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Abstract 

Field experience with the tomographic gamma scanner to assay nuclear material suggests that the analysis techniques 
can significantly impact the assay uncertainty. For example, currently implemented image reconstruction methods 
exhibit a positive bias for low-activity samples. Preliminary studies indicate that bias reduction could be achieved at the 
expense of increased random error variance. In this paper, we examine three possible bias sources: (1) measurement 
error in the estimated transmission matrix, (2) the positivity constraint on the estimated mass of nuclear material, and 
(3) “improper” treatment of the measurement error structure. We present results from many small-scale simulation 
studies to examine this biashariance tradeoff for a few image reconstruction methods in the presence of the three possi- 
ble bias sources. 

Introduction 

Tomographic gamma scanning (TGS) is a y-ray nondestructive assay (NDA) method to assay special nuclear material 
(SNM) in heterogeneous samples, particularly residues and waste. The principle of the method is that the rate of y-ray 
emission is roughly proportional to the total SNM mass T. However, sample-specific attention of the y-rays complicates 
the relation between the y-ray emission rate and T. Furthermore, because the samples could be heterogeneous, both the 
y-ray attenuation and source rate vary within the sample. Therefore, TGS uses tomography to form three-dimensional 
images of the attenuation. In effect, the attenuation coefficient is estimated in each of many small-volume elements of 
the sample. An isotopic transmission source that emits more than one y-ray (usually ”Se) is used to obtain attenuation 
images as a function of energy. The emission images are then corrected for the attenuation of y-rays by using the linear 
attenuation coefficient images. The total amount of radioactivity (or T )  in any region of interest in the sample can then 
be estimated by integrating the emission image over the volume of the region. In this paper, the region of interest is the 
entire sample. The goal is to study the performance of candidate analysis methods in estimating T. See [ 1-21 for more 
detail and cavcits about where TGS is applicable. 

TGS Image Reconstruction 

The volume of a %-gal. drum is typically divided into N = 1600 three-dimensional image elements (voxels). In a stan- 
dard-scan protocol, data are collected at 150 individual points in polar coordinate (displacement-angle) space for each 
of 16 vertical layers, giving a total of M = 2400 measurement bins. During an initial scan, transmission measurements 
are made using an external ”Se source to characterize the y-ray attenuation of the drum. This allows reconstruction 
(estimation) of the so-called system matrix AMd. Because of y-ray interactions that affect y-ray energies, the gamma 
count rate at a particular energy channel includes the effects of gammas that originated with higher energy but appeared 
at the given energy channel. The simplest way to account for this underlying background is to measure the (background) 
y-rays in energy channels near the channel(s) of interest. Then the net gamma count rate at a given bin satisfies 
n = g - cb, where g is the gross counts in the energy region of interest (ROI) energy channels, b is the background 
counts near the ROI, and c is the ratio of the number of peak ROI channels to the number of background ROI channels. 
Also, the detection rate of y-rays must be corrected to a full-energy interaction (FEI) rate that accounts for losses attrib- 
utable to dead time and pulse pileup (detector response issues). The FEI can be estimated by using a lWCd source that 
emits an 88-keV y-ray [l] and is defined by FEI = CF(RL) x net, where CF(RL) is the estimated correction factor for 
rate loss. Following [l], we will include CF(RL) in the definition of the AMd matrix, which means that when we con- 
sider estimation errors in AM&, we must include estimation errors in CF(RL). The image reconstruction problem can 
then be cast most simply as 

AM* xN = [g“ - cbM] + RM , 

where A is the “system-matrix,” x is a vector of nonnegative values that describes the distribution of y-emitting material 
within the drum, g (b) is the vector of gross (background) y counts at the target energy channel, c is the ratio of the 
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number of ROI channels to background channels, and R is a vector of residuals. Our problem is to estimate total mass 
T = bi (more generally, T = qTx for some weight vector q, but here we assume T = a,). 

Many of our methods can enforce the x, 2 0 constraint in various ways. The ordinary least squares (OLS) estimates of x, 
can be negative, so the simplest approach (which we use) is to use max(O,x,) to enforce the nonnegativity constraint. 
The methods that work with either the Poisson probability structure (for example, maximum likelihood which [l] refers 
to as MLEM) of the observed data or that plus a prior probability for each x, on (0,C) for some large upper limit C 
(some Bayesian methods [3]-[5]) deal most naturally with the nonnegativity constraint. For example, we can modify 
Eq. (1) in [ l ]  to work with g so that the probability of g (likelihood), given x, A, pb, and c, is 

where pg j  = 

view the transition from maximizing the likelihood in Eq. (2) to maximizing a suitable posterior probability for x that 
involved a temporary assumption that we could see the contribution at bin i from each individual voxelj. Note, how- 
ever, that the mean for g, at bin i is generally affected by more than one voxelj. 

AUxi + c pubi is the mean of the gross counts at bin i due to all voxels. Reference [4] presented a way to 
i 

Statistical Issues 

We assume that M > N in Eq. (1). Thus, OLS or weighted least squares (WLS) is one option for estimating each xi and 
therefore also T. In fact, Eq. (1) is essentially the same as that which commonly appears in a typical two-stage calibra- 
tion experiment. Stage 1 is the equivalent of our “estimate A stage” and Stage 2, which concerns us here, uses the esti- 
mated A to estimate T. The unique features of our application of Eq. (1) are the following: 

(3) The dimension of A is very large (M by N is approximately 2400 by 1600) and A is ill conditioned. We define 
cond(A) = A,Jl,,,,n (the ratio of largest to smallest singular value of A). 

( 2 )  There can be significant spatial correlation among neighboring xi, 
(3) The error structure of the net response is nonstandard: ni - Poisson(pgi ) - c Poisson(pbi ) . When Avx,  is 

i 

small, it might be important to use the Poisson distribution rather than an approximating Gaussian. 

(4) There can be nonnegligible errors in the A matrix. 

One TGS system ([2]) deliberately collapses some bins to reduce variance at the expense of slightly increased bias in 
estimating the A matrix. The usual biashariance tradeoff suggests that this is a good idea. To date, we have ignored the 
possibility of bias in the A matrix. That is, our errors in A are all modeled as random errors (with standard deviation 
denoted 0, here) so future work must include both (1) treatment of possible bias in some entries of the A matrix and 
(2) a plan for dealing with dynamically changing dimension of the A matrix due to bin collapsing. 

We define our performance measure, PM, = E [ f - TI2 (hats denote estimated quantities), where E is the expected value 
with respect to the distribution of T .  A more common performance measure in multivariate calibration is 
PM2 = E [ C ( x i  -,?i)2]. Note that PM, = E[(Cx i  - ,?i)2] [mean-squared error (MSE)], so that covariances among the 

x, can potentially degrade or improve performance, depending on their sign. It is well known that there is guaranteed to 
be a biased solution vector ,? that has lower (better) PM, than does the OLS solution vector. We suspect that there is a 
similar result for PM,,  but we are unaware of it. 

,. 

i i 

Space does not permit us to review all the estimation methods we have implemented and tested on scaled-down versions 
of Eq. (2)  (using M = 8 to 100 and N = 6 to 50); however, we will group them in five categories: 

methods such as OLS or WLS that do not take explicit account of the error structure and are concerned only 
with minimizing the sum of squared residuals subject to CR, = 0 (OLS and, more generally, WLS give the 
minimum variance unbiased residuals [6]); 

methods such as the generalized linear model (GLM), which do take explicit account of the Poisson error 
structure. Our GLM implementation assumes that is known and equal to b,-which [ 11 calls the 



MLEM-FB (fixed background) method-for all of our methods except MLEM. MLEM jointly estimates pb 
and 

methods (Bayesian) that make prior assumptions about both the magnitudes of the x entries and their spatial 
correlation. For example, Green [4] let the prior probability for x be 

where i-j denotes summing over neighbors (adjacent voxels), j3 and 6 are known constants, and C is a normali- 
zation constant. The posterior probability for x is proportional to the prior times the likelihood (Eq. 2). Maxi- 
mizing the posterior probability for x is eqiivalenl to maximizing a penalized likelihood, where the penalty 
involves the roughness of the solution x (the extent of spatial heterogeneity). For more detail, see [3-51. In par- 
ticular, an approach ([5]) that uses a hyperprior for p and 6 and then estimates p and 6 (empirical Bayes) [5 ]  
using Markov Chain Monte Carlo (MCMC) is of possible interest for two reasons: (1) the assay performance 
could be improved and (2) by using MCMC, it is possible to construct observations from the posterior for x, 
which allows us to construct an estimate ? of x and to estimate the variance of ?. Here we present results for 
the one-step late (OSL) method for maximizing the (penalized) likelihood from [4]; 
methods that make some prior assumptions about the magnitudes of the n,. For example, ridge regression (RR) 
([6]) implicitly makes such assumptions and thereby has a Bayesian justification; and 

methods that consider errors in the A matrix (error in variables (EIV) methods [7]). 

by maximizing their joint likelihood, 

p(xlj3,G) = 1/C exp(-P XI-, wIJ log {cosh[(x,-x,)/b]} , 

Simulation Study 

Here we report simulated assay results of several classical methods and the OSL Bayesian method for a 26 full factorial 
experimental design varying the following six factors from low (L) to high (H) with N = 6: 

M : L = 1 6 , H = 8 ,  
cond(A): L = 17, H = 1366 

0,: L = 0 , H = 0.2A, 
T: L = 1, H = 10, 

0:: L = 0, H = 100% of lu,. ( oxi * is the variance of the nj and px  is the mean of the xi), and 
noise-to-signal ratio (NSR) Cpbi / 2 Agxj : L = .2, H = 1. 

j 
For each factor, we defined the L,H values to be such that better results are expected at the L value if all other factors 
are held fixed. However, because of possible interactions among factors (the effect of one factor might depend on the 
level of one or more other factors), it is not always possible to anticipate the average effect of changing a given factor 
from L to H. Nevertheless, because we use a balanced design, the main effects of each factor are reasonably easy to 
interpret ([SI). We believe the L and H values of each factor span a reasonable range for most situations (except that 
M = 8 or 16 is far smaller than M = 2400). For example, in two sets of well-controlled replicate scans of two drums 
(bottom 8 of 16 layers with the result that A was 1200 rows by 909 columns), the relative standard deviation ranged 
from nearly 0% to over loo%, with an average of 6% for the medium-heterogeneity drum A and from nearly 0% to over 
200%, with an average of 22% for the large-heterogeneity drum B. We used o, = 0 (L) and 0, = 20% of A (H). The 
condition of A was approximately 20,000 for drum A for each replicate and approximately 30,000 for drum B for each 
replicate. We used cond(A) = 17 (L) and cond(A) = 1366 (H), so our condition numbers are somewhat low. However, 
another possible definition of condition might include C(ATA)-', which was 11.5 and 40, respectively, for the A's of the 
two drums (and was approximately 5 and 38,000 for our simulated A's). It is not yet know what measure of the condi- 
tion of A is most relevant here. Next, the low value for 0,' (0%) reflects the most uniform matrix possible, while the 
high value (100%) reflects a much more heterogeneous matrix. Finally, the design values for NSR are also reasonable, 
and it has been observed that high NSR does degrade performance. 

Simulation Results 

In this section, we give results for simulated data for a replicated 26 full factorial experiment. Because Z(ATA)-l is 
approximately 38,000 for cond(A) = H, all the matrix-inversion-based methods (OLS, WLS, RR, EIV, for example) 
performed badly for cond(A) = H (as expected from classical theory). However, MLEM did remarkably well with only 
occasional large PM, values. The cond(A) = L cases had C(ATA)-' approximately 5, so they are expected to do far better 
than the cond(A) = H cases. 



We implemented and tested 32 methods on the fully replicated 26 factorial experiment. Most methods had two versions: 
one version enforced the nonnegativity constraint, and the other did not. All methods could be grouped in one of the 
five groups discussed earlier. 

Green’s OSL Bayes method had,to be modified slightly to accommodate the cpb term. Our modification is comparable 
to the fixed background assumption in MLEM-FF3. We have also used a Bayesian analysis as outlined in [9] and the 
GLM modeling function in S-Plus. Generally, the Bayesian analysis we implemented, based on results in [9] (for the 
distribution of net counts n assuming a nearly flat gamma prior for p, and pb), is slower to implement and has not per- 
formed much better than WLS. In addition, we have had poor results with GLM in S-Plus and with the EIV methods, so 
we will not report those results here. We have observed an extreme sensitivity to 0, and cond(A) even with the E N  
method of [7]. This method has a matrix inversion step that uses a modified version of A, but, as we noted above, no 
matrix-inversion-based method is performing well. RR was included here because it is one of the simpler biased regres- 
sion methods to implement and because [6] reported in an extensive simulation study that RR outperformed principal 
components regression and partial least squares. However, the presence of errors in the A matrix was not fully studied in 
[6], and generally it is not well known how the various biased regression methods perform in the presence of errors in a 
poorly conditioned A matrix. 

We first screened the 32 methods by considering the median of P M ,  over all 64 runs for each method. We report median 
values rather than mean values because some methods had outliers that tend to make the median more representative of 
the typical value than of the mean. We then selected 6 from among the better methods to consider in more detail: WLS, 
RR, MLEM, MLEM-FB, OSLa, and OSLb. OSLa used p = 0.2,6 = 0.02, and OSLb used p = 0.02,6 = 0.2 in Green’s 
[4] prior for x. We include both OSLa and OSLb here so that we can examine the sensitivity to p and 6. 

In Fig. 1, we plot the median of PM, = MSE for the six selected methods for the L and H value of each of the six design 
factors. Recall that we expect the MSE to be lower at the L value for each factor. However, notice that there is some 
interaction between 0, and cond(A) for WLS and RR, because the main effect of 0, (labeled A.var in figures) is oppo- 
site of that expected. Also notice that WLS and RR do far worse than the other four methods (note that the figure scales 
are similar for WLS and RR, which are both very different from the scales for the other four methods). The other sur- 
prise is that methods in Figs. 1C-IF do better at the H value of cond(A). The statistical significance of any effect can be 
gauged by informally assuming that the smallest observed effect is caused by random variation (noise) only. For exam- 
ple, in Fig. lC, the effects of A.var and var.x could be assumed to provide estimates of the random variance; therefore, 
it appears that the cond(A) effect is real. 

In Fig. 2, we plot the median of the bias for the selected six methods for the L and H value of each of the six design 
factors. The dotted lines are approximate 95% confidence intervals (CI) for the true bias that would be observed if we 
did essentially an arbitrarily large number of replicates. These CIS are at k twice o,,~ based on grouping the bias from 
all 64 runs. Therefore, they are wider than CIS based on using within-group biases, where the groups are defined by sub- 
sets of the factor levels. The interpretation is that if a factor is judged to be significant using these CIS, then we can 
safely assume that the factor truly is significant. In Figs. 2A and 2B (WLS and RR), we see evidence of statistically sig- 
nificant bias for 0,’ = 0.04 (this is the H value of o,*, denoted A.var in the figures). For 0,’ > 0, WLS is known to be 
biased, and the direction of bias is usually low. That is, regression parameters, which are denoted x here, are biased low 
toward 0. For 0,’ = 0, RR is known to be biased, but one could expect RR to also be biased for 0,’ > 0. We see in 
Fig. 2b that RR is biased in our setting for 02 > 0, but there is no evidence of bias for oA2 = 0. That means that we were 
conservative in our choice of ridge parameter. Our method of choosing the ridge parameter was to begin with the value 
suggested in [6], then use the ridge trace to look for a good ridge value near the starting value. We believe it is difficult 
to justify increasing the ridge parameter much more than what is suggested in [6]. In Figs. 2C-3E we see that MLEM, 
MLEM-FB, OSLa, and OSLb all tend to exhibit positive biases. Observation of this positive bias is part of the motive 
for undertaking this study. However, note in Fig. 2C that MLEM can have negative bias = 1 and NSR = L cases). 

Theory [ 101 for maximum likelihood estimators suggests that the bias of MLEM or MLEM-FB should approach 0 as M 
increases for fixed N .  We tested this by comparing the run 1 and run 2 cases (run 1 has all L values for the six factors, 
and run 2 has all L values, except cond(A) is H) from our designed cases with a case (run.new) having M = 128. This 
M = 128 case used both the cond(A) = L and cond(A) = H matrices (M = 16) and duplicated these 16 rows 8 times to 
give M = 128. MLEM and MLEM-FB results from 100 simulations of the three runs (run 1, run 2, and run.new) are in 
Table 1. 
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Fig. 1. Median of PM, = MSE for six methods for the L and H values of each of the six design factors. 
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Fig. 2. Median of the bias for six methods for the L and H value of each of the six design factors. The dotted lines 
are approximate 95% confidence intervals for the true bias that would be observed if we had used an 
arbitrarily large number of replicates. 

Table 1. Bias, Variance, and MSE for MLEM and MLEM-FB for the First 2 of 64 
Runs and for a New Run Having M = 128 rows 

Run Bias Variance MSE 

MLEM MLEM-FB MLEM MUM-FB MLEM MLEM-FB 

1 -0.29 0.26 0.43 0.35 0.5 11 0.4 

2 -0.32 0.30 0.56 0.52 0.66 0.60 

new -0.95 0.16 0.003 0.04 0.9 0.06 



When the new run is compared with runs 1 and 2 for MLEM, the bias does not approach 0, but the variance does. Sur- 
prisingly, the bias actually increases dramatically, which leads to an increase in MSE (with M = 128 versus M = 8). For 
MLEM-FB, the situation is better. Both the bias and variance appear to be approaching 0. Chapter 18 of [lo] provides 
some ways to correct for bias in maximum-likelihood methods. Unfortunately, they are probably too computationally 
intensive for the large M and N values in real TGS systems. Reference [ 1 11 considers the “constrained to be nonnega- 
tive” aspect of MLEM and derives approximate results for the expected precision (variance in our terminology here) of 
the MLEM estimates. The propagated variance agreed to within approximately 7% of the observed variance in the 
simulation study reported in 11 11. Currently, we are investigating whether the size of M and N must be considered in 
these variance approximations. 

Summary 

In this paper, we examined three possible bias sources: (1) measurement error in the estimated transmission matrix, 
(2) the positivity constraint on the estimated mass of nuclear material, and (3) improper treatment of the measurement 
error structure (for example, ignoring the Poisson distributions). We studied these bias sources for 32 methods (pre- 
sented results for six of the best methods) of estimating SNM mass in the context of a fully replicated 26 factorial 
experiment with 100 simulations at each run. We used a 20% relative standard deviation (all random error) in our 
simulated A matrices and found that WLS and RR were sensitive to o,, but that MLEM, MLEM-FG, OSLa, and OSLb 
were not very sensitive to 0,. We did not formally investigate factor interactions; however, we see evidence that 
cond(A) and O, interact in all the matrix-inversion-based methods. We did observe that the positivity constraint on WLS 
or RR greatly inflated the MSE, so reported results were for unconstrained WLS and RR. The positivity constraint is 
more natural in MLEM and similar methods. All of our biased regression methods are examples of “improper” treat- 
ment of the measurement error structure; however, experience has shown that variance can be reduced at the expense of 
introducing bias if we alter the A matrix. Biased regression methods often outperform OLS or WLS; therefore, the net 
effect on MSE is often good. Future work will consider whether bias reduction methods for maximum likelihood 
methods are worth the computational burden and whether estimates of the variance of maximum likelihood estimators 
should depend on the size ( M  and N> of A. We will also study the merits of Bayesian methods that can generate obser- 
vations from the p2sterior distribution of x so that we can provide estimates of both the mean and variance of the esti- 
mated total mass T .  
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