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Abstract 

Failure mechanisms under tensile loading 
of unidirectional fiber composites compris- 
ing of Weibull fibers embedded in a ma- 
trix are studied using Monte-Carlo sim- 
ulations. Two fundamental mechanisms 
of failure are recognized - stress concen- 
tration driven failure and strength driven 
failure. It is shown that the cumula- 
tive distribution function for composite 
strength predicted by the stressconcentra- 
tion -driven failure and strength-driven 
failure form apparent upper and lower 
bounds respectively and also that failure 
mechanism switches from one to the other 
as fiber strength variability changes. 
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1 Introduction 

Unidirectional (UD) fiber composite 
failure is a complex stochastic process. 
Primarily due to the randomness of 
fiber strengths, UD composite tensile 
strength is itself a random quantity and 
methods to determine its distribution 
are of considerable significance in assur- 
ing composite reliability. 

Idealizations of composite structure 
and material properties are found to be 
inevitable before further analysis can 
be attempted. In this study, we as- 
sume linear elastic fibers arranged in a 
hexagonal array and embedded in an 
linear elastic non-debonding matrix so 
that material damage in our idealized 
composite is restricted to fiber failures 
alone. Although in a real fiber, flaws of 
random strengths are distributed along 
the fiber, we confine fiber failures to a 
plane perpendicular to the fiber direc- 

1 

mailto:sm95@cornell.edu
mailto:irene@lanl.gov
mailto:slp6@cornell.edu


f 

tion. This allows us to simulate com- load per fiber x that will cause all the 
posites consisting of a greater number fibers in a particular specimen to fail is 
fibers and a wider range of fiber prop- its tensile strength. 
erties than otherwise possible. Finally, Exact solution of this process de- 
we assume that fiber strengths (X) spite its Markov nature is impossible 
are Weibull distributed, an assump- for composites of realistic sizes due to 
tion experimentally well established computational limitations. We there- 
([Beyerlein and Phoenix (1996))). Ac- fore take the following approach: from 
cordingly, Monte-Carlo simulations of the failure 

process, we obtain the dominant mech- 
F ( X )  = Pr{X < x, = l-e-(“’”o)P (I) anisms of failure ($2) and model these 

mechanisms to get an estimate of the 
failure probabilities ($3). where xo is the scale parameter and p, 

the shape parameter. From the vari- 
ance of this distribution, 

2 1 2 Failure Simulation 
0; = xo2{r(i + -) - r2(i + -)} (2) 

P P 
2.1 Simulation Algorithm 

one observes that smaller p corresponds 
to a higher fiber strength variance. Failure simulations are carried out on a 

The in-plane failure of our idealized rhombus shaped patch (Fig. 1) consist- 
composite model takes place as follows. ing of s2 hexagonally arrayed Weibull 
Consider a rhombus-shaped patch of fibers on which periodic boundary con- 
s2 hexagonally-arranged Weibull fibers ditions are imposed. An increasing load 
loaded with stress per fiber x. If x is is applied on the composite until all 
instantaneously applied to the compos- fibers in it fail by the process described 
ite and the progression of fiber breaks in $1. A detailed description of the sim- 
in “time increments” is monitored (dy- ulation procedure used in this work can 
namic effects are ignored) those fibers be found in [Mahesh et al. (1999)l. 
that have strengths smaller than x fail An important component of the sim- 
at time 1. The load dropped by these ulations is the manner in which the 
fibers is now redistributed among the load dropped by a broken fiber is re- 
intact fibers. This overload may cause distributed amongst other fibers. Two 
more fiber failures (at time 2) which in load sharing 
turn overload yet another set of fibers models are used - the Hedgepeth and 
beyond their strengths and fail them (at Van Dyke load sharing model(HVLS) 
time 3) and so on. The smallest applied [Hedgepeth and Van Dyke (1967)l and 
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I Figure I: HVLS stress concentrations near 0 3  0 4  0 6  0 7  0 8  
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a single break in a 30 x 30 periodic patch. 
The hatched fiber is broken. For this patch, 
the ELS stress concentration on the surviving Figure 2: The weakest-link distribution 
fibers is 1 + W(z) = 1 - (1 - Fc(z))s2 on Normal prob- 

ability paper. 
M 1.0011. 

the Equal Load Sharing (ELS) model 
[Daniels (1945)l. While the HVLS is 
a local load sharing model - a large 
part of the load dropped by a broken 
fiber is distributed amongst its nearest 
neighbors, the ELS model is global in 
its load sharing - broken fibers trans- 
fer their load equally amongst all the 
surviving fibers. Fig. 1 shows the stress 

posite sizes s2 and fiber Weibull moduli, 
p. Empirical composite strength dis- 
tributions generated from these simu- 
lations are denoted by F,(z). 

Figure 2 shows a plot of the weakest- 
link distribution function W ( x )  derived 
from F,(X) on normal probability paper 
where, 

(3) 
concentrations on the fibers surround- 
ing a broken fiber. While HVLS is con- 
sidered a realistic model for load trans- Note that in the probability range of 
fer in a composite with matrix, the ELS w(x) is independent of the 
model is considered realistic in the case size for 3. However, for 

t rix) . 

W ( x )  = 1 - (1 - Fc(z))1's2 

Of a loose 
Of fibers (without ma- p < 3, agreement between the weakest- 

link distributions ceases. 
The reason behind the independence 

of W ( x )  on s2 for higher p and its de- 2.2 Simulation Results 
pendence on s2 for lower p is seen by 

Simulations were performed on rhom- examining the breaks in the composite 
bus shaped patches of a range of com- just prior to catastrophic crack growth 
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or the critical cluster (see Fig. 3). In 
the p = 10 and p = 5 cases the critical 
cluster is much smaller than the com- 
posite itself (comprising of two to five 
breaks) and is therefore not affected by 
the finite composite size (or boundary 
effects). However, in the p = 1/2 case, 
the critical cluster occupies a substan- 
tial portion of the composite. There- 
fore, if W ( x )  is identified with the prob- 
ability of formation of the critical clus- 
ter, it will be strongly influenced by the 
composite size. The size independence 
of W(x)  will be used in obtaining the 
upper bound on strength in $3. Note 
here that the dependence or indepen- 
dence of W ( z )  on s2 is a function of s2 
as well. W ( x )  derived from Fc(x) for a 
5 x 5 with p = 10 fibers €or example, 
is found not to coincide with the W ( x )  
plots shown in Fig. 2. Similarly, we ex- 
pect that among large enough patches, 
the p = 1 strength distributions will 
also show a weakest link nature. 

Fig. 4 compares HVLS and ELS com- 
posite strengths. As seen, the agree- 
ment between the composite strengths 
predicted by the two different load shar- 
ing models gets increasingly better as 
p 4 0. In a qualitative manner, this can 
again be understood by observing that 
as p decreases, fiber failure becomes in- 
creasingly insensitive to x. For exam- 
ple, using (l), for a fiber with p = 1/2, 
F(0.5) = 0.5069 and F(1)  = 0.6321. 
Contrast this with the case of a p = 
10 fiber, with F(0.5) = 0.000936 and 
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Figure 3: Failure patterns in a 10 x 10 com- 
posite patch. (al) and (a2) are p = 10 lower 
and upper tail specimens respectively, (bl) 
and (b2) are p = 5 lower and upper tail speci- 
men respectively, and (cl) and (c2) are p = 
lower and upper tails respectively. Open cir- 
cles denote intact fibers and circles with a “x” 
in them denote broken fibers. 

F(1) = 0.6321. Thus, in this case, the 
ELS assumption for stress redistribu- 
tion agrees quite well with the simu- 
lated HVLS composite strength distri- 
bution. 

3 Strength Bounds 

In this section, we will develop an ex- 
pression that will always be an up- 
per bound on the simulated distribu- 
tion function, one that gets tighter as 
p f 00. On the other hand, we will use 
an analytical solution to the ELS prob- 
lem [Smith (1982)] as the lower bound 
on composite strength; this bound get- 
ting tighter as p $0.  
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Figure 4: Comparison of HVLS and ELS 
strength distributions for s2 = 30 x 30 com- 
posite. Strengths axe normalized with respect 
to  mean fiber strength on Normal probability 
paper. 

3.1 Upper Bound 

The upper bound is arrived at by view- 
ing composite failure as described be- 
low and computing its probability of 
occurrence. Composite failure occurs 
when at  least one of the following s2 
events occur: one of the s2 fibers fail, it 
drops part of its stress on its six nearest 
neighbors of which one fails, the pair of 
breaks thus formed fails another of its 
two most overloaded neighbors, the re- 
sulting triplet then fails one of its four 
most overloaded neighbors and so on 
until all the s2 fibers in the compos- 
ite are broken. If the probability of 
this event under applied load per fiber 
x is Wu(x) ,  the estimated probability 

of composite failure, F:(x) is (see (3)) 

q ( z )  = 1 - (1 - wyz))s2 (4) 
W u ( x )  may thus be evaluated as: 

WU(z)  = F ( x )  x (5) 
(1 - (1 - F(K1x))V"i) x 
(1 - (1 - F(K$r))VNZ) x 
(I - (1 - F ( & x ) ) V N 3 )  x - * 

where K, - - is approxi- 
mately the maximum stress concentra- 
tion around a tight cluster of n fibers, 
N, M & is the number of neigh- 
bors around a cluster of n breaks and 
q is a parameter to account for non- 
uniformity of stresses on the fibers sur- 
rounding the cluster. Physically, q E 
( O , l ]  is approximately the fraction of 
neighbors of the cluster that are the 
most overloaded. 

3.2 Lower Bound 
As mentioned in $2, at  smaller p, the 
failure process is dominated more by 
fiber strengths than by the stress con- 
centrations. Composite strength calcu- 
lated by assuming ELS stress concen- 
trations is found to result in a tight 
lower bound on the simulated stress of 
a composite of low p. 

The Smith corrected Daniel's for- 
mula [Smith (1982)l predicts very accu- 
rately that the strength of an ELS bun- 
dle comprising of s2 fibers is normally 
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composite failure process is a combina- 
tion of the two mechanisms that yielded 
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the upper and lower bounds. Lower Bound 
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