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MODELING COMPACTION-INDUCED 
ENERGY DISSIPATION OF GRANULAR HMX * 

K. A. Gonthier t 
Lamar University 
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R. Menikoff, S. F. Son and B. W. Asay 
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A thermodynamically consistent model is developed for the compaction of granular solids. 
The model is an extension of the single phase limit of two-phase continuum models used 
to describe Deflagration-to-Detonation Transition (DDT) experiments. Our focus is on 
the energetics and dissipation of the compaction process. Changes in volume fraction are 
partitioned into reversible and irreversible components. Unlike conventional DDT models, 
the model is applicable from the quasi-static to dynamic compaction regimes for elastic, 
plastic, or brittle materials. When applied to the compaction of granular HMX (a brittle 
material), the model predicts results commensurate with experiments including stress re- 
laxation, hysteresis, and energy dissipation. The model provides a suitable starting point 
for the development of thermal energy localization sub-scale models based on compaction- 
induced dissipation. 

INTRODUCTION 

Two-phase continuum models have been widely used 
to simulate Deflagration-to-Detonation Transition 
(DDT) in energetic granular solids [l, 2, 31. Of this 
class of models, the Baer-Nunziato (BN) model [2, 41 
is the most developed. It is based on mixture theory 
and is thermodynamically compatible. We adopt the 
framework of the BN model as a basis for analyzing 
compaction energetics in granular HMX. This work 
is motivated by the fact that compaction work is a 
dominant mechanism for hot-spot formation and thus 
plays a critical role in the weak initiation of DDT. 

Changes in the internal energy of a granular solid 
due to compaction can be divided into two compo- 
nents: 1) an irreversible component which increases 
the thermal energy of the pure solid; and 2) a re- 
versible component which is stored as recoverable en- 
ergy. The recoverable energy enters the BN model as 
a potential in the Helmholtz free energy, and does not 
contribute to the thermal energy of the pure solid. 

In the BN-model, the irreversible component is 
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rate dependent and the reversible component is rate 
independent. In particular, all of the compaction en- 
ergy for quasi-static compaction is predicted to be 
recoverable. This is at odds with quasi-static com- 
paction experiments [5] for granular HMX which dis- 
play a large hysteresis effect and imply that rate- 
independent compaction is mostly irreversible and 
thus thermal in nature. Moreover, the compaction 
potential of the BN model exceeds all plausible physi- 
cal energy storage mechanisms; e.g., recoverable shear 
strain energy. For dynamic compaction waves, the re- 
coverable energy can be a significant fraction of the 
total compaction energy, though smaller than the dis- 
sipated energy. 

In practice, contrary to the thermodynamic-based 
derivation of the BN model, computer code imple- 
mentations of the model treat rate-independent com- 
paction energy as thermal energy. The variation of 
the BN model formulated by Powers et  al. (PSK) also 
thermalizes compaction energy. 

In this work, we extend the thermodynamic for- 
mulation of the BN model to account for the hys- 
teresis and stress relaxation observed in quasi-static 
compaction experiments. The main idea of this work 



is to partition the volume fraction into elastic and in- 
elastic components, and to then use this additional 
degree of freedom to obtain a better ansatz for the 
free energy. The extension is analogous to the for- 
mulation of models for elastic-plastic flow with work 
hardening. Our treatment of compaction is however 
much simpler than elastic-plastic flow because it is in 
the context of a hydrodynamic model in which the 
stress is a scalar rather than a tensor. 

The following is an outline of the paper. First, 
we modify the free energy potential for the granu- 
lar solid based on the partitioning of volume fraction, 
and propose an evolution equation for the inelastic 
component of volume fraction. Next, the dynamic 
compaction equations of the model are given and are 
shown to be consistent with the entropy inequality. 
Finally, the compaction energetics of granular HMX 
is described within the context of our model. This 
work is only the first step in developing an improved 
burn model that properly accounts for the energet- 
ics in a compaction wave. It also provides a ther- 
modynamically consistent rationale for the computer 
implementation of the BN-model in practice, and for 
the PSK model. 

FREE ENERGY 

We focus on the solid phase of a granular material. 
In continuum hydrodynamic models, the thermody- 
namic state is characterized by a bulk (average) den- 
sity p,  bulk temperature T ,  and a solid volume frac- 
tion 4. For a densely packed granular solid, the initial 
porosity, 1 - 4, is approximately 30%. 

The BN-model is based on the principle of phase 
separation and in effect assumes the Helmholtz free 
energy is of the form [4] 

where V = l /p  is the specific volume of the gran- 
ular solid, 9, is the free energy of the pure solid, 
V, = l / p s  = #JV is the specific volume of the pure 
solid, and B is a potential for the compaction energy. 
The thermodynamic conjugate force to q5 is called the 
configuration pressure p, and is defined by 

Here, p can be interpreted as the average pressure 
resulting from the contact forces between grains, and 
thus models material strength within the context of 
a continuum fluid-like model. In order for the con- 
figuration pressure to be positive and monotonic, we 

require the compaction potential to be a convex func- 
tion. In practice, ,B is measured in quasi-static com- 
paction experiments and B is obtained by integrating 
p; Le., B(#J) = sb L! d#J. 

The form of the Gee energy determines the effec- 
tive pressure of the material 
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The equilibrium volume fraction, determined by min- 
imizing the free energy with respect to 4, corresponds 
to the condition for pressure equilibrium P, = p. The 
compaction law used in the BN-model 

(4) 

amounts to a relaxation equation for pressure equi- 
librium because of the stiff dependence of the solid 
pressure P, on its density p, = p/#J. The parameter 
pC has dimensions of dynamic viscosity (kg/m.s), and 
characterizes the relaxation time. 

Thermodynamic consistency requires that the ma- 
terial specific energy is given by [4] 

(5) 

where e, is the specific energy of the pure solid. Con- 
sequently, within the formulation of the BN-model, 
the energy associated with changes in volume fraction 
due to quasi-static compaction is reversible. How- 
ever, quasi-static compaction experiments [5] display 
a large hysteresis effect. In particular, when a sample 
of granular material is compacted to low porosity and 
then unloaded, 4 does not return to its initial value. 
This is indicative of substantial irreversibility. More- 
over, the experimental value of the quasi-static com- 
paction energy needed to completely squeeze out the 
pores (i. e., s:o 6 d#J) is for HMX on the order of 5 J/g. 
The maximum energy associated with shear strain is 
determined by the yield strength and the shear modu- 
lus and is less than 1 J/g. Since the quasi-static com- 
paction energy exceeds the amount of energy that can 
be stored as a potential, most of the compaction en- 
ergy must be dissipated as heat. Both sliding friction 
between grains and plastic work are likely dissipative 
mechanisms in the compaction process. 

Code implementations of the BN-model use for 
the pressure P = 4Ps (V,, e ) .  This corresponds to 
the material specific energy being e = e, without the 
compaction potential in Eq. (5). In the regime where 
compaction is of interest, the pure solid equation of 
state is very stiff and thus the pressure is dominated 
by small changes in the density. Consequently, the 



compaction energetics has only a small effect on the 
mechanical behavior of a compaction wave [4]. Fur- 
thermore, the bulk temperature rise in a compaction 
wave is small and reaction rates are empirically fit to 
depend mainly on the pressure which is insensitive to 
the treatment of compaction energy. The energetics 
of a compaction wave will however be important for 
developing improved burn models. 

In order to reconcile the quasi-static compaction 
experiments with the model, the free energy must be 
modified. Compaction experiments show that load- 
ing leads to a change in grain morphology; grains can 
fracture, distort plastically and rearrange their posi- 
tions leading to a lower stress-free porosity. This mo- 
tivates introducing an additional variable $ to char- 
acterize the no-load volume fraction. In analogy with 
elastic-plastic theory [6], we shall interpret $ as repre- 
senting the inelastic, or irreversible, component of the 
volume fraction and - $ as representing the elastic, 
or reversible, component of the volume fraction. 

As an ansatz we assume that the compaction po- 
tential depends only on the elastic component of the 
volume fraction. This leads to a modified free energy 
of the form 

w 7 , 4 , &  = *S(VS,T) + q 4  - 4) . (6) 

$. We assume that 

This form for 5 can be interpreted analogously to the 
dynamics of plastic strain for rate-dependent elastic- 
plastic flow. The function f($) represents the yield 
surface for the inelastic volume fraction and the de- 
pendence of the yield surface on 4 represents work 
hardening. The parameter f i  characterizes the relax- 
ation time for $ to return to the yield surface. 

In the elastic regime, $ 5 4 < f - ’ ( 4 ) ,  d$/dt = 0 
and the pressure equilibrium condition is as before, 
P, = p = pB’(4 - J), except that the configuration 
pressure now depends on both 4 and $. The dynam- 
ics constrain $ to be non-decreasing in the inelastic 
regime. Consequently, from Eq. (9) the entropy can 
only increase as $ evolves. Moreover, we see from 
Eq. (8) that increasing $ has the effect of transfer- 
ring compaction potential energy to thermal energy. 
The energetics implemented in codes, namely e = e,, 
correspond to f(4) = 4 in the limit that f i  + 0. The 
limit of zero relaxation time for the return to the yield 
surface is analogous to rate-independent plasticity. 

We define the conjugate thermodynamic force to 6 to 
be 

j+p?$ I ’ 4  V S , T , ~  
Here, p is the analog of a “plastic” stress. Since B 
depends only on the elastic volume fraction, it follows 
from Eq. (2) that 6 = 0. In addition, the specific 
energy of the material depends on the elastic volume 
fraction rather than the total volume fraction, Le.,  

e = e,(K,T) + ~ ( 4  - $) . (8 )  

Later we will check that our modification to the model 
satisfies the entropy inequality. Here we note that the 
differential form of the fundamental thermodynamic 
relation is given by 

Tdq = PdV + d e  + (P, - p)Vd4 + pVd$, (9) 

where q = - ( d / d T ) q  is the entropy. It is important 
to note that 7 = q,(V,,T); thus, the material specific 
entropy is identical to the entropy of the pure solid. 
Terms in the thermodynamic relation proportional to 
p are a consequence of the potential energy term in 

Having introduced a new thermodynamic state 
variable, we need to specify an evolution equation for 

Eq. (8). 

MATHEMATICAL MODEL 

The equations for the %ow of a granular material are 
an extension of the fluid equations. These consist of 
conservation of mass, momentum and energy 

PU g (  ;;)+E( p 2 + P  ) = 6 ,  (11) 
pa(E + PV) 

where the total specific energy is E = e + $u2, plus 
rate equations for the total volume fraction 

and the inelastic component of the volume fraction 

d -  

together with the constitutive relation defining the 
pressure P = 4Ps (V,, e,) where V, = 4 / p  and e, = 
e - B(4 - 6). The fluid equations and the rate equa- 
tions are coupled through the source terms and the 
algebraic constitutive relations. Apart from the ad- 
dition of $ these equations correspond to the single 
phase limit of both the BN [4] and PSK [7] models. 



Additionally, we need to specify the rate functions 
for the compaction dynamics. As in the BN-model, 
we assume that the dynamics of the total volume frac- 
tion is governed by g as in Eq. (4), but with a slight 
modification: 

I 0 otherwise) 

where p = pB'(4 - 6). This modification restricts 4 
to be greater than 4 as is required by our *underlying 
micro-mechanical view of the material. For the in- 
elastic component of the volume fraction, we assume 
that 3 is given as in Eq. ( lo) ,  and that the relaxation 
parameter is given by 

where the constants PO and E are material-dependent 
parameters that characterize the slow and fast re- 
sponse, respectively. 

In the previous section, we discussed the energy 
and dissipation associated with the compaction po- 
tential B(4)  in the free energy. The dynamics of 
the model contains an additional rate-dependent dis- 
sipative term that is important for compaction waves. 
Combining the fundamental thermodynamic relation, 
Eq. (9), with the dynamical equations for the model, 
Eqs. (11)-(13)) we find that the dissipation is given 
by 

The fist term (i) is present in the standard BN- 
model. This term is non-negative because the com- 
paction rate g is chosen such that P, - ,O and d# /d t  
have the same sign. For a quasi-static compaction 
process, both d 4 / d t  + 0 and P, - ,O + 0. Conse- 
quently, this term has a negligible affect on slow flow, 
though it can provide substantial dissipation for fast 
flow such as occurs in the rapid rise of a compaction 
wave profile. 

The second term (ii) results from our modification 
to the model. This term is non-zero since both ,O >_ 0 
and d$/dt  2 0. For a slow process ,OV can be non- 
zero and this term will raise the entropy proportional 
to the change in 6. Thus, it will cause quasi-static 
compaction to be dissipative and irreversible. Since 
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FIGURE 1. A HYPOTHETICAL LOADING, STRESS 
RELAXATION, AND UNLOADING COMPACTION 
PROCESS. 

it converts recoverable energy to thermal energy, the 
second term also contributes to the dissipation in a 
compaction wave. For fast processes, p is not in equi- 
librium with respect to $ and thus the second term 
also can be compaction rate-dependent. However, the 
distinguishing property of the second term is that its 
time integral does not vanish for quasi-static com- 
pact ion. 

The modified model is compatible with the hys- 
teresis and stress relaxation observed in quasi-static 
compaction experiments [5]. Shown in Fig. 1 is a 
simple schematic of a hypothetical loading, stress re- 
laxation, and unloading quasi-static compaction pro- 
cess in the (4, $)-plane. For purposes of illustration, 
we have chosen the equilibrium no-load volume frac- 
tion, f(4), to be a linear function passing through 
point A, the initial loosely packed unstressed state 
with 4 = 4 = 40. 

During the loading Process from point A to 
point B, 4 increases faster than $ leading to an in- 
crease in p. At point B, the loading is stopped and 
sufficient force is applied to maintain a constant vol- 
ume; the volume fraction 4 is nearly constant because 
the solid has a stiff equation of state. However, B is 
outside the elastic region, bounded by the lines 5 = 4 
and $ = f ,  and is not an equilibrium state. Conse- 
quently, $ continues to increase as the material re- 
laxes to the boundary of the elastic region, $ = f, 
at point C .  This is a period of stress relaxation since 
4 - 4, and hence p, decreases. During stress relax- 
ation some of the stored recoverable energy is ther- 
malized, ie., Ae, = B ( ~ B  - $ B )  - B(+c - $c). The 
increase in $ is irreversible. 

Subsequently, suppose the force maintaining 
the volume fraction is removed. During the 

- 
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unloadinn Drocess from point C to point D, + de- 
creases until it equals $. The remaining stored recov- 
erable energy B(+c - $c) is released. This reversible 
component of the compaction energy is only a frac- 
tion of the energy supplied during the loading stage. 
Moreover, at the stress-free end state, point D, 4 is 
larger than its value at the start of the loading pro- 
cess. Hysteresis is the failure of + to return to its 
initial value, and is a consequence of the dissipation 
resulting from the change of the internal variable $. 

In summary, our extension of the BN-model de- 
scribes both an elastic compaction region, $ < + < 
f-'($), and an inelastic compaction region, + > 
I-'($).  his is quite analogous to elastic-plastic flow. 
The inelastic region is responsible for the hystere- 
sis effect observed in quasi-static compaction experi- 
ments. 

COMPACTION OF GRANULAR HMX 

In this section, we apply the model to both quasi- 
static and dynamic compaction of granular HMX. It is 
not the intent of this section to give a detailed analysis 
of granular HMX compaction; rather, we simply give 
an application of the model, noting salient features, 
and determine constitutive relations appropriate for 
granular HMX to be used in future work. 

As is routinely done in the absence of dynamic 
compaction data, we determine constitutive relations 
based on quasi-static compaction experiments, and 
apply these relations to dynamic compaction. To 
this end, we use the quasi-static compaction data re- 
ported by Coyne et al. [5] for coarse HMX. In their 
experiments, Coyne et al. quasi-statically loaded 
and unloaded small samples of granular HMX con- 

tained within a movable piston-fixed cylinder appa- 
ratus. Each loaded sample was allowed to undergo 
stress relaxation prior to unloading. Granular bed 
displacement, applied stress, and transmitted stress 
were simultaneously recorded. Based on 1) the re- 
bound of the granular bed upon unloading and 2) the 
maximum volume fraction prior to unloading, the 
equilibrium no-load volume fraction, f(+), can be es- 
timated. The results, summarized in Fig. 2, indicate 
that f can be taken as a linear function of + through 
the ambient state. The resulting expression for f is 

(17) 

where c = 0.913 and 90 = 0.655. Also, based on the 
stress measurements of Coyne et al., we approximate 
the configuration pressure by 

where PO = 1.49 MPa, 

and K, = 0.03. The density dependence of is ig- 
nored because, for the regime in which compaction is 
important, the pressure is low compared to the bulk 
modulus and thus the density is nearly constant. A 
comparison between the experimental stress data and 
the fit given by Eq. (18) is shown in Fig. 3. 

We now estimate values for the parameters j i o  
and E in Eq. (15) based on the simulation of quasi- 
static Compaction experiment HMX-23 reported by 
Coyne et al. The simulation consists of a (I) loading, 
(11) unloading, and(II1) reloading cycle at a constant 
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PACTION OF GRANULAR HMX. 
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extension rate of 18.8 cm/s during loading and reload- 
ing. We take BO = 0.5 s and Z: = 1.461 x lo4 s2. A 
comparison of the computed and experimental results 
is shown in Fig. 4. Here, E is determined based on 
the loading portion of the cycle, whereas is chosen 
based on the time scale of the stress relaxation pro- 
cess immediately following cessation of loading. It is 
noted that only the extrema o f t  and p were reported 
for the stress history shown in Fig. 1 of reference [5]. 
We linearly scaled these values between their extrema 
to obtain the experimental history shown in fig, 4; 
as such, these results should be interpreted as semi- 
quantitative. Neither the BN model [2], which pre- 
dicts full material recovery, nor the PSK model [3], 
which predicts no material recovery, correctly mod- 
els the compaction behavior of granular HMX in this 
slow compaction limit. Additionally, neither model 
predicts the observed stress relaxation. 

With all model parameters fixed, we now ap- 
ply the model to the dynamics of a steady com- 
paction wave. For brevity, details of this analysis 
are not given as comparable analyses are published 
elsewhere in the literature [8, 71. The analysis as- 
sumes a steady wave propagating to the right with 
speed D ,  and re-expresses the governing equations in 
a reference frame propagating with the wave. We 
make two additional simplifications. First, we as- 
sume that the solid grains are incompressible, and 
restrict the analysis to compaction waves propagat- 
ing with speeds much less than the ambient solid 
acoustic speed (D < 800 m/s < c x 2600 m/s). Sec- 
ond, since the non-dimensional quantity E/P; is large 
(5.844x104), we replace Eq. (10) with the equilibrium 

condition 4 = f(4). Thus, the steady problem can be 
reduced to a single ordinary differential equation for 
9, with all remaining system variables expressed in 
terms of 4. 

Figure 5 summarizes predictions of the dynamic 
compaction wave analysis for 40 = 0.73. Shown in 
Fig. 5(a) and 5(b) are the predicted variation with 
piston velocity of the compaction wave speed and 
volume fraction behind the wave. Also shown in 
these figures are dynamic compaction data for granu- 
lar HMX obtained by Sandusky et al. 191, as reported 
by Baer [SI. Reasonable agreement exists between the 
computed and experimental results. 

More interesting is Fig. 5(c) showing the predicted 
variation with piston velocity of 1) the specific com- 
paction work wc, obtained by integrating the specific 
internal energy e through the wave profile, and 2) 
the fraction of wc corresponding to the dissipative 
terms (i) and (ii) in Eq. (16), and the recoverable 
compaction energy. As evident in the figure, very lit- 
tle of the total compaction energy (< 10%) is stored 
as recoverable energy. Thus, the PSK model 131, for 
which all compaction energy is dissipated, reasonably 
predicts compaction-induced dissipation for granular 
HMX. For small piston speeds (up < 45m/s), the 
rate-independent dissipation term (ii) exceeds the 
rate-dependent term (i) which is seen to vanish in 
the limit up + 0. For larger piston speeds, the rate- 
dependent term (i) constitutes an increasingly larger 
fraction of the total specific compaction energy. 

Using the caloric equation of state 
e, = c,,T+q, with cVs = 1500 J/kg/K and q = 5.84 x 
lo6 J/kg, final bulk temperatures of less than 320 K 
are predicted based on bulk compaction-induced dis- 
sipation. As this temperature is far below the ig- 
nition temperature of HMX (- 600K), the contin- 
uum model must be supplemented with a thermal 
energy localization model to predict ignition of gran- 
ular HMX. 

CONCLUSIONS 

We have extended the BN-model to account for irre- 
versible changes in the volume fraction. Our model is 
thermodynamically consistent and gives a more gen- 
eral treatment of compaction energetics than do con- 
ventional two-phase DDT models; thus, it can be ap- 
plied to elastic, plastic, or brittle materials. When ap- 
plied to compaction of granular HMX, the model pre- 
dicts results commensurate with experiments includ- 
ing significant dissipation and stress relaxation. The 
latter is not predicted by conventional models. Fu- 
ture work will address the development of 1) a model 



for the evolution of granular bed morphology in terms 
of a grain size distribution function, and 2) a model 
for differentially localizing energy dissipated by the 
compaction process in order to predict the formation 
of hot-spots and the evolution of their distribution. 
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