D diagonal and L strictly lower triangular. 

Note Ln is the lowest integer for which Lln = 0. To bound the number of nonzeros per 

row of it&,& first note that ( I  - L)-' = E::;' Li, and Li has at most (24' nonzeros. 

Thus, M n , d  has at most (2~4~'" nonzeros. A second bound may be obtained by noting that 

applying ( I  - to a vector can connect a point to neighbors within an enclosing cube 
of size 2& + 1 points per edge; thus, the number of nonzeros per row of Mn,d is bounded 
by (2& + 1)2d. 

Note for red/black ordering (en = 2), these tighter bounds hold 5 (d = l ) ,  13 (d = 2), 

and 25 ( d = 3 ) .  I 

Corollary.(Multicolor IC/MC/SSOR.) Let d, n 1 1. Let B n , d  be defined as previously. 

Suppose a 2-sided permutation is applied to B n , d ,  and M n , d  represents either IC@), MIC(0) 

or SSOR preconditioning for B n , d .  Suppose the ordering represents a coloring of the graph 
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into k independent sets. Then there exists a constant C' > 0 independent of n such that 

for d 2 1, IC(Mn,dBn,d )  2 c'n2, 

Proof: A graph colored with k colors requires k parallel steps to perform a forward or 

backwaxd sweep. I 

Corollary.(M/IC(k).) Let d, n 2 1. Let B n , d  be defined as previously. Suppose a 2-sided 
permutation is applied to B n , d ,  and M n , d  represents either IC(k) or MIC(k) preconditioning 

for B n , d .  Let & be the number of "wavefronts," or parallel steps required to apply a forward 

or backward sweep of &,d, where en is bounded over n. Then there exists a constant C' > 0 

independent of n such that for all n 2 1, K ( M n , d B n , d )  2 C'n2. 

Proof: A forward or backward sweep connects a point to neighbors as far away as Ln2k. Thus 

the number of nonzeros per row of M n , d  is bounded by (2Ln2k + 1)2d. A second bound on the 
number of nonzeros per row, as counted by connections, is xko(2d)2') 5 (2d)2e*(2k+1). 

2e, 

( 
1 

We have shown that for a number of well-known preconditioners, preconditioning can 

only improve the iteration count by a constant factor independent of the grid size over the 

unpreconditioned case. One can compare this, for example, with MIC preconditioning on 

the 2-D Laplace equation matrix with natural ordering, for which the condition is of order 

n, rather than order n2. This has to do with the fact that in the latter case, the matrix 

M = Q-' , which is intended to approximate the dense matrix A-l,  is a dense matrix, due 

to the fact that the number of parallel steps grows with the problem size, and thus is not 

subject to the limitations imposed by the above results for sparse preconditioners. 

These results address some questions raised in the paper [Greenbaum/Rodrigue] regard- 

ing optimal preconditionings of a given sparsity pattern. In particular, it is shown that for 

preconditioners with fixed sparsity pattern, the condition of the preconditioned system must 

grow by order n2, regardless of what specific type of preconditioner is used. 

For practical problems, one wants the iteration count for the model problem to grow as 

na, with a 2 0 as small as possible. These results show that certain entire approaches to 

preconditioning cannot by themselves improve over Q = 2-that is, the methods do not fail 

to attain Q < 2 due to some minor deficiency in how the coefficients are chosen, but it is 

due to  the intrinsic nature of the approach. 

Of course, the constant multiplier in front of n2 may be quite small for these methods, 
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and for small to intermediate problem regimes such methods may in fact be the most 

effective. Such methods may also have robustness properties that make them more able 

to  converge than than other "faster" methods which cannot be made to  work for larger 

problems. Furthermore, it is unclear whether for all modeling and simulation problems of 

interest there exist methods for which Q < 2, e.g., for unstructured problems with complex 

physics, for which the growth rate of n is measured in some appropriate way, e.g., based 

on a uniform grid refinement scheme. Thus, the methods described here are by no means 

obsolete. 

One may ask similar questions for other orderings for SSOR and ILU preconditionings. 

Let ~ ~ f i  = Qn,d = Ln,dUn,d for some sparse lower and upper triangular matrices Ln,d 
and Un,d, and assume that Ln,d and Un,d have a bounded number of nonzeros per row 

independent of the problem sue, and let d 2 2 be the dimension of the model problem. 

Then there exists Q defined by 

where Mn,d is defined as above. For d = 2 it is known that CY 5 1, though in general Q: is 

not known, and it would be worthwhile to know what its value is. 

4. Conclusions. This paper has examined the effect of preconditioner orderings for a 

set of small test problems and has presented a new theoretical result on the limitations of 

certain orderings. Further research may shed more light on how orderings impact conver- 

gence and may suggest improved algorithmic approaches to solving large linear systems of 

interest in parallel. 
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