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EQUATION OF STATE FOR DETONATION PRODUCTS 
William C. Davis 

Los Alamos National Laboratory 

To be useful, an equation of state for detonation products must allow 
rapid computation. The constraints applied by this requirement have 
surprising thermodynamic effects. Some of these are discussed here. 
A simple, complete equation of state is proposed, and its properties 
are discussed. With the form assumed here, all the useful integrals 
(except the Riemann integral) can be written simply and explicitly, so 
the behavior of the important variables can be easily seen. The 
complete equation of state is calibrated for PBX9404 and PBX9501. 

INTRODUCTION 

The words in the title of this paper deserve some 
comment. “Equation of state” means, by convention, 
some calibrated fitting form, describing material 
properties in some limited region, that allows a user 
to compute, in reasonable approximation, the 
behavior of a physical system. The knowledge of the 
material properties is always incomplete, and the 
calibration is an approximation; the computation is 
also an approximation to the solution of the equations 
used; and the description of the physical system is an 
approximation too. In addition the problems to be 
solved, and the judgment of what constitutes a 
reasonable approximation, are various, and change as 
computer power changes, and as the sophistication of 
the physical devices and of the investigators changes. 

“Detonation products” usually means that the 
working fluid formed by the explosive is considered 
as a high-density gas, without rate processes, and 
without solid inclusions or other inhomogeneities. 
Real detonation products are a mixture of several 
gases, among which the equilibrium composition 
shifts as the state changes, with rates’that control the 
shifts, and with varying amounts of solid particles 
entrained by the gases as they move. Sometimes the 
usual assumptions lead to important failures of the 
approximation to agree with physical reality. 

In the past, few problems involving the temperature 
and other thermal properties were attempted, and a 
complete equation of state was not necessary. Also, 
problems where equations of state for mixtures, such 
as mixtures of reacted and unreacted explosive, are 
required were not attempted. Now these problems 
are major research subjects, and good equations of 
state are needed. Possible forms will be proposed for 
consideration. 

It is essential that users of proposed “equations of 
state for detonation products” understand as much as 
possible about the details of the approximations and 
their effects on the computed results. All the above 
assumptions are accepted as the basis for what 
follows in this paper. 

USEFULNESS OF AN EQUATION OF STATE 

A calibrated fitting form will be useful for 
computation only if it allows the calculation to 
proceed at high speed. A hydrodynamics code, for 
example, calls the equation of state at every time step 
for pressure as a function of specific volume and 
specific internal energy, and pressure must be given 
as an explicit function without extensive computation. 
Otherwise, the calculation is slowed and becomes 
uneconomical. Other codes may require different 
variables, but the speed requirement always remains 
important. 

A practically useful fitting form must have only a 
few, say a dozen or less, calibration constants, and 
only a few, say three or four, terms to compute. 
Iteration to find a solution must be avoided. 

As an example of how the requirements of speed 
affect provides a physical constraint, we consider 
here an equation of state proposed for a description of 
detonation products to be used with an equation of 
state for unreacted explosive to give a description of 
the mixture of these. It is convenient, almost 
essential, that the equation of state can be written as 
p(E,v), and can be inverted to E(p,v). A linear 
relationship between pressure and specific internal 
energy, of the form 



where p is the pressure, E is the specific internal 
energy, and a(v)  and p(v) are fitting forms for the 
variation with volume v, satisfies this requirement. 
Griineisen gamma is defined as 

r = V [ g j  V 

superscript S denotes values on the principal 
isentrope. (Griineisen gamma might be determined 
by measuring two distinct isentropes. See Eq. (2).) It 
is implicit that the temperature f ( v )  can be inferred 
from Griineisen gamma, defined by Eq. (2) and its 
equivalent, 

and for the description in Eq. (1) it is a function of 
volume only. One consequence of this linear 
relationship between p and E is that the 
thermodynamic identity 

(3) 

where Tis the temperature and Cv is the specific heat, 
requires that the specific heat be constant along any 
isentrope, although it can be different on different 
isentropes. The form of Eq.( l), chosen for simplicity, 
has important physical consequences. 

An equation of state should be consistent with the 
results of thermodynamics, in order to ensure that the 
functions are truly state functions, and do not depend 
upon the path to a point in state space. The 
discussion above shows that, for example, one cannot 
choose the Griineisen gamma a function of volume 
only, and then choose the specific heat to be a 
function of entropy and volume. 

In Reference 1 an equation of state was proposed with 
p a quadratic function of E. This form could also be 
inverted easily to either p(E, v )  or E(p, v) so it could be 
useful. It can be seen from Eq(3) that this form would 
allow variation of Cv with v.  Unpublished work has 
shown that it cannot be calibrated for the thermal 
properties over a large region, and is of limited use. 
An equation of state with p depending on E and E'n 
could be inverted and might be useful. 

In what follows, the argument is restricted to a linear 
relationship between p and E. 

COMPLETE EQUATION OF STATE 

by integration, but a constant of integration must be 
furnished. Assume further that 

Cv =constant 

and 

independent of E or S, not just on the principal 
isentrope but everywhere. 

Then from Eq.(2), using Eq.(6), the pressure is given 
by 

U V )  p ( E , v )  = p S ( v ) + - ( E  - E S ( v ) )  
V 

(7) 

This is the incomplete equation of state required for 
hydrodynamic codes. 

The temperature, with the assumption of Eq.(S), is 

E - E ~ ( v )  
CV 

T = T S ( v ) +  

and, at constant volume 

dE = TdS 

Using Eq.(8) and integrating Eq.(9) gives 

Calibration measurements for detonation products are 
usually made on the principal isentrope, the isentrope 
that passes through the CJ state. Suppose the 
isentrope is given, so that ps(v), 2 ( v )  are known, and 
that Griineisen gamma r ( v )  is also known. The 
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where S is the entropy, and 9 is the value of the 
entropy on the principal isentrope. Eq.(lO) is the 
complete equation of state, from which all the 
properties of the material, including for example 
Eq.(7), can be derived. 

For convenient reference, the assumptions and results 
are collected here: 

Assumptions 
ps(v), I?(v), and p(v)  are given 

C, is constant 

Results 

E(S,v) = E S  (v) + C,TS (v) exp [ 
r(v) p ( E , v )  = p s  (v) +-(E - ES (v)) 

V 

[y] T(S,v)  = T S  (v)exp 

E - E ~ ( v )  
CV 

T(E,V)  = T S  (v) + 
(17) 

where y is the adiabatic gamma, sometimes called the 
dimensionless sound speed since y = c2/pv, and g is 
the dimensionless reciprocal specific heat, defined as 
g = pv/C,T. 

The detonation Hugoniot curve is obtained by 
combining the incomplete equation of state Eq.( 15) 
with the Hugoniot energy and velocity conditions 

to obtain 

E H  = E o  ++p(vo -v) 
(20) 

u2 = p(v  - vo) 

Thermodynamic identities useful for interpreting 
plots in In p - En v space of isentropes, isotherms, and 
constant energy curves, are 
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F ( v )  = 

EXAMPLE 

In a paper published at the Tenth Symposium, Davis', 
I calibrated a principal isentrope for PBX9404, and it 
will be used here as an example. The results of that 
choice of a fitting form for the isentrope and its 
calibration gave 

- ES 
E C  

-- 

P C V C  

k - l + a  = 
(32) 

The calibrated values, and the other constants, are 
given in Table I. Calibration of the principal 
isentrope is discussed in detail in Reference 1. The 
entry E19 is the cylinder test energy, and eg, the 
Gurney energy, is derived from it. The chemical 
energy of the explosive is eo. The constant b has to be 
recalibrated because it applies off the isentrope, and 
the equation of state used here is different from the 
one used in [l]. There are no experimental data for 
the calibration of T, and C, , and they will be 
discussed below. 
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TABLE 1 

Explosive 
PBX-9404 8790 35.7 1844 1.620 10.78 

Derived Values 
Explosive vo ( m 3 W  vj (m3kg) v7 ( m 3 W  3 eg (GJ/m3) 
PBX-9404 5 .423~10-~  4.064~10" 37.96~ lo4 2.991 7.728 

Calibrated Parameters 
Explosive k a n vc ( m 3 W  Pc b 
PBX-9404 1.3 0.8067 1.4470 8 . 7 2 7 ~ 1 0 ~  3.376 0.7 

PBX-9404 885 265.5 2295 3787 273 

CALIBRATION 

The calibration of the principal isentrope using 
detonation data is discussed by Davis'. The choice of 
Griineisen gamma is made, first, by choosing it to 
depend only on v so that the relationship between p 
and E is hear, and, second, by choosing the form to 
agree qualitatively with that found from equation of 
state computations, and, finally, by choosing a form 
simple enough to make it easy to perform the needed 
integrations. The constant b is determined by fitting 
the Hugoniot curve determined by overdriven 
detonation experiments, but any value in the 
neighborhood of b = 0.7 is satisfactory. Clearly, new 
measurements on real explosives would improve the 
calibration. 

For the complete equation of state C, and T, must be 
chosen. At the present time no real data are available. 
The choice is governed only by vague ideas about 
what is probable. 

A possible choice can be made by requiring the 
equation of state to approach the polytropic gas 
equation of state at large volume, that is, make pv&T 
= 1. It is easy to show that this requirement will be 
satisfied if C, is chosen for the high pressure regime, 
and 

2-abln 
PCV, .- 

(33) 

R = ( k  - l)C, 
(34) 

The value obtained for R may not be in agreement 
with that for a mixture of the assumed gases in the 
products. A simple equation of state form cannot be 
expected to perform well everywhere. 

Since it is unlikely that the equation of state will be 
used in the low pressure regime, if any data are 
available it is better to calibrate it in the region where 
it will be used, and accept the fact that it is not 
calibrated in other regions. 

As an example, suppose we choose the values given 
above for the isentrope, and supplement them with 
the following: b = 0.7, and C, = 885 J/kg K. Then R 
= 265.5 J/kg K, and T, = 2295 K. With these values, 
the temperature at the CJ state is T j  = 3787 K, and at 
atmospheric pressure on the principal isentrope Tan = 
273 K. The numbers result from an arbitrary choice, 
but they are reasonable ones. Increasing the value of 
b increases T, and Tam and decreases TJ . 
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Figure 1. Plot of shock velocity vs particle velocity 
for overdriven detonations. The x's are for the data 
for PBX9404 from Green et al., [2], and the +'s are 
for the data for PBX9501 from Hixson et al., [3]. 
The solid line is calculated from the equation of state 
calibrated as above. The circle marks the CJ point. 
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Figure 2. Plot of sound speed along the Hugoniot 
curve for an overdriven detonation vs density. The 
x's are data for PBX9501 from Hixson et al? The o 
marks the CJ state. The solid line is calculated from 
the equation of state as calibrated above. 
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Figure 3. Plot of pv/RT versus specific volume in 
m3/kg. The upper curve (the heavier line) begins at 
the CJ state, v = 4 . 0 6 4 ~ 1 0 ~  m3kg, p = 35.7 GPa, T = 
3787 K, where pv/RT = 14.4, and ends at v = 0.716 
m3/kg, p = 1 atm (101325 Pa), and T = 273 K. The 
lower curve begins at the detonation state when the 
wave speed is 11000 d s ,  with v = 2 . 9 5 2 ~ 1 0 ~  m3/kg, 
p = 101.7 GPa, and T = 8961 K, where pv/RT = 12.6, 
and ends at v = 1.154 m3/kg, p = 1 atm, and T = 440 
K. 
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Figure 4. Plot of adiabatic gamma versus specific 
volume (m3/kg) for expansion down the isentropes 
from the CJ state, upper curve, and from the 
detonation state where wave speed is 11000 d s ,  
lower curve. 
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CONCLUSIONS 
A complete equation of state for detonation products, 
simple enough to be practical for computations, is 
proposed, along with a recipe for calibration. More 
experience with it is needed to decide what 
modifications are needed. 

The function F(v) of Eq.(30) has been chosen to be 
physically reasonable, at least qualitatively. Its 
choice, however, has been strongly influenced by the 
desire to be able to write out all the integrals 
explicitly for this example. Calibration was for the 
high pressure region, and does not extend to low 
density, below about 100 m3/kg, well enough to 
model the nonideality of gases in this region. 

Note 2. In the example in this paper, F(v) is defined 
in Eq. (30). It is easy to carry through the procedures 
of Reference 1 with 

2ax-” 2a(qx)-” 
xn + (qx)” + ( q X ) - ”  

F ( v )  = + 

1. 

APPENDIX 
Note 1. Eq. (5) is the assumption that C, is constant, 
and below that it is used to find E(S,v) as Eq. (10). If 
instead one assumes that C,= Cf +@-Ss), then it is 
straight forward to show that 

2. 

where x=v/v, , and a, n, q, m and a are constants. 
The equation of state gains flexibility with this 
change if calibration data are available. 
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