
C ' C

1

~

Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36

TITLE: NODE WEIGHTED NETWORK UPGRADE PROBLEMS

AUTHOR@): S.O. Drumke, H. Noltemeier, M.V. Marathe, S.S. Ravi

SUBMITTED TO: 37th BEE Symposium on Foundations of Computer Science
Bulington, Vermont
FFeueznBer1996 *

By acceptance of this article, the publisher recognizes that the US. Government retains a nonexclusive royalty-free license to publish or reproduce
the published form of this contribution or to allow others to do so, for U.S. Government purposes.

The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the US. Department of Energy.

Los Alamos National Laboratory [i 0 A 1 a 0 Los Alamos New Mexico 87545

DlSCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best avaiiable original
document.

Node Weighted Network Upgrade Problems
(Extended Abstract)

S.O. Krumke' H. Noltemeier M.V. Marathe S.S. %vi

April 8, 1996

Abstract

Several problems arising in the areas of communication networks and VLSI design can be
expressed in the following general form: Enhance the performance of an underlying network
by upgrading some of its nodes. We investigate one such problem.

Consider a network where nodes represent processors and edges represent bidirectional
communication links. The processor at a node e, can be upgraded at an expense of cost(v).
Such an upgrade reduces the delay of each link emanating from e, by a fked factor 5, where
0 < 2 < 1. The goal is to find a minimum cost set of nodes to be upgraded so that the
resulting network has a spanning tree in which each edge is of delay at most a given value 5.

We provide both hardness and approximation results for the problem. We show that
the probblem is NP-hard and cannot be approximated within any factor p < Inn, unless
NP C C)TIME(doglog"), where n is the number of nodes in the network. This result holds
even when the cost of upgrading each node is 1. We then present the first polynomial
time approximation algorithms for the problem. For the general case, our approximation
algorithm comes within a factor of 2 Inn of the minimum upgrading cost. When the cost
of upgrading each node is 1, we present an approximation algorithm with a performance
guarantee of 4(2 + lnA), where A is the maximum node degree. For A = o(fi), this
algorithm performs better than the general algorithm. In particular, for graphs of bounded
node degree, we obtain a constant factor approximation. Finally, we present a polynomial
time algorithm for the class of treewidth-bounded graphs.

'Department of Computer Science, University of Wiirzburg, Am Hubland, 97074 Wiirzburg, Germany. Email:

'Los Alamos National Laboratory, P.O. Box 1663, MS K990, Los Alamos, NM 87545, USA. Email:

3Department of Computer Science, University at Albany - SUNY, Albany, NY 12222, USA. Email:

{krumke,noltemei}Qinformatik.uni-wuerzburg.de.

madhavQc3. l a d .gov. The work is supported by the Department of Energy under Contract W-7405-ENG-36.

ravi0cs.albany.edu.

http://krumke,noltemei}Qinformatik.uni-wuerzburg.de
http://ravi0cs.albany.edu

- -

1 Introduction
Several problems arising in axeas such as communication networks and VLSI design can be
expressed in the following general form: Enhance the performance of an underlying network
by carrying out upgrades at some nodes of the network [24]. In communication networks,
upgrading a node corresponds to installing faster communication equipment at that node. Such
an upgrade reduces the communication delay along each edge emanating from the node. In
signal flow networks used in VLSI design, upgrading a node corresponds to replacing a circuit
module at the node by a functionally equivalent module containing suitable drivers. Such an
upgrade decreases the signal transmission delay along the wires connected to the module. Paik
and Sahni [24] investigate several node upgrading problems. They present complexity results
for general networks and efficient algorithms for special classes of networks.

In this paper we investigate the complexity and approximability of the following upgrading
problem: We are given a network where nodes represent processors and edges represent bidi-
rectional communication links. The processor at a node v can be upgraded at an expense of
cost(v). Such an upgrade reduces the delay of each edge incident on ‘u by a fixed factor x, where
0 < x < 1. The goal is to find a minimum cost set of nodes to be upgraded so that the resulting
network has a spanning tree in which every edge is of delay at most a given value 6.

We observe that the above problem is NP-hard even when the cost of upgrading each node
is 1. We present the first polynomial time approximation algorithm for the general version of
the problem. We also present an improved approximation algorithm for the case where the
cost of upgrading each vertex is 1. Further, we establish lower bound results that match the
performance guarantees provided by our approximation algorithms to within constant factors.
Finally, we develop an efficient algorithm for the general version of the problem for the class of
treewidth-bounded graphs.

The paper is organized as follows. Section 2 formally defines the problems under study and
briefly summarizes our results. In Section 3 we present our approximation algorithm for the
general case and establish its performance guarantee. In Section 4 we show the polynomial time
solvability of the problems when restricted to the class of treewidth-bounded graphs. Section 5
contains the hardness results.

2 Our Contributions
2.1 Problem Formulation
Let G = (V ,E) be a connected undirected graph. With each edge e E E , we associate a
nonnegative number d(e) , which represents the deIay of the link e. When the processor at a
node ‘u is replaced by a faster processor, the delay of each edge incident on B decreases by a
fixed factor x, where 0 < x < 1. Thus, if e = (D , u) is an edge, its delay after upgrading exactly
one of v and u is &(e); the delay of e falls to x2d(e) , if both v and u are upgraded. The cost of
upgrading a node D is denoted by cost(v). For a subset V’ of V, the cost of upgrading all the
nodes in V’, denoted by cost(V’), is equal to CVEV, cost(v).

Let T = (V,ET) be a spanning tree of G. We denote by max(T) its bottZenecC-delay, that is
max(T) := max(d(e) : e E ET}.

Definition 2.1 Given a node and edge weighted graph G as above and a bound 6, the upgrading
Bottleneck Spanning Tree Problem (BSTP) is to upgrade a set V’ E V of nodes such that the
resulting graph has a spanning tree of bottleneck delay at most S and cost(V’) is minimized.

1

Hardness Result Approximation Result
Not approximable within /3 < inn unless

Same as BSTP above.

Approximable within 2lnn.

Approximable within 4(2 + In A), where
A is the maximum node degree.

Both problems are solvable in polynomial time on treewidth-bounded graphs.

NP C DTIME(nloglog")*

Table 1: Summary of the results obtained in this paper.

By UBSTP we denote the subset of instances of BSTP, where the cost of upgrading each node
is 1; i.e. cost(v) = 1 for all v E V. Thus, the goal is to find an upgrading set of minimum cardinality.

2.2 Summary of Results
For the first time in the literature, we study the complexity and approximability of the problems
UBSTP and BSTP. We show that UBSTP (and thus also BSTP) is NP-hard for any fixed 0 <
z < 1 and 6 > 0, even for bipartite graphs. Given the hardness of finding optimal solutions, we
concentrate on devising approximation algorithms with good performance guarantees. Recall
that an approximation algorithm for a minimization problem 11 provides a pes.fomcance guarantee
of ,B if for every instance I of II, the solution value returned by the approximation algorithm is
within a factor p 2 1 of the optimal value for I. The main result of this paper is the following:

Theorem 2.2 There is a polynomial time approximation algorithm for BSTP with a performance
guarantee of 21n n.

We counterbalance this approximation result with the following lower bound result:

Theorem 2.3 Unless NP C DTIME(n'Og'Ogn), there can be no polynomial time approximation
algorithm for UBSTP with a performance guarantee of ,B < Inn.

Thus, unless NP DTIME(nLogL0g"), the performance guarantees provided by our algorithm
is within a factor of two of the best possible performance guarantee for the problem. For the
case when all upgrading costs are 1, we give an algorithm with a performance guarantee of
4(2 + In A), where A is the maximum node degree in the graph. For A = o (f i) , this algorithm
performs better than the general algorithm. In particular, for the class of bounded-degree graphs,
we obtain a constant factor approximation. The algorithm and the corresponding proofs can
be found in the appendix. Finally, we present a polynomial time algorithm for the class of
treewidth-bounded graphs. The results obtained in this paper are summarized in Table 1.

2.3 Related Work
To the best of our knowledge, the problems considered in this paper have not been previously
studied. As mentioned earlier, the node upgrading model used in this paper was introduced in
a recent paper by Paik and Sahni [24].

Frederickson and Solis-Oba [ll] considered the problem of increasing the weight of the min-
imum spanning tree in a graph subject to a budget constraint where the cost functions are
assumed to be linear in the weight increase. In contrast to the work presented here, they showed
that the prolblem is solvable in strongly polynomial time. Berman [3] considers the problem of

2

shortening edges in a given tree to minimize its shortest path tree weight and shows that the
problem can be solved in polynomial time by a greedy algorithm. Phillips [25] studies the prob-
lem of finding an optimal strategy for reducing the capacity of the network so that the residual
capacity in the modified network is minimized. Reference [20] considers network improvement
problems under a different model where there are cost functions associated with improving edge
weights.

3 An Approximation Algorithm for BSTP
In this section, we present our approximation algorithm for BSTP. This algorithm provides a
performance guarantee of 2 In 7t. We can assume without loss of generality that all the delays on
the edges of the given network are taken from the three element set {S/s2, S/s, 6) . If the delay
of an edge is greater than S/02, then vertex upgrading cannot reduce its delay value to 6 . Thus,
in the sequel we will assume that the delay of each edge is one of the three above values.

Overview
We first give a brief overview of our algorithm. The algorithm maintains a set S of nodes, a
set F of edges and a set C of clusters which partition the vertex set V of the given graph G.
The set C of clusters is initialized to be the set of connected components of the bottleneck graph
bottleneck(G, d, S), which is defined to be the edge-subgraph of G containing only those edges e
which have a delay d(e) of at most S. The set S of upgrading nodes is initially empty.

The algorithm iteratively merges clusters until only one cluster remains. To this end, in each
iteration it determines a node v of minimum quotient cost. The quotient cost of a node v is the
ratio whose numerator is the cost of v plus the costs of some nodes adjacent to in different
clusters via edges of delay S/s2, and whose denominator is the number of clusters which have
nodes adjacent to v. (A precise definition of the quotient cost appears in Figure 1 on the next
page.) This quotient cost measures the average upgrading cost of 2t and the vertices that are
adjacent to v through edges of delay 6 / x 2 . The algorithm then adds v and the nodes mentioned
above to the solution set S and merges the corresponding clusters.

The algorithm is shown in Figure 1 on the following page. Step 6 can be implemented in
polynomial time as shown by Klein and Ravi in [16]. For each node v, define the quotient
cost of v to be the minimum value of the ratio in Step 6 achieved by this node. To find the
quotient cost of v, we can order the components in C as C,, Cz, C,, . . . in nondecreasing order of
c(v, Cj). In computing the quotient cost of v, it is sufficient to consider subsets of C of the form
{Ci, (72, . . . , Cj} where 2 5 j 5 q. Thus the quotient cost for a given vertex can be computed in
polynomial time; by computing the quotient cost for each vertex, we can determine the minimum
quotient cost, and thus carry out Step 6 in polynomial time.

It is easy to see that the set S output by algorithm Heuristic-BSTP is indeed a valid upgrading
set, since all the edges added to F in Step 9 will be of delay at most 6 after upgrading the nodes
in 5’.

In the sequel, we use V* to denote an optimal upgrading set; i.e. an upgrading set of minimal
cost OPT := cost(V*). We now proceed to prove the following theorem which indicates the
performance guarantee provided by the algorithm.

Theorem 3.1 Let Heu denote the cost of the nodes chosen by Heuristic-BSTP for upgrading.
Then Heu/OPT 5 2lnn.

3

1 Heuristic-BSTP
2
3 Initializ
4 Repeat we have more than one component

5

6

Let 6:' := bottleneck(G, d, 6) and let Cl, . . . , Ce be the connected components of G'.
empty and F to the set of edges in G'.

Let C = {Cl . . . , C,} be the set of clusters, where Q = IC1 is number of remaining
components.
Find a node v E V in the graph G minimizing the ratio

Here, the cost c(w,Cj) is defined in the following way: If v E Cj or v is adjacent to a
node in Cj via an edge of delay 6 / x , then c(v, Cj) := 0. If all the edges from v to Cj are
of delay S / x 2 , then ~ (v , Cj) is defined to be the minimum cost of a vertex in Cj adjacent
to $9. If there is no edge between v and any node in Cj, then c(v,Cj) := +m.
Let v be the node and C17.. . , CT be the components in C chosen in Step 6 above, where
w.1.o.g. v E C1. Let f(v) = cost(v) + E,',, c(v, Cj).
Let e2,. . . ,eT be a set of edges in G connecting v to C2,. . . C, respectively.
Add the edges e2 , . . . ,e, to F so as to merge C1, C2,. . . , C, into one component. Add
v and the other endpoint of each edge from { e ~ , . . . ,eT} whose delay is S/x2 to S.
Note that the total cost of the nodes added to the solution S is exactly f(v).

7

8
9

10 Output S as the solution.

Figure 1: The approximation algorithm for BSTP.

Our proof of Theorem 3.1 relies on several lemmas, which are presented below. We estimate
the cost of the nodes added by the heuristic in each iteration by first establishing an averaging
lemma and then using a potential function argument. The notion of a claw decomposition which
is introducedl in the next subsection will be a crucial tool in the analysis.

Claw Decompositions

We employ the notion of claw decompositions in showing that the quotient cost of each node
chosen in Step 6 is small compared to the optimal solution.

Definition ,3.2 A claw is either a single node or a KI,, graph for some r 2 1. If there are at most
two nodes in the claw then we can choose any of the nodes as i ts center. Otherwise, the node with
degree greater than 1 is the unique center. The vertices in the claw different from the center are
said t o be the fingers o f the claw. A claw with at least two nodes is called a non-trivial claw.

Let G be a graph with node set V . A claw decomposition of V in G is a collection of node-disjoint
nontrivial claws, which are all subgraphs of G and whose vertices form a partition of V .

The following theorem can be proven by induction on the number IVl of nodes.

Theorem 3.3 Let G be a connected graph with node set V , where IVI 2 2. Then there is a claw
decomposition of V in G.

4

An Averaging Lemma

Lemma 3.4 Let 2, be a node chosen in Step 6 and let C denote the total cost of the nodes added
to the solution set S in this iteration. Let there be q clusters before v is chosen and assume that in
this iteration T clusters are merged. Then

C < OPT
T - q
- -

Proof: Let T* be an optimal tree with the nodes V* be the upgraded nodes. Let OPT :=
cost(V*) be the cost of the optimal solution. Let C = C1,. . , , C, be the clusters when the node
v was chosen. Let T*(v) be the graph obtained from T* by contracting each Cj to a supernode.
T*(v) is connected and c then remove edges (if necessary) from T*(v)
so as to make it a span e edges in this tree have original delay at least

V* be the set of nodes in the optimal solution that are adjacent to another cluster
in T*(v). Clearly, the cost of these nodes is no more than OPT. Take a claw decomposition of
T*(v). We now obtain a set of claws in the graph G itself in the following way: Initialize E‘ to
be the empty set. For each claw in the decomposition with center Ci and fingers C;, . . . , CI we
do the following: For each edge (Ci, CJ) the optimal tree T* must have contained an edge (a , w)
with u E Ci and w E Ci. Notice that since this edge was of original delay at least S / x , at least
one of the vertices u and 20 must belong to H C V*. We add (u, w) to E‘.

It is easy to see that the subgraph of G induced by the edges in E’ consists of disjoint
nontrivial claws. Also, all edges in the claws were of original delay at least S/s and the total
number of nodes in the claws is at least q. We need one more useful observation: If a claw center
is not contained in H , then all the fingers of the claw must be contained in H , since the edges
in the claw were of original delay at least S/z.

denote the fingers of the claws contained in H which are connected to their claw center via an
edge of delay S/x, whereas H;lx2 stands for the set of fingers adjacent to the center via an edge
of delay S/x2 and also contained in H . For each claw with exactly two nodes we designate an
arbitrary one of the nodes to be the center. Then by construction, H,, and H y X 2 are
disjoint. Therefore,

S / X .
Let H

Let H, be the set of nodes from H acting as centers in the just generated claws. Let

OPT 2 cost(u)+ cost(u). (1)
u ~ ~ c ~ ~ j l ~ 2 uEHj/”

For a node u E H,, let Nu denote the number of vertices in the claw centered at u. We have seen
that if a center is not in H , then all the fingers belong to the optimal solution. Thus, we can
estimate the total number of nodes in the claws from above by summing up the cardinalities of
the claws with centers in H and for all other claws adding twice the number of fingers. Hence

Nu + 21H;’xl L l{w : w belongs to some claw}l 2 q, (2)
UEHC

since the total number of nodes in the claws is at least q.
We now estimate the first sum in (1). If u E H,, then the quotient cost of u is ut most the

cost of u plus the cost of the fingers in the claw that are in H f l X 2 divided by the total number

5

of nodes in the claw. This in turn is ut least C/r by the choice of the algorithm in Step 6. By
summing up over all those centers, this leads to

' UEH,

Now, for a node u in H;'", its quotient cost is at most cost(u)/2, which again is at least C/T.
Thus

I

Using (3) and (4) in (1) yields

This proves the claim. 0

A Potential Function Argument
We are now ready to complete the proof of Theorem 3.1. Assume that the algorithm uses f
iterations of the loop and denote by w1, . . .vf the vertices chosen in Step 6 of the algorithm.

Let 4j denote the number of clusters ufter choosing vertex vj in this iteration. Thus, for
instance, 40 = q, the number of components at the beginning of this iteration in (S, F) . Let the
number of clusters merged using vertex vj be ~j and the total cost of the vertices added in that
iteration be cj. Then we have

Notice that since T j 2 2, we have ~j - 1 2 3.j. Using this inequality in (6) we obtain

1
2 (7) q5j 5 4j-x - - T j .

Observe that 4j 2 2 for j = 0, . . . , f - 1, since the algorithm does not stop before the f-th
iteration. Notice also that q5f 2 1. Then by Lemma 3.4, we have

cj4j-1 T ' > -
- OPT

for all 0 _< j 5 f. We now use an analysis technique due to Leighton and Rao [22] to complete
the proof as in [16]. Substituting equation (8) into (7) yields

Using the recurrence (9), we obtain

6

Taking natural logarithms on both sides and simplifying using the estimate ln(1 + z) 5 z, we
obtain

Notice that by Lemma 3.4 we have

cj 5 O P T . 3 5 OPT < 2-OPT,
#j-1

and so the logarithms of all the terms in the product of (10) are well defined.
Note also that $0 5 n and (Pf = 1 and hence from (11) we get

f

j=1

Notice that the total cost of the nodes chosen by the algorithm is exactly the sum c j . This
CI completes the proof of Theorem 3.1.

4 Treewidt h-Bounded Graphs
In this section we will show that BSTP can be solved in polynomial time, if the underlying graph
belongs to the class of treewidth-bounded graphs.

Treewidth-bounded graphs were introduced by Robertson and Seymour [as]. Independently,
Bern, Lawler and Wong [4] introduced the notion of decomposable graphs. Later, it was shown
[2] that the class of decomposable graphs and the class of treewidth-bounded graphs coincide.
A class of treewidth-bounded graphs can be specified using a finite number of primitive graphs
and a finite collection of binary composition rules. We use this characterization for proving our
results. A class of treewidth-bounded graphs I' is inductively defined as follows [4]:

1. The number of primitive graphs in I' is finite.
2. Each graph in I' has an ordered set of special nodes called terminals. The number of

terminals in each graph is bounded by a constant, say k.
3. There is a finite collection of binary composition rules that operate only at terminals,

either by identifying two terminals or adding an edge between terminals. A composition
rule also determines the terminals of the resulting graph, which must be a subset of the
terminals of the two graphs being composed.

Let I' be any class of decomposable graphs. Let the maximum number of terminals associated
with any graph G in I' be IC. Following [4], it is assumed that a given graph G is accompanied
by a parse tree specifying how G is constructed using the rules and that the size of the parse
tree is linear in the number of nodes. Moreover, we may assume without loss of generality that
the parse tree is a bipary tree.

Due to lack of space and for the sake of an easier presentation, we only show how the
algorithm works for the class of series-parallel graphs. Extensions to graphs of treewidth k,
where k is a fixed integer, are straightforward and omitted.

Let G be a series-parallel graph with the two terminals s and t . We call an acyclic edge
subgraph G' of G consisting of exactly two connected components and with s and t in different

7

components, an almost-tree. Defme D[s A t] to be the least cost of an upgrading set in G
containing b t h s and t such that after upgrading the nodes in the set, G contains a spanning
tree of bottleneck delay at most 6. Similarly the values D[s A q, D[S A q, D[k, 3 A 4 are defined
to be the minimum costs of upgrading sets that include s but not t , not s but t and neither s
nor t respectively. For the sake of a more concise notation, we will use S E {s, 8) and T E {t , f).

In the same manner as we defined Dn, we define A[s A t] to be the minimum cost of an
upgrading set to obtain an almost-tree of bottleneck delay at most 6.

Clearly, if we know the array Dfl for G , we can easily find the optimum value OPT. Further,
if we also store the corresponding upgrading sets, an optimum upgrading set can be found easily.

We will inow show that for a series-parallel graph G , we can compute Dn and A[] arrays
using the decomposition tree of G in O(n2) time.

First, we will take care of the case where G is obtained by the series composition of G1 and
G2. Assume that we have already computed the Dfl and An arrays for G1 and G2. Denote them
by Dl[] , A I [] and & [I , A2[] respectively.

It is easy to see that the restriction of any tree T to G1 and G2 respectively is also a tree.
Thus, we can compute D[l with the help of Dl[] and D2[] in the following way:

13[S A T] := min{Dl[S A 4 -I- D2[S A TI, D1[S A t] f D ~ [s A T] - cost(t)>

Similarly, we now compute A[] for G. An almost-tree in G must either be an almost-tree in
G1 and a tree in G2 or vice versa. No other possibilities exist. Thus, A[S A TI can be computed
as follows.

A[S A T] = min{Dl[S A at A2[5 A TI, D1[S A t] 4- A2[s A T] - cost(t),
Ax[S A 4 + D2[S A TI, AI[S A t] f D ~ [s A T] - cost(t)}

We now consider the case where G is obtained by the parallel composition of G1 and G2.
Again, we assume that the two arrays D[] and An are already available for G1 and G2. We
start with the computation of DE] array for G. A tree T in G must be a tree in exactly one of
the graphs G1 and G2 and an almost-tree in the other. We just need to distinguish between
the cases covering the upgrade of the terminals of G1 and G2. We must make sure that s1 is
upgraded if and only if s2 is. The same applies to tl and t2. This way D[] can be computed.

For the array A[] , observe that if G' is an almost-tree of G, its restriction to both graphs
GI and G2 must also be an almost-tree of that particular graph. Making sure that we always
include s1 (t l) in an upgrading set if and only if we include s2 (t2), we can compute the array

Finally, observe that for a series-parallel graph consisting of two terminals s and t and the
single edge (2 5 , t) , we can trivially compute the arrays D[] and An. Using the above observations,
the array A[] can be computed in polynomial time for a series-parallel graph G, provided a
decompositicln tree for G is given. Since such a decomposition tree with O(n) nodes can be
computed in O(n) time, we can conclude that the dynamic programming algorithm presented
above runs in total time O(n2).

Using the same basic idea, namely keeping track of the terminals of the subgraphs in a
decomposition, one can devise a polynomial time dynamic programming algorithm for the class
of treewidth-bounded graphs. This approach leads to the following theorem.

4 1 *

Theorem 4.1 BSTP can be solved in O(n')-time for treewidth-bounded graphs with no more than
k terminals. I

R

= s / x

91 QZ 93 9n

Figure 2: Graph used in the reduction from Set Cower.

5 Hardness Results
Theorem 5.1 UBSTP is NP-hard for any fixed 0 < z < 1 and 6 > 0 even for bipartite graphs.

Proof: We show that Set Cover ([SP5] in [12]) reduces to UBSTP in polynomial time. An
instance of Set Cover consists of a set Q of ground elements (~ 1 , . . . , qn}, a collection & I , . . . , Qm
of subsets of Q and an integer K . The question is whether one can pick at most K sets such
that their union equals Q.

Given an instance of Set Cower, we first construct the natural bipartite graph, one side of
the partition for set nodes Q j , j = 1,. . . , rn, and the other for element nodes 4i, i = 1,. . . , n.
We insert an edge { Q j , q;} iff 4; E Qj. We now add one more node R (the “root”) and connect
R to all the set nodes.

In the remainder of this proof, we do not distinguish between a node and the set or element
that it represents. Note that the resulting graph is a bipartite (with R and the element nodes
on one side and the set nodes on the other side). An example of the graph constructed is shown
in Figure 2.

For each edge of the form (R , Qi), the delay is 6, while each edge the form (Qi, q j) has delay
6/z (in Figure 2 each of the dotted lines has delay 6 and the solid lines have each delay 6/z).
We set the bound on the bottleneck delay parameter to 6.

We now claim that there is a solution to the UBSTP instance consisting of at most K nodes
if and only if the Set Cover instance has a cover of size at most K .

First assume that we can cover the elements in Q by at most K sets. Without loss of
generality assume that the set cover consists of exactly K sets, which are Q1 . . . ,QK. We then
upgrade the corresponding set nodes. Consider the resulting graph. For each element node qj
there is now an edge of delay S connecting qj to some set node S(q j) from Q1,. . . , QK (If qj
appears in two or more sets whose corresponding nodes are upgraded, then choose one such set
node arbitrarily). Then the set { (T , Qi) : i = 1,. . . , m} U { (q j , S(qj)) : j = 1, - . . ,n} is the edge
set of a spanning tree of G, where none of the edges has weight more than 6.

Now assume conversely that there is an upgrading set of size at most K for the instance of
UBSTP constructed above. Let V’ C V, lV’l 5 K be a set of nodes that are upgraded and let

9

T = (V, ET) be a spanning tree in the resulting graph of bottleneck cost at most 6.
We now transform the tree T into a tree T' of at most the same bottleneck cost such that

each set node Qj is adjacent to R in T'. To this end, do the following for each set node Q j ,
j = 1,. . . , 772: If (R , Q j) E T , then continue with the next set node. Otherwise, since T is
connected, there must be a path P from Q j to R in T. By the bipartiteness of G, the first
two edges in this path axe of the from (Q j , q;) and (q;, Qj,) for some element node qi and some
other set node Q j t . Adding the edge (R,Qj) to T will induce a simple cycle in T containing the
edges in P and (8, Qj) . Thus if we remove (Qj, q;) from T the resulting graph will again be a
spanning tree of G.

Observe that the bottleneck cost of the tree does not increase during the procedure from
above, since each edge (R , Q j) inserted has already delay 6 in the original graph.

Now, consider the set V' of upgraded nodes. If R E VI, we can safely remove from V' without
affecting the bottleneck cost of our spanning tree T'. For each element node qa E VI, we have
at least one set node S(Q;) adjacent to q; in T'. We replace q; by S(q;) in V' and, continuing
this, obtain a set VI' of at most K set nodes, which are upgraded.

We will now argue that the set nodes from V'' form a set cover. To this end, consider an
arbitrary element node q;. If q; E V', i.e. q; was one of the upgraded element nodes, then we
have added some set node S(qi) to V' that is adjacent to q; in G. Thus, S(qi) E V" contains
q; and, consequently, q; is covered by the set in V". In the other case, q; V'. The tree T'
contains at lleast one edge (Q j , q ;) of delay at most 6. But, since q; was not upgraded, the only
possibility of (Qj, qi) having delay 6 is that Q j had been upgraded, i.e. Q j E V'. Since we have
not removed any set node from V' in the transition to V", it follows that Q j E V" and thus,

0
Note thai the reduction in the proof of Theorem 5.1 preserves approximations. Any set cover

of size K becomes an upgrading set of size K and any upgrading set of size K becomes a cover
of size at most K . Now, consider the optimization version Min Set Cover, where the objective
is to find a ininimum cardinality collection of the sets &I,. . . , Qn whose union is Q. Recently,
Feige [lo] has shown the following non-approximability result:

again, q; is covered by the sets in VI'.

Theorem 51.2 Unless NP C D T I M E (T z ~ ~ ~ ~ ~ ~ ~), the Min Set Cover problem, with a universe Q of
size lQl, cannot be approximated within a factor p < In 191.

Combining this hardness result with the approximation preserving reduction used above then
establishes Theorem 2.3:

Theorem 2!.3 Unless NP C_ D T I W I E (T Z ~ ~ ~ ~ " ~ ") , there can be no polynomial time approximation
algorithm for UBSTP with a performance guarantee of p < In rt.

Using a different construction in the reduction from Set Cover, we can also show the following
result, whose proof is omitted in this abstract.

Theorem 5.3 The hardness result of Theorem 2.3 continue to hold, if UBSTP is restricted to
those instances, where a// the edge weights are 6/z, but the graph G is not necessarily bipartite.

10

References

191

$3. Arnborg, J. Lagergren and D. Seese, “Easy Problems for Tree-Decomposable Graphs”,
J. Algorithms, Vol. 12, 1991, pp. 308-340.

S. Arnborg, B. Courcelle, A. Proskurowski and D. Seese, “An Algebraic Theory of Graph
Problems”, J. ACM, Vol. 12, 1993, pp. 308-340.

0. Berman, ‘‘Improving The Location of Minisum Facilities Through Network Modifica-
tion,” Annals of Operations Research, 40(1992), pp. 1-16.

ern, E.L. Lawler and A.L. Wong, “Linear-Time Computation of Optimal Subgraphs
posable Graphs”, Journal of Algorithms, 8, 1987, pp. 216-235.

‘Dynamic programming algorithms on graphs with bounded treewidth” ,
15th International Colloquium on Automata, Languages and Program-

ming, Springer-Verlag, LNCS 317, 1988, pp. 105-119

W. Cunningham, “Optimal Attack and Reinforcement of a Network,” J. ACM, 32(3), 1985,
pp. 549-561.

J . P. Cohoon and L. J. Randall, “Critical Net Routing,” IEEE Intern. Conf. on Computer
Design, 1991, pp. 174-177.

J. Cong, A. B. Kahng, G. Robins, M. Sarafzadeh and C. K. Wong, “Provably Good Per-
formance Driven Global Routing,” IEEE Transuctions on Computer Aided Design, 11(6),
1992, pp. 739-752.

P. Crescenzi and V. Kann, “A compendium of N P optimization problems,” Manuscript,
(1995).

U. Feige, “A threshold of Inn for approximating set cover,” To appear in the Proceedings
of the 28th Annual ACM Symposium on the Theory of Computation (1996).

G.N. Frederickson and R. Solis-Oba, “Increasing the Weight of Minimum Spanning Trees”,
Proceedings of the Sixth Annuul ACM-SIAM SODA ’96, March 1996.

_ . -

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman and Co., San Francisco, CA, 1979.

Dorit S. Hochbaum and David B. Shmoys, “A unified approach to approximation algorithms
for bottleneck problems”, Journal of the ACM, 33(3):533-550, July 1986.

D.S. Johnson, “Approximation algorithms for combinatorial problems”, J. Comput. System
Sei. 9, 1974, 256-278.

B. Kadaba and J. Jaffe, “Routing to Multiple Destinations in Computer Networks,” IEEE
Trans. on Communication, Vol. COM-31, Mar. 1983, pp. 343-351.

P. Klein, and R. Ravi, “A nearly best-possible approximation for node-weighted Steiner
trees,” Proceedings of the third MPS conference on Integer Programming and Combinatorial
Optimization (1993), pp. 323-332.

11

[17] V. P. Clomp ella, C. Pasquale and G. C. Polyzos, “Multicast,ag for Multimedia Applica-
tions,” Proc. of IEEE INFOCOM ’92, May 1992.

[18] V. P. Kompella, J. C. Pasquale and G. C. Polyzos, “Two Distributed Algorithms for the
Constrained Steiner Tree Problem,” Technical Report CAL-1005-92, Computer Systems
Laboratory, University of California, San Diego, Oct. 1992.

[19] V. P. Kompella, J. C. Pasquale and G. C. Polyzos, “Multicast Routing for Multimedia
Communication,” IEEE/ACM Transactions on Networking, 1993, pp. 286-292.

[20] S. 0. Krumke, H. Noltemeier, M. V. Marathe, S. S. Ravi and K. U. Drangmeister, “Modi-
fying Networks to Obtain Low Cost Trees,” submitted for publication.

[21] D. Karger and S. Plotkin, “Adding Multiple Cost Constraints to Combinatorial Optimiza-
tion Problems, with Applications to Multicommodity Flows,” Proc. 27th AnnuaE ACM
Symp. on Theory of Computing (STOC’95), May 1995, pp. 18-25.

[22] F.T. Leighton and S. , “An Approximate Max-Flow Min-Cut Theorem for Uniform
Multicommodity Flow Problems with Application to Approximation Algorithms”, Proceed-
ings of the 29th Annual IEEE Conference on Foundations of Computer Science, 1998, pp.
422-431

[23] C. Lund and M. Yannakakis, “On the Hardness of Approximating Minimization Problems,”
Proc., 25th Annual ACM Symp. on Theory of Computing (STOC’93), May 1993, pp. 288-
293.

[24] D. Paik and S. Sahni, “Network Upgrading Problems,” Networks, Vol. 26, 1995, pp. 45-58.

[25] C. Phillips, “The Network Inhibition Problem,” Proc. 25th Annual ACM STOC’93, May
1993, PI). 288-293.

[26] N. Robertson and P. Seymour, “Graph Minors IV, Treewidth and Well-Quasi-Ordering”,
J. Comtlin. Theory Ser. B, 48, 1990, pp. 227-254.

[27] J. Valdes, R.E. Tarjan and E.L. Lawler, “The Recognition of Series-Parallel Digraphs”,
SIAM Journal on Computing, 11, 1982, pp. 1-12

[28] Q. Zhu, M. Parsa and W. Dai, “An Iterative Approach for Delay Bounded Minimum Steiner
Tree Construction,” Technical Report U C S C- C RL- 94- 39, University of California, Sant a
Cruz, Oct 1994.

12

Heuristic-U BSTP-2del
1
2
3
4

Let G' := bottleneck(G, d, 6).
Let G' have the connected components Cl, . . . , C,.
If r = 1, then output 8.
Construct an instance S C of Set Cover as follows:
Let the ground elements be C1,. . . ,Cr and for each v E V define the set S, := { Cj :
v E Cj or v is adjacent to C, via an edge of weight S/z }.

5 Find an approximate set cover S = {Svl,. . . , Svk} for the instance S C of Set Cover.
6 Initialize V' := { V I , . . . , vk} and V" := 8.
7 Construct an auxiliary graph G := (V'U{CI,. . . , CT}, E I U E ~) with edges (vi, Cj) E E1

iff vi E Cj or vi is adjacent to the component Cj via an edge of delay S/z and
(Ci,Cj) E E2 iff there is an edge between v E Ci and u E Cj in the graph G.
Let H be the subgraph of (G)3 induced by the vertices 01,. . . , vk.
Find a spanning tree TH of II.
For each edge e = (vi, vj) in TH do the following:

8
9

10
12
13

14 Output V'UV''.

If e was induced by a path (vi, Ci, Cp, vi) of length exactly three then
Choose an edge (u, w) such that u E Cr and w E Cp and (u, w} nV' has maximum
cardinality. If (u , w} n V' = 0 then V'' := V N U {u}.

Figure 3: Improved algorithm for U BSTP, when the delays are from the two element set (6, S/z}.

Appendix

A An Improved Approximation Algorithm for Unit Costs

In this section, we will show how to obtain an approximation algorithm for the case of unit
node costs with a performance guarantee of 4(2 + ln A). For A = o (f i) , this improves on the
performance of our algorithm for the general case. In particular, for the class of bounded-degree
graphs we obtain a constant factor approximation.

Recall that in the case of UBSTP the objective is to find an upgrading set of minimum
cardinality. We first consider the case, when all the delays on the edges are taken from the two
element set {6/x76}. Observe that this is equivalent to saying that a l l the delays are from the
interval [O,S/s], since the goal is to upgrade vertices such that there is a bottleneck spanning
tree of delay no more than S in the graph with the delays resulting from the upgrade.

The improved algorithm is depicted in Figure 3. Recall that the tth power Gt = (V, Et) of a
graph G contains an edge from u to v if and only if there is a path of length at most t edges in
G connecting u and V .

We now establish the performance of the algorithm, which is summarized in the following
theorem.

Theorem A.l Heuristic-UBSTP-2del is a polynomial time approximation algorithm for U BSTP
with performance guarantee of 2(l + In A), when all the delays are in the range (0, S/s], where A
is the maximum degree in the input graph G.

The proof relies on several lemmas presented below. Heuristic-U BSTP-2del clearly detects

13

I

'

the case, when no node needs to be upgraded (Step 3). Thus, for the rest of the analysis we will
restrict ourselves to the case, when the optimal solution contains at least one node.

Lemma A.2 Let C* be a minimum size set cover for the instance I' of Set Cover constructed in
step 4 of Heuristic-UBSTP-2del. Then IC*/ 5 OPT.

Proof: Let V* be an upgrading set in the original graph and let T* be a corresponding bottle-
neck spanning tree. We show that the sets s, with o E V* form a set cover for the instance 1'.
This will prove the claim of the lemma.

Consider an arbitrary cluster node Cj. Since G' = bottleneck(G, d, 6) contains more than
one connected component, it follows that in the tree T* there must be an edge (u, w) of delay
at most S with u E Cj and w # Cj. Since 'UI 4 Cj this edge must have had delay 6/s before the
upgrade. It follows that either u or w must have been upgraded. We have Cj E S, (because w
is connected to Cj via an edge of delay S/s) and Cj E S, (since u is contained in Cj). Thus, we
can conclude that Cj is covered by the sets S,, o E V*.

Observaticm A.3 The graph G and the subgraph H of (G)3 which is computed in Step 8 of the
algorithm are connected.

Proof: We first show that (G)3 is connected. Note that the clusters C1,. . . , C, are connected
since they merely partition the original vertices of G'. Each vertex o; E V' is connected to a
cluster Cj bly an edge since either v; E Cj or o; is adjacent to a vertex ok E Cj. Thus (G)3 is
connected.

Now consider H . Since V' forms a feasible dominating set in the graph (G), and by the fact
that (G) is connected it is easy to observe that H is connected.

Lemma A.4 The set V' U V'' output by Heuristic-UBSTP-2deI is a valid upgrading set in G.

Proof: We show that after upgrading the vertices in V' U V" there is a spanning tree T in G
(with the resulting delay function) of delay no more than S. To this end, define an edge-subgraph
GT of G in the following way: GT contains all the edges of G that have delay at most S (thus each
connected component Cj of the bottleneck graph G' will again be connected in GT). Moreover,
for each edge e E TH, where TH is the spanning tree of H computed in Step 9 of the algorithm,
add the corresponding edges of the path of length at most three in G, which induced e . Observe
that by construction of the sets V' and V" each of the edges in GT has delay at most 6. Using
the fact that H and G were connected and that TH was a spanning tree of B, it is now easy
to see that (7 ~ must also be connected. Consequently, there is a spanning tree of GT (and thus

Using the results of Lemma A.2, Observation A.3 and Lemma A.4, we can now complete the
also of the upgraded graph) that contains no edge of delay larger than S.

proof of Theorem A.l in the following way. By Lemma A.2, we know that

/V*/ = OPT 2 IC*/, (13)

where C* is an optimal set cover for the instance SC. Using known approximation techniques
for Set Cover (cf. [14]), we can find a set cover S in Step 5 of the algorithm Heuristic-UBSTP of
size at most

14

* . '

We now address the cardinality of the set VI'. The tree TH which is computed in Step 9 contains
lV'l- 1 edges. Since in the loop in Steps 10 to 14 for each edge in TH we add at most one vertex
to V", we have that lV"l 5 IV'l. Combining this result with (14) and (13), we obtain:

IV' U V"l 5 lV'l+ IV"l 5 2lV'l 5 2(1 +In A) - IC*l 5 2(1 +In A) - OPT

0

We now extend the result of Theorem A.l to the case where the edge delays are in the range
(0, S/x2]. Again, we can assu without loss of generality that the delays of the edges are taken
from the three element set { /z,S/z2}. We use OPT to denote the cardinality of an optimal
solution V* to I . We also use Heu to denote the solution obtained by the extended heuristic,
which will be called Heuristic-UBSTP in the sequel.

We give an informal description of the algorithm Heuristic-UBSTP. First, we construct the
bottleneck graph GN which contains all the edges of delay 6 and 6 / x . Let GN have the connected
components Cl, . . . , C,. We find an upgrading set and a spanning tree for each component using
algorithm Heuristic-UBSTP-2del. We then join these spanning trees using T - 1 edges each of
delay 6/z2. We upgrade both endpoints of each of these T - 1 edges. Denote the set of nodes
which are added to the solution in this final step by U6/,2.

Lemma A.5 For the size of an optimal solution and the number of vertices added in the final step
to join the clusters the following inequalities hold:

Proof: Let T* be a bottleneck spanning tree in the graph resulting from the upgrade of the
vertices in the optimum set V*. Since there are T connected components C1,. . . ,C, in the
bottleneck graph bottleneck(G,d,S/z), T* contains at least T - 1 edges of original delay 6/x2
having endpoints in different components. For each of these edges, both endpoints must belong
to OPT, which implies that IOPTl 2 T . This proves the first inequality in (15).

On the other hand, the heuristic sketched above joins the T connected components by T - 1
0

We are now ready to establish the performance of the extended algorithm Heuristic-UBSTP.
edges and chooses both the end points of each edge. Thus, lU6,,2\ 5 2 (~ - 1).

Theorem A.6 Heuristic-UBSTP is a polynomial time approximation algorithm for UBSTP with
performance guarantee of 4(2 + In A).

Proof: Again, let T* be a bottleneck spanning tree in the graph resulting from the upgrade of
the vertices in the optimal upgrading set V*. Let OPT; be the minimum number of nodes which
must be upgraded in cluster Ci to make it contain a spanning tree of delay at most 6. Consider
the intersection of OPT with the cluster C;. We have the following claim.

In fact, let V* n C; = y'. We first prove that, after upgrading the nodes in %', each node in
C; - <' is connected to at least one node from 5' via paths in C; containing edges of delay no
more than 6. Assume that this is not the case. Then there is a node o E Ci - %I, whose unique
path in T* to any node in v,l contains at least one edge of original delay S/z2. Fix w E and
consider the path (TI = uo, u1,. . . , uk = w) from z1 to w in in T*. Without loss of generality, we
can assume that this path does not contain any node from y' different from w. Let 4 be the

15

smallest number such that (ut, ut+l) has original delay S/z2. As v e y', we have 1 2 1. Since
after the upgrade T* contains only edges of delay at most S, we see that both nodes ut and ut+l
belong to y' contradicting the fact that the path did not contain any other node from y' other
than w.

We have seen that after upgrading the nodes in 5' the cluster Ci restricted to the edges
of delay at most S contains at most Iy'l connected components. It is now easy to see that
upgrading ah most one more node from each of these components will make Ci connected by
edges of delay at most S. Thus, there is a,n upgrading set in Ci of size at most twice the size of
T$', which proves (16).

We know by Theorem A.l that the algorithm Heuristic-UBSTP-2del finds a solution for each
cluster whose value is bounded from above by 2(1 + InA;)OPTi, where Ai is the maximum
degree in the subgraph of G induced by Ci. Since the clusters are disjoint we have that

Thus, using additionally Lemma A.5, the cardinality of the solution set generated by our algo-
rithm can be estimated as follows:

7

Heu 5 2(r - 1) + 2(1 + In A;)OPT;
i=l

T

5 2 (~ - 1) + 2(1+ In A) c OPTi
i=l (z) 4 (~ - 1) + 4(1 +In A) - OPT

Lemma A.5
5 4(2 + 1nA) - OPT - 4.

B The Link Delay Problem
In this section we briefly treat a related problem to BSTP which has been defined by Paik and
Sahni in [24] and which is called the Link: Delay Problem. Given a weighted graph as for BSTP,
one searches again for a minimum cost upgrading set, but this time subject to the constraint
that upgrading those vertices will reduce the delay of all links in the network to S instead of
just those in a minimum bottleneck spanning tree.

Paik and Sahni showed in [24] that LinkDelay is NP-hard by providing a reduction from
Vertex Coveir ([GTl] in [12]). In this section we give a simple polynomial time approximation
algorithm for LinkDelay with a performance of 2. The heuristic is shown in Figure 4 on the
following page. The following theorem states the approximation result:

Theorem 13.1 For any instance of LinkDelay the algorithm Heuristic-LinkDelay either provides'a
set V' such that upgrading the vertices in V' will result in a link delay of at most 6 and the cost
cost(V') of the solution produces is at most twice the optimum upgrading cost or it correctly informs
that there is no upgrading set yielding a link delay of at most 6.

16

Heuristic-LinkDelay
1 If d(e) > -$ for some e E E then output "The link delay cannot be reduced to be at

most 6" and stop.
2 Let ~ 1 : = { e E E : d(e) > :}.
3 Set V' := {u,v : (u,v) E El}.
4 For all e E E - El such that e is incident on some node in V', set d (e) := x&(e).
5 Let E' := { e E E - E1 : d(e) > 6).
6 Compute a Zapproximation C to the problem of finding a minimum total cost vertex

cover in the graph G' = (V, E') (see [12]).
7 output V' u c.

Figure 4: Approximation algorithm for the Link Delay Problem.

Proof: Let V* be an upgrading set of minimum cost. Clearly, the set V' computed in Step 3
of the algorithm must be contained in V*. It is also easy to see that V* - V' must be a vertex
cover in the graph G' as defined in Step 6 of the algorithm. Thus, the cost of the nodes in
V* - V' is at least that of the optimum vertex cover in G'. The proof can now be completed in

Moreover, the proof of Theorem B.l shows also that, if we can compute a minimum cost
vertex cover in G' efficiently, i.e. in polynomial time, then this result immediately carries over
to LinkDelay. Thus, by the results in [4], we can conclude:

a straightforward manner. a

Corollary B.2 The restriction of LinkDelay to graphs of bounded treewidth can be solved in
polynomial time.

__ _ _ _ _

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

