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On the Reliability of the Nervous (Nv) Nets 

Valeriu Beiu, Jan R. Frigo and Kurt R. Moore 

Los Alamos National Laboratory, Division NIS-1, MS D466 
Los Alamos, New Mexico 87545, USA 

E-mail: {beiu, jfrigo, krmoore} @lanl.gov 

Abstract. This paper investigates the reliability of a particular class of neural net- 
works, the Nervous Nets (Nv). This is the class of nonsymmetric ring oscillator 
networks of inverters coupled through variable delays. They have been success- 
fully applied to controlling walking robots, while many other applications will 
shortly be mentioned. We will then explain the ‘robustness’ of Nv nets in the 
sense of their highly reliable functioning - which has been observed through 
many experiments. For doing that we will show that although the Nv net has an 
exponential number of periodic points, only a small (still exponential) part are 
stable, while all the others are saddle points. The ratio between the number of sta- 
ble and periodic points quickly vanishes to zero as the number of nodes is in- 
creased, as opposed to classical finite state machines - where this ratio is 
relatively constant. These show that the Nv net will always converge quickly to a 
stable oscillatory state - a fact not true in general for finite state machines. 

The model we shall discuss wants to duplicate the activity of the human brain [l]. 
This is made of living neurons composed of a cell body and many outgrowths. One 
of these is the axon - which may branch into several collaterals. The axon is the 
‘output’ of the neuron. The other outgrowths are the dendrites. The end of the axons 
from other neurons are connecting to the dendrites through ‘spines’. Active pumps 
in the nerve cell walls push sodium ions outside, while keeping fewer potassium 
ions inside. Therefore, their tendency is to keep the cell body at a small negative 
electric potential (-6OmV). The electrical balance varies at the exit point of the axon. 
If the electrical potential of the cell becomes too positive (+10+15mV), the potential 
suddenly jumps to about +60mV, After a short delay of 2+3ms the potential returns 
to the normal negative value (-6OmV). This change of potentials is sequential and 
is called an action potential. The action potential travels down the axon and its 
branches (with a speed in the range l+lOm/s). This variation of potential represents 
the signal sent by one neuron to its neighbours. The generation of the signal is 
achieved by summing the signals coming from the dendrites. The strength of the 
action potentials travelling along an axon are identical, nevertheless, the effects to 
the neighbouring cells are different. This is due to the rescaling effect which takes 
place at the synapse. 

Formally, a network is a graph having several input nodes, and some (at least 
one) output nodes [27]. If a synaptic weight is associated with each edge, and each 
node i computes the weighted sum of its inputs to which a nonlinear activation func- 
tion is then applied (i.e., artificial neuron, or simply neuron): 
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the network is a neural network (NN), with the synaptic weights w j  E IR, 8 ;  E IR 
known as the threshold, k E IN being the fan-in, and oi a non-linear activation func- 
tion. Three well known and widely used non-linear activation functions are: (i) the 
sigmoid function (J (x) = 1 / ( 1  + e -“), where a is the gain, or amplification factor; 
(ii) the linear function (s (x) = x; (iii) the threshold function (s (x) = sgn (x). 

Such a description of the living nerve cells is a correct representation of the sys- 
tem [8 ] .  A more detailed model includes different delays for the transmission and/or 
computation of the signals, e.g. a discrete-time and synchronous model would be: 

More complex time dependences could be continuous, and could include the modi- 
fication of weights w (t) ,  and thresholds 8 (t)  - an aspect which relates to learning, 
Le. modifying the weights and the thresholds such as to adapt to external stimuli. 

If the underlying graph is acyclic, the network does not have feedback connec- 
tions, and can be layered being known as a multilayer feedforward neural network, 
and are commonly characterised by two cost functions: depth (i.e., number of layers) 
and size (i.e., number of neurons). If the underlying graph is cyclic, the network has 
feedback connections and is characterised by size. 

A particular class of feedback networks if formed by rings. The bi-directional (or 
symmetric) homogeneous ring has the following weight matrix: 

- 
0 w2,1 0 ... 0 w.,1- 

W 1 , J  0 W 3 , J  ... 0 0 
w = 0 w2,3  0 ... 0 0 

W1,. 0 0 ... W f l - l , f l  0 
. ... . 

- - 

(3) 

which shows that neuron i has only two inputs (i.e., fan-in k = 2), as being connected 
only to its two adjacent neurons i - 1 and i + 1 (mod n), with weights w i , i - l  and 
w ~ , ~ + ~ ,  respectively. Here n is the number of neurons (Le., the size). If the ring is 
non-symmetric, the weight matrix is: 

- 
0 0 0 ... 0 Wn,1 

W l J  0 0 ... 0 0 
w = 0 w2,3 0 ... 0 0 

. .  . . ... . 
0 0 0 ... 0 - - 

(4) 

showing that neuron i has only one  input (i.e., fan-in k =  1) from neuron 
i + 1 (mod n) with a weight w i, i+ 1. 

We can now formally define the class of neural networks known as the “Nervous 
Net” or Nv [14, 151. Nv is a non-symmetric ring (4) of n threshold neurons ( 1 )  with 
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negative unit weights, i.e., w 1, = w 2, = . . . = w n -  l , n  = w,,, I = - 1, and delay on the 
transmission lines (2). Hence, for Nv eq. (2) becomes f (x, t + A) = sgn [ - x ( t )  + 81, 
where A is the delay associated to one neuron. In particular, because this delay can 
be modified, it can be seen as an additional parameter for the learning process. 

There is clearly one important advantage of such NNs, namely the fact that the 
neurons are very easy realisable in hardware [2, 31: the delay is represented by an 
RC high pass filter (R = resistance, C = capacitance), while an inverter (with Schmitt 
trigger) implements the threshold function [24]. 

Before going further, we shall shortly mentioned some of the applications where 

Mine detection is an application where the Nv network has been used to con- 
trol the walking gaits and the direction of motion for solar powered walking 
robots [4, 22, 231. The robots react with the environment and navigate around 
or over obstacles while trying to detect the location of a mine. 
Facility monitoring and clean room operations/tasks are other applications for 
this technology. 
For environmental clean-up and monitoring, a group of autonomous diving 
robots have been designed using this technology. 
The Nv network is being studied as a primary or backup controller for satellite 
systems and other autonomous flying machines. Research and prototyping for 
nanosatellite systems is on-going [7, 9, 10, 11, 17, 26, 28, 291. 
Currently, the study of these systems working together in a collective effort, 
self-assembling to accomplish a common task is another area of research [18, 
191. 
In the future, the medical field could use Nv networks in the design of ma- 
nipulators or prosthetics. 

Nv can and have been used and tested [12, 131. 

The dynamics of discrete-time and synchronous continuum-state systems has been 
motivated by the possibility of constructing VLSI circuits for implementing such 
neural networks having prescribed fixed-points or periodic orbits [6, 16, 251. For 
such networks, the dynamics is given by an iteration map F : X n  + X n .  Using a 
slightly modified sigmoid function: 

\ v ( x )  = 2{0(x) -1 /2}  = ( l - e - m ) / ( l + e - a )  (5) 

Blum and Wang [5] have analysed nonsymmetric ring networks of n neurons. The 
state space is X n  = [0, 11 ', while the state x!? of neuron i at time t = p  (for 
p = 0, 1 ,2 ,  . . .) is updated according to: 

(n) ) 
9 x p +  1 
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Proposition 1 Any closed periodic orbit of eq. (6) has minimum period q I n and 
q I n. Moreover, if x = ( x ( ~ ) , x ( ~ ) ,  ..., x@)) is  a periodic point,  then each x ( ~ ) ,  
1 I i I n, must be a fixed point of the function J: 

If the nonlinear function f is yf, the following has also been proved. 

Proposition 2 For the parameter a 5 2, the network described by eq. (4) has an at- 
tractor (0, . . ., 0) which is the only periodic point. For a > 2, the network has precisely 
3' periodic points, among which one is unstable (i.e., (0, ..., 0)), 2 n  are stable (all 
points that do not contain 0), and the others are saddles. 

For Nv, a >>2 as the neurons are threshold gates (inverter with Schmitt trigger). 
These explain the robustness of Nv nets in the sense of their highly reliable func- 
tioning (which has been observed through many experiments): although any Nv has 
an exponential number of periodic states (3n),  only a smdI (still exponentia1) part 
are stable (2  n),  while all the others are saddle states (3 - 2 ' - 1). The ratio between 
the number of stable and periodic points is (2/3)', and vanishes to zero as the 
number of nodes is increased (these results will further be generalised to continuous 
states by quantization with a given step). On the other hand, for classical finite state 
machines this ratio is a constant as more than half of the states are stable states (we 
have supposed a classical design which uses binary encoding for the states). These 
shows that Nv nets will always converge (quickly) to one of the stable oscillatory 
states, while the statement does not hold (in general) for finite state machines. 

References 
1. M.A. Arbib (ed.). The Handbook of Brain Theory and Neural Networks. MIT Press, Cam- 

bridge, MA, 1995. 
2, V. Beiu. VLSI Complexity of Discrete Neural Networks. Gordon and Breach & Harwood 

Academics Publishing, Newark, NJ, 1998. 
3. V. Beiu and J.G. Taylor. On the Circuit Complexity of Sigmoid Feedforward Neural Net- 

works. Neural Networks 9 (1996) 1155-1171 
4. Braitenberg, V.: Vehicles: Experiments in Synthetic Psychology. MIT Press, Cambridge, 

5. Blum, E.K., Wang, X.: Stability of fixed points and periodic orbits and bifurcations in ana- 
log neural networks. Neural Networks 5 (1992) 577-587 

6. Chapeau-Blondeau, F., Chauvet, G.: Stable, oscillatory, and chaotic regimes in the dynamics 
of small neural networks with delay. Neural Networks 5 (1992) 735-743 

7. Chobotov, V.A.: Spmecraft Attitude Dynamics and Control. Krieger Publishing Co., Mala- 
bar, FL (1991) Chp. 8, 115-111 

8. E. Fiesler and R. Beale (eds.). Handbook of Neural Computation. Oxford Univ. Press and 
the Inst. of Physics, NY, 1996. 

9. Fox, S.M., Pal, P.K.: An attitude control and determination subsystem for the fast on-orbit 
recording of transient events (FORT6) satellite. AAS/AIAA Spaceflight Mechanics Meeting, 
AAS Publ., San Diego, CA (1995) 

10. Frigo, J.R., Tilden, M.W.: SATBOT 1: prototype of a biomorphic autonomous spacecraft. 

MA (1984) Chp. 2-5 

CIMCA'99 4 



Beiu, Frigo & Moore On the Reliability of the Nervous (Nv) Nets 

In W.J. Wolfe, C.H. Kenyon (eds.): Mobile Robots, Proc. SPIE 2591 (1995) 65-74 
11. Frigo, J.R., Tilden, M.V.: Analog neural network control method proposed for use in a 

backup satellite control mode. Tech. Rep. LA- UR-97-4334, Los Alamos National Labora- 
tory, USA. Proc. SPIE on Intelligent Sys. and Adv. Manufacturing, Pittsburgh, PA (1997) 
84-94 

12. Hasslacher, B., Tilden, M.W.: Living machines. Tech. Rep. LA-UR-94-2636, Los Alamos 
National Laboratory, USA. Robotics and Autonomous System 15 (1995) 

13. Hasslacher, B., Tilden, M.W.: Autonomous biomorphic robots as platforms for sensors. 
Tech. Rep. LA-UR-96-3222, Los Alamos National Laboratory & DOE Office of Sci. and 
Tech. Info. OSTI, USA (1996) 

14. Hasslacher, B., Tilden, M.W.: Theoretical foundations for nervous networks. In J. Kadke 
(ed.): Proc. App. Non-linear Dynamics, Univ. of California at San Diego, CA (1997) 

15. Hasslacher, B., Tilden, M.W.: Theoretical foundations for nervous networks and the design 
of living machines. In M. Coombs (ed.): Proc. Workshop on Control Mechanisms for Com- 
plex Systems: Issues of Measurement and Semiotic Analysis, SFI Press, NM (1997) 

16. Holden, A.V., Fan, Y.: From simple to complex oscillatory behaviour via intermittent chaos 
in the Rose-Hindmarsh model for neural activity. Chaos, Solitons and Fractals 2 (1992) 

17. Moore, K.R., Frigo, J.R., Tilden, M.W.: A novel microsatellite control system. In T.X. 
Brown (ed.): Proc. Intl. Workshop on Appls. of Neural Networks to Telecommunications 
IWANNTh97, Lawrence Erlbaum, Hillsdale, NJ (1997) 

18. Priedhorsky, W.C.: The ALEXIS small satellite project: initial flight results. Proc. SPIE 
2006 (1993) 114-127 

19. Psiaki, M.L., Huang, L.: Ground tests of magnetometer-based autonomous navigation 
(MAGNAV) for low-Earth-orbiting spacecraft. J. of Guidance, Control, and Dynamics 16 
(1993) 206-214 

20. D.A. Sprecher. A Numerical Implementation of Kolmogorov's Superpositions. Neural Net- 
works 9 (1996) 765-772 

21. D.A. Sprecher. A Numerical Implementation of Kolmogorov's Superpositions 11. Neural 
Networks 10 (1997) 447457 

22. Still, S., Tilden, M.W.: A controller for a four legged walking machine. Proc. Ist European 
Workshop on Neuromorphic Systems, Stirling, Scotland, UK (1997) 

23. Tai, F., Noerdlinger, P.D.: A low cost autonomous navigation system, guidance and control. 
Proc. Annual Rocky Mountain Guidance & Control, AAS Publ., San Diego, CA (1989) 

24. Tilden, M.W.: Nervous Net. US Patent #5,325,031 (June 28, 1994) 
25. van der Maas, H.L.J., Verschure, P.F.M.J., Molenaar, P.C.M.: A note on chaotic behaviour 

in simple neural networks. Neural Networks 3 (1990) 119-122 
26, Warner, R.: Magnetic Control of Spacecraft Attitude. ISSO (1993) 5-7 
27. Wasserman, P.D.: Neural Computing Theory and Practice. Van Nostrand Reinhold, NY 

(1989) Chp. 1 & 2, 1-42 
28. Wertz, J.R.: spacecraft Attitude Determination and Control. Kluwer Academic Publ., Dor- 

drecht (1978) Chp. 6 & 19 
29. Wiesel, W.E.: Spaceflight Dynamics. McGraw-Hill, NY (1989) Chp. 4 & 5,95-140 

349-369 

3-23 

CIMCA'99 5 


