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An investigation into the properties of granular materials is undertaken via numerical 
simulation. These simulations highlight that frictional contact, a defining characteristic 
of dry granular materials, and interfacial debonding, an expected deformation mode in 
plastic bonded explosives, must be properly modeled. Frictional contact and debonding 
algorithms have been implemented into FLIP, a particle in cell code, and are described. 
Frictionless and frictional contact are simulated, with attention paid to energy and 
momentum conservation. Debonding is simulated, with attention paid to the interfacial 
debonding speed. A first step toward calculations of shear deformation in plastic 
bonded explosives is made. Simulations are performed on the scale of the grains where 
experimental data is difficult to obtain. Two characteristics of deformation are found, 
namely the intermittent binding of grains when rotation and translation are insufficient 
to accommodate deformation, and the role of the binder as a lubricant in force chains. 

INTRODUCTION 

We report the results of an investigation into the 
micromechanical properties of granular materials, with 
application to plastic-bonded explosives (PBXs). PBX’s 
are composed of polydisperse grains ranging in size from 
one to a few hundred micrometers, and a matrix of high- 
polymer binder. Low levels of applied stress sometimes 
cause unanticipated detonations. The inhomogeneity of 
the deformation at the microscale (the scale of the grains) 
contributes to the development of local “hot spots”. If a 
small volume of the explosive is heated sufficiently, the 
consequent release of chemical energy may grow 
unstably and lead to detonation. Many possible 
mechanisms for the formation of hot spots have been 
proposed.’ One explanation is that stress concentrations 
cause localized heating, as the volume-averaged stress is 
insufficient to produce significant volume-averaged 
heating. 

Numerical simulations of the deformation of 
granular materials under shear are performed to gain 
insight into deformation modes in both dry granular 

materials (no interstitial material) and PBXs. The 
particle-in-cell (PIC) code FLIP is used to perform 
 simulation^?.^ The computational technique is a mix of 
Eulerian and Lagrangian approaches, providing a robust 
treatment of large deformation problems. These 
micromechanical simulations are on the scale of the 
grains, and are designed to provide insight into the nature 
of the deformation at the microscale. Experimental data is 
difficult, if not impossible, to obtain on this scale, 
particularly post-initiation. Of interest here is primarily 
mechanical behavior. Regions of high stress and large 
deformation indicate possible hot spot sites. This study 
constitutes a first step in the coupled 
mechanicallchemical modeling of initiation in PBXs. 

Dry granular materials have many interesting 
properties, as they share behavior characteristic of both 
fluids and s01ids.~ The more fluid-like regime of rapid 
granular flow, as may be found in grain chutes and snow 
avalanches, has received some attention from modelers. 
Grain contacts are modeled as instantaneous inelastic 
collisions, of varying complexity, between elastic bodies. 
These numerical simulations have provided insight into 



the microstructural character of rapid granular flow, 
revealing, for example, aggregation and boundary 

While justifiable for rapid granular flow, these 
models are inadequate when grain deformation is 
important. 

For dense granular materials (large solid fraction) 
relative velocities of grains are small, and grains remain 
in contact for substantial fractions of the total loading 
time. In this regime incorporation of the appropriate 
physics requires accurate modeling of contact, frictional 
sliding, and the associated deformation of the grains. 
Powder consolidation via shock compression is an 
example of this deformation regime. Numerical 
simulations have provided insight into the 
microstructural character of powder compaction. The 
transition from “quasi-static” compaction (grain 
morphology remains essentially unchanged) to 
“dynamic” compaction (grain morphology is 
substantially altered by melting and “jetting”) has been 
simulated numerically.7.* 

Constant volume shearing of dense dry granular 
material provides another example of this regime. In this 
case the tendency of dense granular material to dilate is 
likely to result in large contact forces and deformations. 
Shearing of PBX’s may be similar, but with large 
deformations of the soft interstitial binder also playing a 
role. 

COMPUTATIONAL TECHNIQUE 

The materials of interest include both dry 
granular materials, and PBX’s, where an interstitial 
material is present. As frictional contact is the defining 
characteristic of dry granular materials, it is an essential 
ingredient in accurate modeling. Bonding is important in 
the case of PBX’s where the binder may debond from the 
grains and create voids. The PIC numerical framework 
provides an opportunity to incorporate contact and 
bonding in a way which has advantages over both 
traditional Eulerian and Lagrangian techniques. 

The fundamental idea behind the particle and cell 
technique used is that particles carry all the 
information required to advance the solution. The 
solution is advanced by interpolating particle information 
to a convenient computational grid (providing a cost 
savings as well as computational ease), solving the 
governing equations there, and interpolating changes 
back to the particles. With the updated particles 
reflecting current solution information (including 
position), the grid is discarded, and a new one used in the 
next computational cycle. This technique may be 
viewed as using Lagrangian particles to advect 
information through an Eulerian grid. The particles are 
Lagrangian material points (discretization of the problem 
domain is into particles, or material points) which 
naturally carry material properties and state variables. 

Advantages of this method include low diffusion and 
elimination of mesh tangling problems. 

Natural contact algorithms exist within the 
particle-in-cell numerical framework, and provide some 
of the motivation to use the FLIP code for the numerical 
studies underway. The interpolation scheme used to 
transfer information from particles to grid provides for 
continuity of velocity throughout the computational 
domain. Consequently no two particles (initially distinct) 
can ever occupy the same point in space. This results in 
no penetration between adjacent regions of particles (Le. 
bodies). Continuity of strain rate within a computational 
cell is another consequence. For the interpolation used 
here, strain rate is uniform within each cell. Regions 
(bodies) interact through their independent contributions 
to field quantities interpolated to the grid. The result is a 
natural no slip contact algorithm between bodies initially 
separated, and perfect bonding between initially adjacent 
bodies. The algorithm as implemented here is a uniform 
strain mixture theory at interfaces. 

The natural contact algorithm, while limited, 
provides advantages over other treatments. It comes 
along for free with the method, unfailingly enforces no 
interpenetration, and requires no interface tracking. 
Lagrangian finite element codes require substantial 
additional work, including identifying contacting surfaces 
ahead of time, expensive search algorithms for 
neighboring nodes during deformation, and dependence 
of results on degree of interpenetration a l l~wed .~  
Eulerian codes require substantial additional work to 
determine interface location and the response of mixed 
cells.“’ 

While the natural contact algorithm is a useful 
one, and has allowed the study of systems in which 
contact is an important part,” it is clearly not sufficient to 
model frictional sliding, as is expected in the shearing of 
granular material. Similarly, perfect bonding is 
insufficient to model the decohesion of interfaces 
expected in the shearing of PBX’s. A more general 
contact algorithm has been implemented in the FLIP code 
which incorporates Coulomb sliding friction as well as 
debonding. The fine points of the implementation of this 
algorithm are sufficiently detailed to merit a separate 
manuscript.” Only a brief overview of the algorithm and 
its properties is presented here. 

The basic idea is to relax the single, continuous 
velocity field assumption inherent in the interpolation 
scheme from particles to grid. Rather, multiple velocity 
fields are allowed, one per region of particles (body). 
Each region is then treated with the standard numerical 
algorithm independently, and where velocity fields 
overlap (the interfaces between bodies) contact 
conditions are applied. The contact conditions are simply 
boundary conditions on the regions. This more general 
contact algorithm is linear in the number of grains.’? The 
algorithm is general and could also be used with standard 
Lagrangian finite element formulations, for example. 



Figure 1 gives an example of an interface vertex. 
The four surrounding cells and the particles in these cells 
are shown on the left. Quantities interpolated from the 
particles to the grid vertex are shown on the right. The 
white particles are a portion of the discretization of one 
region (body) and the black particles correspond to a 
portion of another region. When interpolated to the 
vertex, there is a vertex velocity corresponding to each of 
the regions. In addition, a center of mass velocity, v,,, 
may be defined, which is the mass weighted average of 
the velocities of all particles in the vicinity. Normals 
may be calculated by taking the gradient of the 
characteristic function of each region. In addition to the 
quantities shown, normal tractions and bond strengths 
(taken to be a material property) are interpolated to the 
grid from the particles. These quantities allow contact to 
be implemented on the grid. 

FIGURE 1. INTERFACE VERTEX, 
SURROUNDING MATERIAL PARTICLES, AND 
INTERPOLATED INTERFACE QUANTITIES. 

By definition, an interface vertex is one for which 
v, is different from v,, for region r. Once an interface 
vertex has been found, the contact conditions are applied. 
First the normal traction is compared to the interfacial 
bond strength. If the normal traction exceeds the bond 
strength, the (vertex) bond strength is reduced, and the 
change interpolated to the surrounding particles. If the 
normal traction is positive, but less than the bond 
strength, then perfect bonding is enforced (a reduction to 
the single velocity field algorithm, i.e. v, = v,). 

Frictional contact occurs when the bond strength 
is zero and either regions are approaching or the normal 
traction is negative (the interface is under compression). 
Coulomb friction (with coefficient of sliding friction p) is 
applied by calculating the angle between the interface 
normal and the interface velocity. If this angle is less 
than tan@), the interface “sticks”, and no-slip contact is 
enforced (a reduction to the single velocity field 
algorithm). If the angle is greater than tan(p) then 
frictional sliding occurs. Motion in the direction normal 
to the interface is prevented and motion tangential to the 
interface is reduced as required by the normal traction. 

At this point frictional contact is governed by a 
single quantity, the coefficient of sliding friction. 
Normally the coefficient of static friction is somewhat 

larger, and introduces a further complication which has 
been neglected in the algorithm developed to date. 

BENCHMARKING CALCULATIONS 

In this section the results of two benchmarking 
calculations are presented. The first is for a cylinder 
which bounces off the computational domain boundary. 
Contact with the boundary represents a special case for 
which the contact normals can be computed exactly, 
eliminating a source of computational error. Two cases 
are presented, one for which p = 0 (frictionless contact) 
and the other for p = .l. 

The problem is setup in arbitrary consistent units. 
A unit diameter cylinder is given uniform velocity with x 
and y components both equal to .l. The cylinder is 
modeled as an elastic body with bulk modulus unity, 
shear modulus one-half, and unit density. The magnitude 
of the initial velocity of the cylinder is approximately 1/8 
the longitudinal wave speed (c~=.817). Impact with the 
boundary results in a strong impulse, but not a strong 
shock. The cylinder (region) is discretized with eight 
cells across the diameter and 4 material points per cell. 
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FIGURE 2. FRICTIONLESS CASE; ENERGIES 
AND MOMENTA OF CYLINDER THROUGHOUT 
THE SIMULATION. 



The cylinder motion and deformation for the 
frictionless case is similar to that for the frictional case 
(as depicted in Figure 3, initial conditions are the same 
for both cases), but with almost no cylinder rotation. No 
rotation is induced by the first impact, as would be 
expected due to the symmetry of the initial geometry. If 
the cylinder were a rigid body, frictionless contact would 
induce no rotation for any number of impacts. However, 
once the cylinder begins to deform, subsequent impacts 
lack the symmetry required to suppress rotation. For this 
case the body clearly deforms (the deformation is similar 
to that in Figure 3), but very little rotation is induced 
(rotation is just perceptible after the third impact). 

FIGURE 3. FRICTIONAL CASE; INITIAL AND 
IMPACTED CONFIGURATIONS OF THE 
CYLINDER. 

Figure 2 shows energies and momenta for the 
frictionless boundary impact benchmarking calculation. 
There is no physical energy dissipation mechanism in this 
calculation, so the total energy (elastic plus kinetic) 
should remain at its initial value which is 0.0079. As can 
be seen from the top graph, there is some numerical 
dissipation, but less than 5% after 3 bounces. The 
dynamic exchange between elastic energy and kinetic 
energy during impact can be seen from the plots. All 
impacts have similar maxima in elastic energy. The main 
difference over time is that more elastic energy is stored, 
presumably corresponding to the increasing number of 
elastic waves developed with each impact. Note that this 
simulation is in the granular deformation regime of 

interest as the cylinder is in contact approximately 36% 
of the simulation time (12%hunce). 

The bottom graph shows momentum results. 
With each impact only the momentum normal to the 
boundary is visibly altered (consistent with the small 
rotations seen in the simulation). The initial value of both 
x and y momenta is .079. For elastic collisions the 
magnitude of the momentum should remain constant and 
equal to its initial value. Again there is some numerical 
dissipation. Results improve with increasing resolution. 

Figure 3 shows cylinder motion and deformation 
for the frictional case. Both material points and 
computational grid are shown. The top left frame 
indicates the initial configuration, where the initial 
velocity is directed along the line x=y. The first, second, 
and third impacts with the boundary are shown in the top 
right, bottom left, and bottom right frames respectively. 
For this case, substantial rotation is induced by the first 
impact, as is expected from the frictional forces at the 
boundary. There is approximately 45 degrees of rotation 
between the first and second impacts, and 90 degrees 
between the second and third. 
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FIGURE 4. FRICTION CASE; ENERGIES AND 
MOMENTA OF CYLINDER THROUGHOUT THE 
SIMULATION. 

Figure 4 shows energies and momenta for the 
frictional boundary impact calculation. Frictional contact 



dissipates energy, so the total energy decreases as seen in 
the top graph. Note the difference in the magnitude of 
the elastic energy developed in the first impact compared 
to subsequent ones. The first impact starts the cylinder 
rotating, and is more severe in the sense that it involves 
higher frictional forces, storing more elastic energy 
during contact. Subsequent impacts are less severe, the 
cylinder is rolling and the frictional forces aren't as large. 
Again more elastic energy is stored over time, 
presumably corresponding to elastic waves accumulating 
with each impact. 

The bottom graph shows momentum results. 
With each impact the momentum tangential to the 
boundary is reduced (the momentum normal to the 
boundary changes sign, but has essentially the same 
magnitude, much like the frictionless case). The 
reduction in tangential momentum is primarily due to the 
frictional forces acting during contact, although some x 
and y momentum exchange occurs on account of the 
rotation induced. Again, results improve with increasing 
resolution. 

The second benchmarking simulation is a 
demonstration of the debonding algorithm. The problem 
setup consists of two concentric cylinders subjected to a 
uniform, decreasing temperature. The inner cylinder is 
given a positive coefficient of thermal expansion. The 
outer cylinder, for simplicity, is given zero coefficient of 
thermal expansion. Decreasing the temperature causes 
the inner cylinder to contract, loading the outer cylinder 
so long as their interface remains bonded. Material 
properties are the same as for the contact benchmarking 
calculation. This calculation is more resolved than the 
previous one; a regular 50 x 50 grid with 4 particles per 
cell is used. 

This problem has an analytic solution under static 
loading. It was found that FLIP results were very 
uniform, and matched the analytic solution very closely 
(to within a few percent for sufficiently slow temperature 
changes). Once the bond strength is exceeded the outer 
cylinder relaxes toward a completely stress free state. 
The inner cylinder, being thermally strained and confined 
out of plane, only relaxes in plane. In the absence of 
dissipation, elastic waves rattle around in both cylinders 
after the interface debonds. After a few wave transit 
times the solutions oscillate about the static analytical 
solution. 

In the exact solution, debonding occurs 
everywhere along the interface at once. Numerically a 
bias is introduced due to the registry of the particles on 
the grid and for all calculations but one, debonding first 
occurred at four locations. At least four fold symmetry 
would be expected. However, a case was found for which 
the first debonding occurred at only two locations 
(presumably due to numerical round-off error). This case 
is shown in Figure 5 ,  where the top two frames show 
bond strength plotted on the material particles. Medium 
gray corresponds to the original bond strength, black to 

zero. The inner and outer cylinders are distinguished by 
the black debonded interfacial zone and the visible gap 
which develops (the moire pattern is an artifact of the 
printing). Below each particle plot is a corresponding 
contour plot of the pressure distribution. These indicate 
both the uniformity of the solution before debonding, and 
the relief waves propagating outward from the interface 
as debonding proceeds. 

/ 

FIGURE 5. DEBONDING OF THE INTERFACE IN 
THE CONCENTRIC CYLINDERS PROBLEM. 

The calculation shown in Figure 5 provides a 
chance to investigate the interfacial debonding speed. If 
the normal traction everywhere still bonded was 
infinitesimally close to the bond strength, debonding 
would propagate at the Rayleigh wave speed cR (the 
speed of wave propagation on a free ~urface'~). In the 
computation, the normal traction is not everywhere 
infinitesimally close to the bond strength, again due to 
the registry of a circle on a rectangular grid. The 
Rayleigh wave speed provides an upper bound, and it is 
found that the debond propagation speed is .84 cR. 

These benchmarking calculations provide 
assurance that the contact physics implemented can be 
accurately computed. The essential ingredients for 
numerical simulations of shear deformation in dry 
granular and plastic bonded granular media are in place. 

NUMERICAL SIMULATIONS 

Simulations of granular materials under pure 
shear deformation are performed in two dimensions. The 
simulations model large (average) shear strains (up to 
100%). The simulations presented here contain only a 
few grains, and are not representative of the packing 
fractions found in PBX's. In addition the sample size is 
not large enough to avoid being dominated by boundary 
effects. These are scoping calculations. However, they 



exhibit behavior expected in larger samples more 
representative of PBX's. 

Attention is paid both to the constituent 
properties and their interactions. Energetic crystals are 
modeled as elastic-plastic materials and the polymeric 
binder is modeled using viscoelasticity. Experimental 
characterization of the energetic crystals is difficult, and 
consequently constitutive models are difficult to 
calibrate. These materials have been found to fracture, 
although it's not clear how important this mechanism is at 
elevated pressures. Plasticity is believed to be a 
reasonable approximation to begin with. The polymeric 
binder, a polyurethane, has received substantial attention. 
A variety of experimental data is well m~deled. '~ This 
material is well characterized over a range of strain rates 
for large deformations. Some work has been done to 
indicate appropriate frictional contact ~ararneters.'~ A 
coefficient of sliding friction of .3 is used in these 
simulations. Bond strengths are more difficult to 
determine and therefore the parameters more 
approximate. Both zero and large bond strengths were 
investigated. 

The initial geometry of the small granular shear 
simulation is depicted on the left in Figure 6. The top 
and bottom boundaries are periodic, so there are eleven 
cylinders in all. Cylinders are shaded differently only to 
distinguish them from one another, white space is void. 
Cylinders butting up against the left and right boundaries 
are fixed to these boundaries which have prescribed 
velocities and provide the shearing motion. The left 
boundary moves down and the right up. Calculations are 
on a 100 x 100 grid with 4 particles per cell. 

the magnitude of difference in principal stresses. This 
quantity is what is detected using the photoelastic 
technique, and used to find stress bridging, the 
phenomenon in granular material where chains of 
contacting particles transmit load." Locking is a related 
phenomenon occurring when the shear deformation 
cannot be accommodated by grain rotation and 
translation alone. The granular material binds and force 
chains develop. The diagonal of cylinders with lit up 
contacts in the principal stress difference plot indicates 
the primary load carrying path at this time. 

FIGURE 6. INITIAL AND FINAL GEOMETRIES 
FOR THE SMALL GRANULAR SHEAR 
PROBLEM. 

Although more evident in a movie of the 
simulation, the middle cylinders roll and collide with 
each other and the boundary cylinders, but have enough 
room to accommodate the shearing motion without much 
deformation. The lack of permanent deformation is 
evident in the final configuration (100% shear) shown on 
the right in Figure 6. 

Occasionally, the cylinders bind or "lock". This 
is seen in Figure 7, where the left frame shows cylinder 
positions (recall that contact is defined on the grid, so 
that particles one cell apart are in contact), and the right 
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FIGURE 7. ''LOCKED" STATE IN THE SMALL 
GRANULAR SHEAR PROBLEM. 

The second simulation investigated is for the case 
when an interstitial material is present. The initial 
configuration is as Figure 6, except that all interstitial 
area is filled with binder. As seen in Figure 8, under the 
same boundary conditions cylinder translation and 
rotation is restrained by the presence of binder. This 
enhances locking, as is apparent from the deformation. 
The left frame is for an early time in the simulation, the 
right frame at the end (100% shear). Note the extensive 
debonding which occurs quite early in the simulation. It 
has been found that the extent of debonding is insensitive 
to bond strength over the range investigated, except in 
regions of continued compression (the force chain). In 
the force chain a large bond strength (the case depicted in 
Fig. 8) serves to prevent binder from squeezing out 
between cylinders, providing lubrication. 

FIGURE 8. INTERMEDIATE AND FINAL 
STATES IN THE SHEARING OF GRAINS WITH 
BINDER. 

It is expected that both locking and extensive 
debonding will occur in PBX's. In a previous study of 
the behavior of granular materials under (macroscopic) 



uniaxial strain compression, introduction of the binder 
was found to substantially change the behavior.” 
Computational results showed that granular material with 
binder under compression can behave more like a 
homogeneous medium. As a consequence, the stress 
bridging observed in the dry granular response is much 
reduced or absent. Under shear, however, the binder 
appears to have the opposite effect, and the granular 
material with binder may be more likely to exhibit 
locking than granular material without binder. The effect 
of bond strength on maintaining a lubricating layer of 
interstitial binder in force chains may also be important 
in PBX’s. 

Another phenomenon expected to be exhibited 
for both dry granular materials and PBX’s under shear 
loading is shear banding. In the absence of fracture, a 
weak zone develops in the material after which 
deformation is concentrated in a region a few particles 
wide.’6 The reduced problems studied here have 
insufficient grain loading to exhibit shear banding. The 
next step in the investigation is to examine the response 
of a large collection of grains, with a high solid fraction 
of energetic crystals, more representative of PBX’s. 

FIGURE 9. GEOMETRY APPROXIMATING THE 
GRAIN DISTRIBUTION IN PBX 9501. 

PBX 9501 is composed of a mixture of 75% 
coarse and 25% fine HMX, the energetic crystal (95% by 
wt.), and binder (5% by wt.). The average size of the 
coarse crystals is approximately 150 micrometers, and the 
fines 5 micrometers. The typical crystal is somewhat 
rectangular, but with substantially rounded comers 
(presumably broken off during processing). However, 
there is also quite a bit of irregularity in crystal shapes, as 
some are the fusion of several (single) crystals and some 
are parts of fractured crystals. 

The geometry depicted in Figure 9 has been 
chosen to approximate the energetic crystal loading and 
distribution found in PBX 9501. The computational 
domain size is 1.2 mm square. The approximation is a 
two-dimensional distribution of cylinders with binder 
filling the interstitial areas. The distribution is chosen to 
represent the coarse HMX and the larger fines. The 
distribution of the HMX crystals covers too large a length 
scale range (three orders of magnitude) to include them 
all. Packing circles in two dimensions typically results in 
more void space than packing spheres in three 
dimensions. This is reflected in the packing density, 
approximately 80% by weight. The dry granular material 
investigated is the same cylinder distribution, but without 
binder. The results of this investigation are forthcoming, 
and are expected to bear similarities to the scoping 
calculations presented herein. 

CONCLUSIONS 

It is expected that the physical behavior exhibited 
by the reduced problems examined here will be born out 
in larger simulations, more representative of PBX’s. This 
includes intermittent locking, and the role of binder as a 
lubricant in force chains. These features are expected to 
provide insight into possible hot spot mechanisms in 
PBX’s during shearing deformations. Another important 
mechanism, shear banding, or the concentration of shear 
deformation in a narrow zone a few grains wide, also will 
be investigated with the larger sample of grains. 

We expect that results in two dimensions will be 
confirmed by calculations in three dimensions, but three- 
dimensional simulations are clearly needed. The 
presence of a third dimension gives substantially more 
freedom for particles to move and relieve stress, and the 
geometry can only be accurately represented in three 
dimensions. Using the two-dimensional simulations as 
guides, future work includes fully three-dimensional 
simulations. 
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