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New VLSI Complexity Results for 
Threshold Gate COMPARISON 

Valeriu Beiu * 
Los Alamos National Laboratory, Division NIS-1 

Los Alamos, New Mexico 87545, USA 

Abstract- The paper overviews recent developments con- 
cerning optimal (from the point of view of size and depth) 
implementations of COMPARISON using threshold gates. We 
detail a class of solutions which also covers another particu- 
lar solution, and spans from constant to logarithmic depths. 
These circuit complexity results are supplemented by fresh 
VLSI complexity results having applications to hardware 
implementations of neural networks and to VLSI-friendly 
learning algorithms. In order to estimate the area (A) and 
the delay (n, as well as the classical A?, we shall use the 
following ‘cost functions’: (i) the connectivity (i.e., sum of 
fan-ins) and the number-of-bits for representing the weights 
and thresholds are used as closer approximations of the 
area; while (ii) thefan-ins and the length of the wires are 
used for closer estimates of the delay. Such approximations 
allow us to compare the different solutions -which present 
very interesting fan-in dependent depth-size and area-delay 
tradeoffs - with respect to A?. 

Keywords- Threshold gates, COMPARISON, VLSI com- 
plexity, circuit complexity. 

I. INTRODUCTION 
N this paper we shall consider feedfonvard neural net- I works (NNsj made of linear threshold gates (TGsj. A 

neuron (i.e., linear TG) will compute a Boolean function 
(BF)f: {O, {O,  l ) ,  where the input vector is 

and 

with the synaptic weights w, EIR, 0 EIR known as the 
threshold, and sgn the sign function. The cost functions 
commonly associated to a NN are depth (Le., number of 
edges on the longest input to output path, or number of 
layersj and size (i.e., number of neurons). 
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The focus of this paper will be on NNs for computing 
COMPARISON. There are at least two reasons why COM- 
PARISON is an interesting BF. The first one is that the re- 
sults obtained for COMPARISON can be immediately 
extended to ADDITION (as the same BFs are used to com- 
pute the carries), and thus could lead to faster and/or 
smaller ADDERS (see [8,9, 121 and the references therein). 
The second one is that COMPARISON is a particular Fn,m 
function (functions of n inputs, having m groups of ones 
in their truth table [26]), namely it is a subclass of F,, 
thus, potentially improving on the implementation of a 
larger class of functigns -which has links with decision 
trees [24] and some constructive learning algorithms [6, 
10, 151. 

II. PREVIOUS F&SULTS 
Suppose that X=x,,x, ,... x,x, and  Y=y,,-ly,,+..y,y~, 

are two binary numbers (integers) of n bits each. The 
COMPARISON of the two numbers is defined as: 

the two BFs being isobaric (i.e., BFs which can be impie- 
mented by TGs >having identical weights, but different 
thresholds as  C; (X,  Y) = C t  ( X +  1 ,  Y) = C l  (X ,  Y -  1). 
It is known from previous work that COMPARISON cannot 
be computed by a single TG with polynomially bounded 
integer weights, but it can be computed by a single TG 
with exponentially large weights [28, 301. In [2] a depth-:! 
NN with 0 (n4) TGs and polynornially bounded weights 
has been detailed. This result has been lately improved in 
several successive steps. The most important ones are 
shortly presented in the following four propositions. 

Proposition 1 (Theorem 6 from [29]) The COMPARISON 
function can be computed in a depth3 neural network 
of size 3n with polynomially bounded integer weights. 

This constructive solution (we shall call it SRK) has a 
first layer of n AND gates computing X,A?~ , and n OR gates 
computing xivTi ,  followed by a layer of n-1 AND gates: 



and a third layer having one OR gate: 

The depth-3 NN has: 

size,,, = 311 - 1. 

with fan-in 5 n, thresholds 5 n. and all the weights _+1. 

Proposition 2 (Lemma 1 from [7]) The computation of 
COhfPARlSON of two n-bit numbers can be realised by a 
A-aq, tree of size 0 (n /A) and depth O(logn / IogA) for 
nny integer fan-in 2 2 A I n. 

Proposition 3 (Theorem 1 from [7]) The COMPARISON 
of two n-bit numbers can be computed by a A-ary tree 
neural network with polynomially bounded (5 nk) inte- 
ger weights and thresholds of size 0 ( n / A )  and depth 
O(logn / logA) for any integer fan-in 3 5 A I clogn. 

This constructive class of solutions (we shall call them 
B-A), firstly proposed in [4, 51, is based on decomposing 
COMPARISON in a tree like structure. The network has a 
first layer of 'partial' COMPARISONS c,' and c: (LA/21 
bits' from X and LA/2J bits from Y) followed by a A-ary 
tree of TGs combining these partial results. The fact that 
the BFs implemented by the nodes are linear separable 
functions was firstly proven in [4, 51 and will appear also 
in [12]. The network has: 

and 

with fan- inIA (the TGs from the first layer have 
fan-in = A, while all the other TGs havefan-in = A - l) ,  
and weights and thresholds S 2 ' I 2  for any integer value 
of the fan-in in the range 3 I A 5 n. 

If the fan-in is logarithmically bounded, the weights 
and the thresholds are polynomially bounded - this be- 
ing the most interesting case. Forfan-ins larger than the 
logarithm of the number of inputs, the weights and the 
thresholds are super-polynomial, while forfan-ins which 
are (almost) linear, the weights and the thresholds are ex- 
ponential in the number of inputs. 

Proposition 4 (Theorem 3 from [27]) The size com- 
plexity of COMPARlSON implemented by generalized sjm- 
metric functions is 0 (n / logn). 

' In [his paper M is the floor of x, Le. the largest integer less than or 
equal to x ,  and Txl is the ceiling of x, i.e. the smallest integer greater 
or equal to x. 
In this paper all the logarithms are to the base 2. 

This constructive solution (we shall call i t  ROS) has a 
first laye: of 'partial' COMI?;~RISONS C, (equivalent to 
CL) and Ci (equivalent to C,) having m = rlognl+ I in- 
put bits from X and m input bits from Y. The first layer 
has 2 rn/ml- 1 TGs offin-in = 2m. The second layer has 
Tdrnl - 1 AND gates with fan-in = 2,3,  . . . , r d m l :  

The third layer has just one OR gate: 

c' ( X  y) = v fd!"l 
n *  k 1  4 

with fan-in = r d m l .  This deprh-3 NN has: 

n size,,, = 3 I 1 - 1, rlognl+ 1 
with 

fun-in,, I n l  I riogni+ 1 I 
and weights and thresholds lower than 2 r'ogn'. 

Proposition 5 (Corollary 2 from [32]) The COIwfARI- 
SON can be computed by a depth-2 linear threshold ner- 
work of size 2 rn /re& 11, with weight values at most 
2ryz1 and with an dpper bound of 2f&1+ 1 for the 
maximum fan-in. 

This constructive solution (we shall call it VCB) has a 
first layer of 'partial' COMPARISONS (r& 1 bits from Xand 
r&l bits from Y), and the second layer computes the 
carry-out of the 2-1 binary ADDITION with carry. The so- 
lution does not seem very attractive as it has exponentially 
growing weights. The complexity results of VCB are prac- 
tically identical to those of a particular B-A solution: tak- 
ing A = 2 r& 1, which leads to B-2 rGl , the resulting NN 
has depth = 2, size = r2& 1, with weights and thresholds 
of at most 2rG'. 

For normal length COMPARISONS Vassiliadis et a[. [32] 
claim improvements over ROS [27], but they do not men- 
tion [4, 51. That is why we present in Table I the same 
results reported in [321, and the results of B-A for the par- 
ticular cases considered there. It can be seen that both VCB 
and 8-A achieve better performances than S R K  and ROS. 
For depth = 2, B-2rC1 outperforms VCB both for 32-bit 
and for 64-bit operand lengths (the best results are 
bolded). For depth = 3, B-A, which has lower weights and 
fan-ins than VCB, has (slightly) more gates. Still, f3-A has 
two main advantages: (i) being a class of solutions one 
can also use it for other depths (an example for the case 
when depth = 4 can be seen in the last column of Table 
I); (ii) as the weights and thefan-ins are lower than those 
of VCB, the area of the final implementation should also 
be lower (see the discussions from Section 111). 

The exact size and depth of these solutions have been 
computed and are plotted in Fig. 1. 



T.ABLE I 
SIZE, WEIGHTS AND FAN-IXS FOR SOME OPERANDLEXGTHS. 

111. LINKS TO VLSI COMPLEXITY 
The classical depth and size measures used in Section 

11, can be linked to the delay ( T -  deprh) and the area 
(A - size) of a VLSI chip. It is known that a VLSI design 
is considered optimum when judged on a combined meas- 
ure [31]: AT , thus leading to size x depth ’. By substitut- 
ing the previous results we get: 

2 

= 0 (n)  2 ( 3 n - l ) ~ 3  

14‘”- l ) i x r  logn l 2  = o(nlog2n: 
A - 2  10gA-1 AlogA 1 

Exact A T 2  values have been computed and are plotted in 
Fig. 2. 

‘4. Area 
The results presented in Fig.2 are quite far from any 

practical implementation. This can easily be explained be- 
cause: “comparing the number of nodes is inadequate for 
comparing the complexity of neural networks as the nodes 
themselves could implement quite complex firnctions ‘’ 
[34]. 

For VLSI this is due to the following facts: 
the area of one neuron can be related to its associated 

the area of the connections is completely neglected. 
That is why the size complexity measure is not the best 

criteria for ranking different solutions when going for sili- 
con [SI. Other different measures (or ‘cost functions’) 
have already been used: 

the total number-of-connections or gan-ins has 
been used by several authors [ l ,  19, 22, 251; 
the total number-of-bits needed to represent the 
weights and the thresholds c(c riog I wi 11 +[log I e 11 ) 
has been used by_others [17, 18, 341; 

0 the sum of all th’e absolute values of the weights and 
rhresholds x(2 I )vi 1 + 1 e I ) has also been advocated [7, 
8, 161. 

The sum of all the absolute values of the weights and 
thresholds has been used as an optimum criterion for: (i) 
linear programming synthesis [23]; (ii) defining the mini- 
mum-integer TG realisation of a function [20]. Very re- 
cently [3], the same measure (under the name of “toral 
weight magnitude”) has been used in the context of com- 
putational learning theory applied to neural learning for 
pattern classification problems. By using it, several 
bounds which improve the standard VC-theory bounds 
have been proved ! 

weights; and also 

, I 
0 ‘  

200 400 MXI 800 loo0 12w (b) O n 

Fig. 1. Several known solutions for COMPARISON: (a) size and (b) depth. Because n = 1024 6-2 fC1 is in fact 6-64 (equivalent to VCB). 
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Fig. 2. AT’ complexity of COMPARISON as size x deprh ’: (a) for severai solutions; and (b) detail (here 8-64 is equivalent to VCB). 

Finally, another quite similar ’definition of complexity’ 
is x(x 1“: + 0’) which has been used in the context of ge- 
netic programming for reaching ’minimal’ neural net- 
works [36]. 

All the above mentioned ’cost functions’ have links to 
VLSI by the assumptions one makes on how the area of 
a chip scales with the weights and the thresholds [S, 161. 
Here are several of the most common alternatives: 

for purely digital implementation the area scales at 
least with the cumulative size of the weights and 
thresholds, as the bits for representing the weights 
and the thresholds have to be stored; 
for certain types of analog implementations (e.g., us- 
ing resistors or capacitors) the same type of scaling 
is valid (although it is possible, in some particular 
cases, to come up with analog implementations 
which have binary encoding of the parameters - for 
which the area would scale at least with the cumula- 
tive log-scale size of the parameters); 
there are some types of implementations (e.g., tran- 
sconductance ones) which offer a constant size per 
element, thus in principle scaling only with the num- 
ber of parameters (i.e., with Cfb.n-ins as the total 
number-of-connections). 
is worth emDhasising that it is anvhow desirabie to c 

limit the range of parameter values [35] for VLSI imple- 
mentations -be they digital or analog- because: 

the maximum value of the fan-in [33] and 
the maximal ratio between the largest and the small- 
est weighf cannot grow over a certain (technological) 
limit. 

The first normal extension of the circuit complexity re- 
sults (presented in Section 11) towards VLSI complexity 
ones is by cioser estimates of the area (instead of the ob- 
vious area = size). Based on the arguments given above 
(for the different estimations of the area), the following 
two propositions can be stated. 

Proposition 6 (this paper) If the area of a neural net- 
work is estimated as Cfan-ins, the computation of COM- 
PARISON yf two n-bit numbers occupies between 0 ( t i )  
and 0 (n-) area: 

n2+ l l n - 6  
2 = = 0 (n’) 

” 

Proof The S R K  solution has a first layer of n AND gates 
and n OR gates (in fact only n -  1 as the OR gate com- 
puting is not used) of fan-in = 2. The second layer 
has n - 1 AND gates with fan-in = 2, 3, . . . n. The output 
layer has one OR pate of fan-in=n. These lead to: 

n2+ 11n-6 
2 AsRK = 2(2n-1 )+(2+3+  ... n)+n  = 

For the class 6-4 the first layer has 2 r k 1  TGs of 
fan-in = A  (here again, one TG is not used). All the other 
TGs have fan-in = A - 1. Using eq. (1) and (2) we have: 

and by keeping only the additive terms the result follows. 
Finally, for ROS we use a similar counting argument. 

We remember that m = riognl+ 1 (Proposition 4). The 
first layer has 2 rdml-  1 TGs of fan-in = 2m. The last 
two of the TGs might also have a lower fan-in due to the 
fact that n might not be a multiple of m. Their fan-in can 
be computed by subtracting the fan-ins of all the other 



TGs from the first layer from the number of inputs 211: 
,,2zn-in = 2 (n  - m Ldm]). The second layer has [n/mi - 1 
AND sates with fan-in = 2, 3,  . . . , rdml . The third layer 
has just  one OR gate with fan-in = rrz/mi . It follows that: 

After substituting m and neglecting the subtractive terms 

Proposition 7 (this paper) r f  the area of a neural net- 
work is estimated as C(C I \vi I + I e I ), the computation of 
COMPARISON 04 two n-bit numbers occupies between 
0 (n )  and 0 (n-) area: 

the proof is concluded. a 

2 2n + 1 5 n - 9  
2 = = o (2) 

2A/2 

A 
8nA - 6n - 5A 

A - 2  AB-* -. 

Proof The SRK solution has all the weights k 1  which 
makes: 

n2+ I l n - 6  C C I w; I = Cfan-ins = 

As there is an infinity of solutions, we shall take average 
values for the thresholds: -k + 0.5 for a k-input AND, and 
-0.5 for a k-input OR. We do remember that: in the first 
layer there are n AND ga te s  and n -  1 OR gates of 
fan-in = 2;  the second layer has n-1 AND gates with 
fan-in = 2, 3,  ... n; the output layer has one OR gate of 
fun-in = n. The sum of the absolute thresholds can now 
be easily computed as: 

and hence 

2n2 - 15n - 9 
3 A,,, = (I wi I + I e I) = 

rY.V i 
i. 

For computing the area of the B-A class we rely on the 
proof that the BFs implemented by the nodes of the A-ary 
tree are linear separable functions. The proof is based on 
a recursive version of the BFs implemented by the nodes 
and determines the weights and the thresholds construc- 

tively by induction on the value of thefan-in. The proof 
is not technically involved but is quite long; a first sketch 
has appeared in [4, 51, while the full proof can be found 
as Lemma 2 (together with Corollary I )  in [7, 121. We 
shall only use the fact that the weights of a TG-node have 
already been determined to be: 1, -1, 2, -3, 2, -5, 5, ... . 
-5.2’, 5.2’, ... , -5.2m-4 , J  q.2m-4. It is now straightfor- 
ward to compute: (i) first, the area of one TG; (ii) second. 
the area of the first layer of the A-ary tree; and (iii) third, 
the area of the subsequent layers. By adding the area of 
the first layer to that of the subsequent layers, we shall 
obtain the total area of the NN (A-ary tree). 

The first layer has [2n/(A/2)] - 1 z 4n/A TGs of: 

urea each, such that the first layer will occupy: 

All the other layers have size, A - (4n /A) TGs, each o f  

5 (2*” - 1) 
4 

UTG = (1+1+2+3+2) + 10 c ;; 2 = 9 + - 
urea (see the wcighjs of a TG-node mentioned above). 
The arm of all the subsequent layers will be: 

5 (2n-A) . 2 %  A,, = arc [size,-& - (4n /A)] z 
A (A-2) 

’ 

which leads to: 
ZAI2 8nA-6n-56  

Asq = A ,  + A,, < -. 
A A - 2  

Turning now to ROS, we start from Proposition 6 and 
replace thefan-in of each TG from the first layer by: 

(3) 

as the threshold of these TGs can be taken 0. We remem- 
ber  that  m=rlognl+ 1, and that the  first layer has 
2 rdml-  1 TGs (see Proposition 6 for the two TGs hav- 
ing a lower fan-in); the second layer has rdml -  1 AND 
gates with fan-in = 2, 3,  . . . , rdml ; and the third layer 
has one OR gate with fan-in = fdrn]. Using the corre- 
sponding thresholds for the AND and OR gates, it follows 
that: 

Now, substitute m and arc(i) as given by eq. (3), and 
0 working on this expression the result follows. 



B. Delay we have: 
With respect to delay, two VLSI models have been 

@ the capacitive one assumes that the delay is propor- 
tional to the total capacitance, hence a TG introduces 
a delay proportional to its fan-in; 
the diffusion one assumes a distributed resistance and 
capacitance along any wire, hence the delay fo r  
propagating a signal from one TG to another is pro- 
portional to the length of the connecting wire. 

The second extension of the circuit complexity results 
(presented in Section 11) towards VLSI complexity ones 
is by closer estimates of the delay (instead of the obvious 
delay = depth). For the two different approximations of 
the delay suggested, the following two propositions can 
be stated. 

commonly in use [3 I]: 

Proposition 8 (this paper) If rhe delay of one neuron 
is proportional to its fan-in, the neural network com- 
puting the COMPARISON of two n-bit numbers requires 
between 0 (logn) and 0 (n)  time: 

T,,, = 2n+2 = 0 (n)  

Proof The SRK solution has fan-in = 2 TGs in the first 
layer; the second layer has fan-in = 2,3, ... n TGs, thus 
the delay of this layer will be n (as it is determined by 
the largest fan-in); the third layer has one fan-in = n 
TG. The overall delay is: 

TsRK = 2 + n + n  = 2 n + 2 .  

For the 6-A class of solutions, the TGs from the first 
layer have fan-in = A ,  while all the subsequent layers 
have TGs with fan-in = A - 1 .  As there are deprh layers, 

TBg = A + (depth- I )  ( A -  1) 

and substituting depth as given by eq. (I), the result fol- 
lows. 

For ROS the first layer has fan-in = 2m TGs (remember 
that m = rlognl + 1); the second layer adds Tdml to the 
delay, as having gates with fan-in = 2,3,  . . . , rdml ; the 
third layer has just one gate with fan-in = rdml . It fol- 
lows that: 

T,,, = 2m+rdrnl+rdrnl = 2m+2rn/ml 

and by substituting m the proof is concluded. c3 

Proposition 9 (this paper) r f  rhe defay in a neural ner- 
work is proportional to the length of the wires, the neu- 
ral network computing the COMPARISON of two n-bit 
numbers requires 0 ( T Z )  time: 

TsRK = (3n - 1) / 2 ,  TBp < n, TRos < n . 
Proof For computing the lengrh of the wires one has 
to know the position of the TG on a 2-dimensional grid. 
We make here the simplest assumption: namely, that the 
implementation keeps the 3-layer structure of the feed- 
forward NNs. The inputs are all on only one side of 
width 2n- 1.  Clearfy, it  is possible to reduce the 
delay by placing the inputs on all four sides of a chip, 
but this involves only constant factors (which are very 
important in practise !). We shall also assume that the 
layers are ‘centered’ on top of each others. 

For SRK, the lowest value is obtained by centering the 
second layer on B,. The delay will be: 1 from inputs to 
the first layer; (2n - 3) / 2 from the first layer to the sec- 
ond (due to the width of 2n - I); n / 2 from the second 
layer to the output. The result follows. 

Both for B-A and for ROS, if the layers are properly 
centered, only the signal from the most (or least) signifi- 

POS 8-64 I 

i 

Fig. 3. A T  * complexity of COMPANSON if the area is A = urn-ins,  and the delay is estimated as: (a) T- deprh; or (b) T=fan-bi (for 
n = 1024, 8-64 is equivalent to VCB). 



Fig. 4. AT2 complexity O f  COMPARISON if the area is A = C ( CIw,i + lel), and the delay is estimated as: (a) T =  depth; or (b) T oc fil11--1)2. 

cant bit has to travel to the ‘centre’, thus the delay being 
0 

For the different estimations of A and T given by Propo- 
sitions 6-9, exact simulation have been performed. The 
results -for the different solutions presented- of these 
simulations are shown in Figs. 3-5. These closer approxi- 
mations of A? (than size x depth2) support the claim that 
“small constant fan-in digital NNs are VUI-optimal” 
[ 111: see the circle plots in Figs. 3(b), 4 and 5 which show 
that the A? are minimized by 8-4, 8-6 or 8-7. 

(2n - 1) / 2 and the proof is concluded. 

Iv. CONCLUSIONS AND OPEN PROBLEMS 

The paper has focused on TG implementations of COM- 
PARISON. Four recent constructive solutions have been 
presented and their size and depth complexity discussed. 
Using different cost functions -which are closer esti- 
mates for the area and the delay of a VLSI chip- the 
same solutions have been analysed and compared with re- 
spect to their VLSI complexity: area, delay and the com- 

x 10 
i 

SRK ROS 5-16 I 

6w 8W 1wo 1200 “ 

2 bined AT measure. The main conclusions of relevance 
to VLSI designers are that: 

the VLSI-optimal solutions are not the size-optimal 

there exist quite interesting fan-in dependent trade- 

the A?-optimabolutions are obtained for small con- 

FutuFe work should concentrate on: 
extending these results to Fn.,, and to direct synthesis 
(e.g., using some constructive algorithms); 

0 linking these results with the entropy of the data-set 
(for classification problems) and with principles like 
the ‘Occam’s razor’ andor the ‘minimum description 
length’ (see also [3]); 
finding closer estimates (Le., cost functions) for op- 
timal mixed analogue/digital implementations. 

Preliminary results on these lines can be found in [6 ,  13. 
141. 

ones; 

offs for depth-size and area-delay; 

stant fan-in valtes. 

V’’ 

N c 

Fig. 5. AT * complexity of COMPARISON as (x(xlw,l+ lel)) x length’: (a) complexity trend; and (b) normal lengths operands (for 
I I  = 128. 8-24 is equivalent to VCB). 
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