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NOMENCLATURE 

A = cross-sectional area, L~ 
A d  = cross-sectional area of dispersed phase inlet, L2 

AT = total channel cross-sectional area, L2 

aji = initial interfacial area concentration, L ~ /  L~ 
ai = interfacial area concentration, L ~ /  L~ 

ai, = calculated interfacial area, L2/ L3 

aim = measured interfacial area, L2/ L3 
c d  = drag coefficient 

Cvm = virtual mass coefficient 

D = channel diameter, L 

Dj2 = Sauter Mean Drop Diameter, L 

Do = nominal Pipe Diameter, L 
Dd = inlet pipe diameter for dispersed phase, L 

Dc = inlet pipe diameter for continuous phase, L 

DT = outside pipe diameter either Kenics mixer of viewing section, L 

F = force, M-L/ t2 

Fd = drag force, M-L/ t2 

Fvm = force, M-L/ t2 

fk = friction factor for phase k, dimensionless 

f d  = friction factor for dispersed phase, dimensionless 

f m  = friction factor multiplier similar to K factor or equivalent length, LJD 
f = friction factor 

f(p) = probability function for the ensemble average 

g= body force due to gravity, L/t2 

Mk = interfluid momentum transfer, M/L- t2 

Gg = Gas mass velocity, M/L2-t 
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Gl = Liquid mass velocity, M/L2-t 

= unit normal vector for the interface between two fluids 

% = unit normal vector for the external surface of a volume 

pk = pressure of phase k, M/L- t2 

Pki  = pressure of phase k at interface, M/L- t2 

Pd = pressure of dispersed phase, M/L- t2 

pc = pressure of continuous phase, M/L- t2 

Qc = volumetric flow rate of continuous phase, L3/t 

e d  = volumetric flow rate of dispersed phase, L3/t 

a= heat flux within phase k 

a = heat flux at the interface between phase k and phase k+l 

a = heat generation from reaction 

r, = reaction rate of species a, moles/t 

R = Reynold’s Stress within phase k (defined in text), M/L- t2 

R = Reynold’s Stress within continuous phase (defined in text), M/L- t2 

Si = Surface where two fluids meet within a volume, L2 

sk = External surface boundary for the volume, L2 

- S = Interfluid Reynold’s Stress (defined in text) , MiL- t2 

T = Stress within phase k, M/L-t2 

T .  = Stress at interface between phase k and phase k+l, M/L-t2 

= k  

=C 

- 

= k  

=I 

T = temperature, K 

t =  time, t 

uk = internal energy of phase k 

v,  = volume of a particular fluid phase k, L3 

Vco = initial axial linear velocity of continuous phase, L/t 

vd,, = initial axial linear velocity of dispersed phase, L/t 

= velocity of phase k, L/t 



vcz = z-component of velocity of continuous phase, L/t 

v& = z-component of velocity of dispersed phase, L/t 

a' = velocity fluctuation of phase k from the ensemble average, L/t 

ai = velocity of phase k at the interface, L/t 

ai' = velocity fluctuation of phase k at the interface from the ensemble average, L/t 

y = interface velocity, L/t 

y' = interface velocity fluctuation from the ensemble average, L/t 

X = phase indicator (either 0 or 1) 

x_ = spatial coordinates, L 

Greek Letters 

ak = volume fraction of phase k 

a, = volume fraction of continuous phase 

= volume fraction of dispersed phase 

,uk = viscosity of phase k, M/L-t 

,uc = viscosity of continuous phase, M/L-t 

p d  = viscosity of dispersed phase, M/L-t 

8 = inclination angle or contact angle, degrees 

p k  = density of phase k, MA3 

p k i  = density of phase k at interface, M/L3 

pc = density of continuous phase, M/L3 

p d  = density of dispersed phase , M/L3 

CY= surface tension, Wt2 

@k = diffusion of general property of phase k 

@i = diffusion of general property of phase k at the interface 

@k' = fluctuation of diffusion of general property of phase k 

@E = diffusion of general property of phase k at the interface 

@ki = fluctuation of diffusion of general property of phase k at the interface 



- z = stress in phase k (defined in text) - 

zRe = Reynold’s stress in phase k (defined in text) 
= k  

4 = dynamic pressure coefficient 

y k  = general property of phase k 

yg = generation of general property of phase k 
y k  = fluctuation from the ensemble average of a general property of phase k 

vkj = fluctuation from the ensemble average of a general property of phase k at the 

, 

I 

interface 

vki = general property of phase k at the interface 

U;: = general property specific to interface 

Kg = generation of a general property specific to interface 

6 = general property for the population balance 

3/2 
h = [ (&-)[ &)] , for Baker flow regime plot 

$ = (:)[ pl[y) ] , for Baker flow regime plot 
2 %  

Mathernatica Notation (unless otherwise noted in the comments for the specific 
program) 

ai[z] = calculated interfacial area concentration, L2/L3 

aio = inlet interfacial area concentration, L ~ / L ~  

area = cross-sectional area of the pipe, L2 

areac = cross-sectional inlet area of the continuous phase, L2 

aread = cross-sectional inlet area of the dispersed phase, L2 



areaf = inlet flow area, L~ 

Cd = drag coefficient, dimensionless 

Cvm = virtual mass coefficient, dimensionless 

delp = calculated pressure drop, M/L-t2 

Dh = hydraulic diameter, L 

Dia = diameter of the outer pipe, L 

Diac = diameter of continuous phase inlet, L 

Diad = diameter of dispersed phase inlet, L 

DynP = dynamic pressure, M/L-t2 

f = friction factor, dimensionless 

fd = dispersed phase friction factor, dimensionless 

fm = friction factor multiplier, dimensionless 

fphid = constant in interfacial drag equation, dimensionless 

Fd = interfacial drag, M/L-t2 

Fw = wall drag, M/L-t2 

FVW = virtual mass, M/L-t2 

Hc = height of flow area, L 

L = length of mixer, L 

mu = mixture viscosity, M/L-t 

muc = continuous phase viscosity, M/L-t 

mud = dispersed phase viscosity, M/L-t 



nre = calculated Reynold's No., dimensionless 

phic[z] = calculated continuous phase fraction, dimensionless 

phid[z] = calculated dispersed phase fraction, dimensionless 

phidi = inlet dispersed phase fraction, dimensionless 

phido = average dispersed phase fraction, dimensionless 

phico = average continuous phase fraction, dimensionless 

Qc = given inlet continuous phase flowrate, L3/t 

Qd = given inlet dispersed phase flowrate, L3/t 

Qco = inlet continuous phase flowrate, L3/t 

Qdo = inlet dispersed phase flowrate, L3/t 

R = radius of outer pipe, L 

re = given Reynold's No., dimensionless 

rho = mixture density, M/z3 

rhoc = continuous phase density, M/L3 

rhod = dispersed phase density, M/L3 

ST = surface tension, M/t2 

theta = contact angle for Tee mixer, radians 

Tzz = bubble-induced turbulence, M/L-e 

Vc[z] = calculated continuous phase velocity, L/t 

Vd[z] = calculated dispersed phase velocity, L/t 

Vco = inlet continuous phase velocity, L/t 
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Vdo = inlet dispersed phase velocity, L/t 

Vf = average mixture velocity, L/t 

VOI = volume of mixer, L~ 

Wc = width of flow area, L 

we = Weber No., dimensionless 

Wi = rate of surface work, hUL2-t3 

0 ther Notation 

( ) = ensemble average (defined in text) 

( )V = ensemble/volume average (defined in text) 

= vector 

= 2nd order tensor 

- 

- - 

( lT = transpose 

= dimensionless variable 

Notation Specific to Chapter 1 and Chapter 2 

ai = interfacial area concentration, 1/L 

A(V) = probability density of droplet size V in vessel 

A(V’) = probability density of droplet size V’ in vessel 

A(V - VI) = probability density of droplet size V - V’ in vessel 

A,(V) = probability density of droplet size V in feed 

B = ‘birth’ term for eqn 2.2 and eqn 2.3 

C,, C2 = adjustable breakage constants 

C3, C4 = adjustable coalescence constants 



C5 = adjustable turbulence constant 

CA = concentration of species A, M/L3 

d, = impeller diameter, L 

D = ‘death’ term eqn 2.2 and eqn 2.3 

Di = diffusion coefficient of species A, L2/t 

Dj2 = sauter mean drop diameter, L 

Do = characteristic length typically pipe diameter, L 

j f(xii) = complex unknown function for Monte Carlo approach 

f(V) = escape frequency of drops of volume V 

g(Vj = breakage frequency of drops of volume V 

h(V, Vj = collision frequency of drops of volumes V and V’ 

k = mass transfer coefficient, W 2 - t  

n, = number feed rate of drops, I/t 

N = total number of drops for eqn 2.3 and eqn 2.4, number of samples eqn 2.9 to 

eqn 2.1 1 

N* = revolutions per second, I/t 

r, = generation of species A by reaction, M/L3-t 

R = phase space for Monte Carlo approach 

U = symbol for element uranium, figure 1.1, overall heat transfer coefficient, MR-t3 

V = drop volume different from V’ or system volume, L3 

V’ = drop volume different from V, L3 
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V,, = maximum drop volume, L3 

- v ,v= linear velocity, L/t 

= interfacial velocity, L/t 

(v) = average linear velocity, L/t 

v(V) = number of drops formed per breakage of drop of volume V 

We = Weber No. , pv2L/o , dimensionless 

Greek Symbols Specific to Chapter 1 and Chapter 2 

p(V; V)  = number fraction of drops with volume V to V + dV from by breakage of 

drop with volume V' 

h(V-V',V), h(V,V') = coalescence efficiency of drops of volume V - V' to V and V to 

V' 

ly= number density distribution for eqn 2.2 

qJ = dispersed phase holdup fraction 

$dis = particle disintegration source term 

qJco = particle coalescence source term 

qJPh = phase change source term 

pc = continuous phase viscosity, M/L-t 

p d  = dispersed phase viscosity, M/L-t 

CT= surface tension, M/t2 

pc = continuous phase density, M/L3 
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pd = dispersed phase density, M/L3 

= ‘internal’ coordinate (size, concentration, etc.) for eqn 2.2 and Monte Carlo 
approach 
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MODELING INTERFACIAL AREA TRANSPORT 

IN MULTI-FLUID SYSTEMS 

BY 

STEPHEN L. YARBRO 

ABSTRACT 

Many typical chemical engineering operations are multi-fluid systems. They 

are carried out in distillation columns (vaporfliquid), liquid-liquid contactors 

(liquidliquid) and other similar devices. An important parameter is interfacial area 

concentration, which determines the rate of interfluid heat, mass and momentum 

transfer and ultimately, the overall performance of the equipment. In many cases, the 

models for determining interfacial area concentration are empirical and can only 

describe the cases for which there is experimental data. In an effort to understand 

multiphase reactors and the mixing process better, a multi-fluid model has been 

developed as part of a research effort to calculate interfacial area transport in several 

different types of in-line static mixers. For this work, the ensemble-averaged property 

conservation equations have been derived for each fluid and for the mixture. These 

equations were then combined to derive a transport equation for the interfacial area 

concentration. The final, one-dimensional model was compared to interfacial area 

concentration data from two sizes of Kenics in-line mixer, two sizes of co-current jet 

and a Tee mixer. In all cases, the calculated and experimental data compared well 

with the highest scatter being with the Tee mixer comparison. 

xxix 
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Chapter 1 

INTRODUCTION 

1.1 Background 

In the chemical process industry, inefficient mixing wastes $ 10 billion dollars 

each year (Long, 1994). A lack of process knowledge results in over-design to 

compensate or under-design with recycle or high reagent losses. Most design 

procedures are empirical correlations or use ‘ideal’ models that ignore the realities of 

actual equipment. Therefore, it is economically justifiable to examine methods of 

extending these models to include actual system effects. 

For design, interfacial area must be known to calculate the transfer rate for mass, 

heat and momentum. This study focuses on a two-phase system of immiscible fluids 

typically used for liquid-liquid extraction. For these systems, empirical design 

equations are normally developed for specific equipment such as packed columns or 

mixer-settlers (Thornton, 1956a, 1956b). This restricts the design to systems that are 

within the experimental data. Consequently, a more fundamental approach is needed. 

1.2 Applications 

In the nuclear industry, liquid-liquid extraction is an important unit operation 

for a variety of applications including fuel reprocessing, waste treatment, and 



. '. . 

recovering fissile material from spent fuel. The Plutonium-URanium Extraction 

(PUREX) process, shown in Figure 1.1 , recovers plutonium and uranium from a 

variety of different reactor fuels. In the PUREX process, tributyl phosphate (TBP) 

dissolved in a hydrocarbon diluent, binds with plutonium and uranium to remove them 

from a high-acid aqueous stream. A suitable contacting device mixes and separates 

the organic and aqueous phases. Because of the particular chemistry of plutonium and 

uranium, TBP is reasonably selective and separates the fissile material from the non- 

fissile fission products. 

Reductant in 
mule HN03 Oiktle HNO3' H 2 0  I I 

H N 0 3  
1 

I 

I 
I 

I 
I I 

I 
I 
I 

I 
I 
I 
I 
I 
I 

I I 
I I qy I I I 

v) : I 
I 
I 

I I 
I I 

Figure 1.1 PUREX Process Flow Diagram (Benedict, 1981) 

Achieving separation factors that exceed lo8 is necessary for a successful operation 

(Wish, 1959). Economics drives these high separation factors. 

Most of the fissile material is used in either defense or commercial power 

programs. Since automated, remote handling operations are extremely expensive, it is 
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cheaper to handle plutonium and uranium directly, in gloveboxes, instead of using 

heavily shielded, remote operations. Even though the chemistry of the process helps to 

provide excellent separation factors and good recovery of materials, good equipment 

design is critical to good process performance. 

More recently, with the demise of the nuclear power industry and the end of the 

"Cold War," a high priority is being assigned to cleaning up nuclear waste. At many of 

the production sites, underground tanks containing process wastes from spent fuel 

recovery are scheduled for processing. 

Also included in this clean-up effort is the processing of residues produced in 

support of defense programs. Many actinide-containing residues such as ash from 

incinerated combustibles, salt residues from oxide conversion processes, glass, plastics 

and other materials will require processing before storage or disposal. Most of this 

material has enough radioactive material to classify it as transuranic (TRU) waste. 

This is waste material with more than 100 nCi/g of radioactive material with atomic 

numbers greater than 92 and half-lives greater than 20 years. Because the residues 

have low initial actinide concentrations, processing generates fairly large volumes of 

dilute acid waste. Unfortunately, the concentration of fissile material in these residues 

is high enough that packaging it without processing will over-fill the Waste Isolation 

Pilot Plant (WIPP) which is the only repository in the United States for emplacement 

of TRU waste. Table 1.1 details the current estimates of TRU generation. Also, 

increasing the number of shipments required to send material causes the risk 

associated with these shipments to rise accordingly. Certification, packaging and 
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transportation costs are also much higher for TRU waste than for Low Level Waste 

(LLW), i.e., waste that is below the 100 nCi/g requirement. Currently, there are three 

sites in the United States that can dispose of LLW. South Carolina, Nevada and Idaho 

all have operating LLW burial sites. 

If the material is processed, then the lean acid waste produced will require 

further processing to ensure that the overall volume of TRU waste decreases. The 

current processing method for initial recovery of the plutonium from the residues is 

anion exchange. Column effluents are evaporated to reduce the volume. The acid 

distillate is neutralized with lime and precipitated with ferric hydroxide. The 

Tablel.1 Current WIPP Capacity and Proposed Emplacement Volumes 
(Pillay, 1993) 

Department of Energy's (DOE) TRU Waste Inventory . Stored TRU (1992) ................... 2.2 x 106 ft3 

Stored LLW (1992) ................... 1.4 x 106 ft3 . 
. Buried (1990) ............................. 6.7 x 106 ft3 

Total 10.3 x 106 ft3 

Projected Generation Rate of 
Additional TRU by 2010 .......... 1.6 x 106 ft3 . Contaminated Soil ............... 5 to 64 x 106 ft3 

Total WIPP Emplacement Capacity ....... 6.45 x 106 ft3 

evaporator bottoms, still containing the majority of radioactivity, are neutralized with 

caustic and cemented. These cement drums will be sent to WIPP. Current cost figures 
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are approximately $10,000 per TRU cement drum. Estimated costs for a similar ILW 

drum are approximately $200-$500. Therefore, further treatment to reduce the number 

of TRU cement drums is economically justified. 

Also, while anion exchange is selective for plutonium, it does not recover 

americium. w1Am is generated through decay of the x1Pu  isotope that is present in 

the original plutonium. Removing americium reduces the volume of TRU liquid 

waste. Because 241Am has a half-life of 438 years, it has a specific activity of 3.43 

tug. 

Figure 1.2 Flowsheet of the Current Plutonium Residue Process 



This means that any recovery process, such as the one shown in Figure 1.2, will have to 

have a high recovery efficiency. Continuous or semi-continuous processes will be 

necessary to process large volumes of lean material. The process will have to 

mechanically simple. Any remote or glovebox process enormously complicates 

maintenance procedures. Radiation exposures to maintenance and operations personnel 

also have to be considered. 

Problems with radioactive waste disposal are unique to the nuclear industry, but 

similar waste disposal problems are encountered elsewhere. Mining, electroplating and 

foundry industries are having to solve the problem of processing large volumes of 

wastes that contain toxic metals, such as chromium, lead, cadmium and others to meet 

state and federal environmental requirements. While in these industries, simple 

equipment is not required for remote handling but to reduce capital and operating costs. 

1.3 Motionless Mixers as Liquid-Liquid Contacting Equipment 

In an effort to design simple, robust and efficient equipment for liquid-liquid 

extraction (LLE) operations, motionless mixers (MM) have been evaluated for several 

different systems (Leacock,l961, Li, 1983, Merchuk, 1980a, 1980b, Tunison, 1976, 

1978, Tse,1978). Motionless mixers come in many different designs. The Kenics 

mixer consists of left-hand and right-hand helical sections which mix the fluids. 

Koch mixers (Koch, 1991) have similar elements, with the difference of "corrugation" 

or extra bends in the mixing elements to enhance turbulence. Simple motionless 
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mixers or "static" mixers can be made by filling a pipe with packing material, such as 

glass beads or ceramic saddles to increase mixing efficiency. 

Leacock (1961) examined the extraction of isobutanol and water in cocurrent 

flow in a packed column. He used different lengths of glass columns packed with 3 

mm glass beads. Then, mass transfer coefficients at several different phase ratios and 

column lengths were measured. The conclusion was that the packed column was a 

very efficient means of contacting two phases. Equilibrium was obtained in only a few 

inches of packing. The mass transfer coefficients increased with higher fluid velocities 

and flooding conditions, as are encountered with conventional liquid-liquid contacting 

devices, were not found. The only limitation was the pressure drop allowable by the 

glass tubing. 

In the most recent studies, the extraction of copper with various organic 

extractants was evaluated. Merchuk (1 980a, 1980b) empirically examined the 

efficiencies of copper sulfate extraction by LIX-64N comparing a Kenics mixer, Koch 

mixer, tubes packed with ceramic and polypropylene Intalox saddles, empty pipes, and 

a baffled tank stirred with a turbine impeller. 

The conclusion was that the Koch mixer design was more efficient than the 

Kenics mixer for similar residence times. However, packed tubes are as efficient as 

Koch mixers but there is a strong relationship to the wetting characteristics of the 

continuous phase and the packing materials in the mixer. Depending on which phase 

is continuous, the wetting characteristics of the packing can give different efficiencies. 

When compared to stirred tanks, the power required for dispersion is approximately 
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equal, but the volume required for the static mixers is about two orders of magnitude 

smaller than that required for stirred tanks. 

Tunison (1976) measured the extraction of copper sulfate with Kelex 100 in a 

Kenics mixer. He estimated the interfacial area between the two phases using 

photographs of the mixture. Using the interfacial area along with estimates of the 

reaction rate, he was able to define a volumetric rate constant, the product of the 

reaction-rate constant and the interfacial area to help define the hydrodynamic 

behavior of the reactor. He then wrote material balances for a one-dimensional plug- 

flow reactor. Solving the material balance allowed calculation of the overall 

conversion in the reactor. Because the reaction kinetics of the copper sulfate with 

Kelex 100 are slow, this system is an example of a rate-controlled system. 

Tse (1978) used Tunison’s one-dimensional model to evaluate the extraction of 

copper and zinc chlorides with tri-isooctylamine (TIOA). Because the reaction 

kinetics of this system are fast, this system is mass-transfer controlled. Unfortunately, 

the model only qualitatively predicted the metal extraction behavior when both metals 

were extracting simultaneously. 

1.4 Role and Importance of Interfacial Area 

Interfacial area concentration is one of the most important parameters in 

analyzing multi-fluid flow with multi-fluid, separated flow models (Kataoka, 1986). 

Because multi-fluid models are currently the most accurate, they are the basis for 



most of the current commercial and academic fluid dynamics codes such as 

PHOENICS, CFDLIB, FLOW-3D (CFX), STAR-3D and FLUENT (Versteeg, 1995). 

Multi-fluid models are based on formulating ‘instantaneous’ momentum, 

energy and mass equations for each separate phase. Because the instantaneous 

equations are still beyond the current state-of-the-art to solve, they are averaged 

according to various techniques similar to the approach employed for single-fluid 

turbulence. The multi-fluid formulation is more accurate than mixture or drift-flux 

models because it contains information on the interaction of the fluids at the interface 

in addition to interactions within the fluid. These interfacial interactions typically are 

represented as constitutive equations based on either empirical or semi-theoretical 

methods. In the present state-of-the-art, the interfacial interaction terms are the 

weakest and least understood portions of the multi-fluid model. 

The interfacial area concentration is an important parameter because most of 

the inter-fluid interactions occur across an interfacial contact surface. Therefore, most 

of these terms can be modeled as (Ishii, 19’75) 

(Interfacial transfer term) - (Interfacial area concentration, ai) x (Driving force) (1.1) 

In this equation, interfacial area concentration is the interfacial contact area 

divided by the volume of the fluid mixture. It is related to the geometric structure of 

the interface, which is related to the flow parameters of the system. The driving force 

is related to the system parameters through turbulent and molecular effects. Hence, 

the interfacial area concentration should be specified by the appropriate constitutive 

relation or transport equation (Ishii, 1980). Consequently, a knowledge of the 
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interfacial area concentration is extremely important to formulating accurate multi- 

fluid models. 

1.5 Problem Statement and Objectives 

1.5.1 Objectives 

1. 

2. 

3. 

4. 

5. 

The objectives of this research are to 

Examine the literature to determine the current state-of-the-art in multi-fluid 

modeling and interfacial area transport 

Use an appropriate averaging method, develop the appropriate general property 

balance equations which include interfacial area concentration in the interfacial 

transfer terms and derive an interfacial area transport equation based on system 

flow parameters 

Define appropriate constitutive equations and by inserting them into the general 

equations, derive a specific multi-fluid model including interfacial area 

concentration transport 

Use the model to calculate the interfacial area concentration for different types of 

static mixers with liquid-liquid sytems 

Compare the numerical and experimental results, draw conclusions and propose 

future work 



1.5.2 Outline of the Dissertation 

In this chapter we have presented a background, justification and specific 

objectives for this research. 

Chapter 2 is a survey of previous work on various approaches to multi-fluid 

modeling and the current state of interfacial area knowledge. 

Chapter 3 introduces the instantaneous general property balance, and then the 

selected averaging method to produce the proper 'averaged' general property 

balances. Specific balances for mass, momentum, mechanical energy, total energy 

and entropy are derived. Mixture equations are introduced to isolate the interfacial 

energy and interfacial area concentration. The appropriate general property balance is 

then combined with the total energy mixture equation to derive a general transport 

equation for interfacial area concentration. 

Chapter 4 introduces specific constituitive equations and a one-dimensional 

model is derived and solved for the interfacial area concentrations produced in Kenics 

static mixers, a co-current jet, and tee mixer. 

Chapter 5 presents conclusions and proposes further research. 



Chapter 2 

SURVEY OF PREVIOUS WORK ON DISPERSED PHASE SYSTEMS AND 

INTERFACIAL AREA 

2.1 Introduction 

The modeling and characterization of two-phase, dispersed processes has 

received a tremendous amount of attention. Particularly, gas-liquid processes have 

been the object of the most study. Distillation, gas scrubbing and many catalytic 

reactions have been researched to discover the nature of the process. As a result, this 

work has been used as a model to study multi-fluid interactions in many different 

situations. 

Traditional design procedures for gas-liquid and liquid-liquid processes are 

usually based on the McCabe-Thiele approach (Treybal, 1963 and Yarbro, 1987). 

Equilibrium data is plotted and used to predict the number of ideal stages required for 

the desired separation. However, this approach is difficult to use for the transfer of 

more than one species. This is especially true if the transfer of one species effects the 

transfer of another. Therefore, a graphical iterative procedure has to be employed. 

First, the equilibrium data for all transferring species are plotted separately. 

Then, operating lines are calculated based on the design criteria and overall material 

balance for the system. Stages are stepped off for one species, and this concentration 
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profile is used to estimate the concentration of the second. The process is repeated 

until the two concentration profiles do not change within a specified error. 

The procedure is time-consuming and also does not account for physical 

characteristics of the system. It is also only appropriate for staged systems or systems 

that can be treated as staged. It does not account for chemical reaction or heat 

generation. For this approach to be accurate, the system has to be at equilibrium at 

each stage. If this assumption is not valid, because of the physical traits of the 

system, such as slow kinetics or mass transfer, a correction factor is used. Typically, 

this correction factor is a stage efficiency and allows for more stages to be added to 

account for non-idealities. 

This approach is an overall approach. It does not allow individual equipment 

characteristics to be designed. Also, certain characteristics of the system, which could 

allow significant performance improvement, are not studied. For example, slow 

kinetics of one species may allow higher selectivities to be obtained by just adjusting 

the residence time of contact. Mass or heat transfer effects could be adjusted by 

increasing the contact area. Therefore, a more complete approach to design and 

characterization of multi-phase systems is desirable and needs to include studies of 

the physical aspects of the system, particularly interfacial area. 

For these reasons, many investigators have developed other models of multi- 

phase processes. Excellent reviews on multi-fluid CSTR's have been presented by 

Tavlarides and Stamatoudis (Tavlarides, 198 1) and Tavlarides and Bapat (Tavlarides, 

1983). For homogeneous reaction mixtures, convective models based on velocity 



profiles, dispersion models, compartments models, statistical models, empirical 

models and micromixing models have been proposed. Because of the large volume of 

work on homogeneous fluids, many heterogeneous models are adaptations of the 

homogeneous case. 

For multi-phase or heterogeneous fluid reactors, the models can be grouped 

into four main areas (Tunison, 1976): drop-size or residence time distribution, 

population-balance, Monte Carlo, and macroscopic/multi-fluid models. 

2.2 Modeling of Multi-Phase Processes 

2.2.1 Drop Size Distribution (Spherical CelVRigid Drop) 

Because the actual droplet behavior can affect the reactor performance, many 

investigators have factored that behavior into their models. One method has been to 

derive the equations of change for the individual phases and assume the drops behave 

as rigid, spherical particles. The equations are solved for an individual drop and the 

results averaged over the entire reactor volume (Barnea, 1978). In this work, drop 

size was correlated using dimensional analysis as a function of physical parameters 

and the Weber number. 

Gal-Or (Gal-Or, 1966) and Tavlarides (Tavlarides, 1969) examine the effect 

of drop size on conversions for unsteady-state mass transfer in a continuous stirred 

tank reactor (CSTR). They used the following approach. By assuming each drop to 

be surrounded by the continuous phase or ‘shell’, they were able to develop diffusion 

equations using the substantial time derivative as follows. 
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-- " A  - D ~ V ~ C ,  +rA 
Dt 

Using a single drop as the control volume, they solved the diffusion equation 

and then averaged drop concentrations over an assumed drop size distribution. 

Interactions in dense dispersions were accounted for by increasing the number of 

droplets. Coalescence and dispersion processes were not accounted for in the model. 

They concluded that the drop-size distribution could be replaced by an average drop 

size without introducing a large error in the predicted conversions. The rigid drop 

allows the boundary conditions to be specified to allow solution of the differential 

equations. 

In support of Gal-Or, Bamea, Hoffer and Resnick (Bamea, 1978), as discussed 

earlier, concluded that an average drop size could be used to predict conversions for 

steady-state conditions and the drop size had a strong effect on conversion. This was 

especially true in cases where interphase mass transfer was the rate-controlling step. 

2.2.2 Drop Interaction Models 

2.2.2.1 Population Balance Models (PBM) 

Because droplet coalescence and dispersion is a random process, statistical or 

probability approaches have been used to predict reactor performance. These 

methods are called population balance models. Curl (Curl, 1963), Hulbert and Katz 

(Hulbert, 1964), Eakman, Tsuchiya, and Fredickson (Eakman, 1965), Valentas and 

Amundson (Valentas, 1966a), Valentas, Bilous and Amundson (Valentas, 1966b), 

Bayens and Laurence (Bayens, 1969), Shah and Ramkrishna (Shah, 1973), 
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Ramkrishna and Borwanker (Ramkrishna, 1973, 1974a), Park and Blair (Park, 1975), 

Coulaloglou and Tavlarides (Coulaloglou, 1977), Min and Ray (Min, 1978), Jeon and 

Lee (Jeon, 1986), Laso, Steiner, and Hartland (Laso, 1987), Guimares and Cruz-Pinto 

(Guimares, 1988), A1 Khani, Gourdon, and Casamatta (A1 Khani, 1989), Tsouris and 

Tavlarides (Tsouris, 1994), Jacob, (Jacob, I995), Ramkrishna, Sathyagal, and 

Narsimhan (Ramkrishna, 1995) and Lam, Sathyagal, Kumar, and Ramkrishna (Lam, 

1996) have presented both theoretical approaches and experimental work validating 

various population balance models. 

For multi-fluid dispersions, each drop can be described by using its position 

within the reactor, drop concentration and age. A population balance is then derived 

by equating the rate of change of the number of drops per volume with the rate of 

drop formation at that particular place in the reactor. The microscopic population 

balance is shown below 

(2 ) aY -=v .y+y-  -y + B - D = O  
a t -  

where v - y  represents the spatial coordinates of the drop and - y is the (f ) 
internal coordinates such as the drop concentration or drop volume. Many different 

effects can cause a drop to change its state or position in the reactor, such as, change 

in physical properties, mass transfer effects or drop coalescence or dispersion. 

Ramkrishna (Ramkrishna, 1974b) has examined the experimental work 

required to obtain information to apply a population balance model. He used data 
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from batch mixing experiments to derive a power law expression for the probability 

of drop breakage. He concluded that batch experiments can provide a considerable 

amount of data to allow prediction of drop size distributions in non-coalescing 

dispersions. 

Curl (1963) was one of the first to attempt to use a population balance method 

to predict conversions in dispersed phase systems. He derived a model which allowed 

the drops to interact with each other instead of a hypothetical drop of some assumed 

concentration. With this assumption, he was able to produce a complicated integro- 

differential equation that was only analytically solvable by assuming zero-order 

kinetics. Others, such as Bayens and Laurence (1969), have extended Curl’s work to 

other CSTR’s and to spray columns. Park and Blair (1975) have also presented more 

general models of droplet coalescence and dispersion frequencies. 

For the PBM, models are necessary for droplet behavior in the reactor. A vast 

amount of work has been presented for CSTRs for drop breakage and coalescence. 

Hinze (Hinze, 1955), Shinnar and Church (Shinnar, 1960), Madden and Damerell 

(Madden, 1962), Howarth (Howarth, 1964,1967), Chen and Middleman (Chen, 

1967), Ramkrishna (Ramkrishna, 1974b), Coulaloglou and Tavlarides (Coulaloglou, 

1976), Delichatsios and Probstein (Delichatsios, 1976), Verhoff, Ross, and Curl 

(Verhoff, 1977), Cruz-Pinto and Korchinsky (Cruz-Pinto, 198 l), Narsimhan, Nejfelt, 

and Ramkrishna (Narsimhan, 1984), Davies (Davies, 1983, Muralidhar and 

Ramkrishna (Muralidhar, 1986), Calabrese, Chang, and Dang (Calabrese, 1986a), 

Wang and Calabrese (Wang, 1986), Calabrese, Wang, and Bryner (Calabrese, 1986b), 
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Das and Kumar @as, 1987), Muralidhar, Ramkrishna, Das, and Kumar (Muralidhar, 

1988), Tobin, Muralidhar, Wright, and Ramkrishna (Tobin, 1990), Tsouris and 

Tavlarides (Tsouris, 1994) and Lam, Sathyagal, Kumar, and Ramkrishna (Lam, 1996) 

have studied the breakage and coalescence of drops in dispersions. 

Typically, these workers have worked in dilute dispersions to eliminate either 

drop breakage or coalescence events and have usually made the following 

assumptions: 

1. 

2. 

3. 

4. 

5. 

There is isotropic turbulent flow. 

Drop size is within the inertial subrange eddies at steady state. 

Energy spectrum function has a -513 dependence on the wave number k. 

Viscous effects are negligible. 

Drop deforms due to local pressure change. 

6. Kinetic energy distribution of the drops is the same as the turbulent eddies. 

As an example of the PBM approach, Coulaloglou and Tavlarides 

(Coulaloglou, 1977) have developed the following expression for the PBM for a batch 

CSTR at steady state with no mass transfer. 

NA(V) = B - D (2.3) 

Expanding the birth and death terms as functions of breakage frequency, 

breakage distribution function, coalescence rate and efficiency and assuming that the 

number of daughter drops formed during breakage is two give the following 

relationship 
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In,, A,, (V)  + p(V' ,V)v(V')g(V')NA(V')dV + 
V 

(2.4) 

These investigators assumed that the dispersion was homogeneous and 

therefore the drop properties do not change with position within the reactor. They 

derived the following relationships for breakage frequency, breakage distribution, 

collision frequency and coalescence efficiency based on the phenomenological 

properties of the system. 

( 2 v - V ' )  2 2  c, 
P(V',V) = V'(2a)'/Z 2c3 -P[- 2v'2 ] 

However, with this approach, complicated numerical expressions are required 

and the more general models have several adjustable parameters which require 

extensive experimentation for determination. The main problem is properly defining 

functions that describe drop breakage and coalescence. Particularly, with situations 
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that have non-linear transfer characteristics, these approaches are extremely difficult 

to calculate numerically. 

2.2.2.2 Monte Carlo Models 

Monte Carlo (MC) techniques appear to be a natural extension of statistical 

methods. In multi-phase systems, miFing and mass transfer effects can have a strong 

influence on the overall performance of the reactor. Because of the complexity of 

multi-fluid interactions, MC approaches have the advantage of using direct, 

microscopic drop interaction, controlled by the physical aspects of the system to 

predict the overall behavior of the reactor using statistical techniques. However, they 

have the disadvantage of extensive computing time and effort to calculate large 

enough samples to accurately model the system. 

Originally proposed by Laplace, MC techniques were developed at Los 

Alamos during the late 1940's to describe the enormously complicated neutron and 

radiation diffusion processes occurring in nuclear systems. Monte Carlo methods use 

random sampling procedures to predict outcomes of stochastic processes. Given N 

random points, xl,x2, . . ., XN, uniformly distributed in a known volume V, integration . 

of a complex function, f, can be approximated as shown below 

where f is defined as 



(2.10) 

(2.1 1) 

and the value is the ‘mean value’ of a function of a random variable bounded by the 

limits of integration. Stochastic processes are those processes whose behavior is 

determined by random events. Mixing and droplet formation and coalescence are 

inherently random events and are therefore stochastic. 

Ramkrishna (Ramkrishna, 1980) has shown that there is a precise 

mathematical connection between the two approaches. The basis for PBM is that 

over a phase space R, the probability that a drop with characteristics described by 5 
will exist in R at time t is given below 

JCdR = 1 (2.12) 
R 

Monte Carlo methods, given a function (, can then estimate values within the 

phase space and average them to get values of ( over the boundaries of R. 

Probabilities calculated from physical system properties can be used to eliminate 

events of low probability. Monte Carlo methods are attractive when ( is a 

complicated function difficult to integrate analytically or by conventional methods. 

2.2.3 Macroscopic and Multi-Fluid Models 

Conventional macroscopic models (Pavlica, 1970) attempt to characterize the 

overall behavior of the reactor and do not account for fluid mixing on the droplet 



level. Typically, only property transfer between phases is calculated. The contact 

area is assumed to be the interfacial area of the dispersed phase. Given the difficulty 

of estimating the interfacial area, a normalized area per unit volume is used 

(Levenspiel, 1972) as an estimate. 

Current macroscopic models begin with a material balance over a fixed 

volume and assume that the interfacial area is constant and that the property transfer 

effects can be described with an overall transfer factor such as U or k. Usually, 

simplifying assumptions such as plug flow and equal phase velocities are used to 

reduce the complexity of the problem. 

More advanced types of macroscopic models are the multi-fluid models. In 

this approach, separate property balances are written for each fluid in the system. 

With this method, it is important to have the constitutive equations properly defined 

for the individual fluids and for the property transfer between fluids. 

In addition, it is typical to perform some type of averaging of the equations to 

allow calculation in the multi-fluid system. There are a variety of approaches, such as 

ensemble, space and time, and various combinations. Many researchers have been 

studying the averaging problem, Standart (Standart, 1964), Drew and Segal (Drew, 

197 I), Travis, Harlow, and Amsden (Travis, 1974), Delhaye (Delhaye, 1974), Ishii 

(Ishii, 1975), Harlow and Amsden (Harlow, 1975), Nigmatulin (Nigmatulin, 1979), 

Drew and Lahey, (Drew, 1979a), Hassanizadeh and Gray (Hassanizadeh, 1979), 

Banejee and Chan (Banejee, 1980), Ishii and Mishima (Ishii, 1984), Stewart and 

Wendorff (Stewart, 1984), Dobran (Dobran, 1984, 1985), Kashiwa (Kashiwa, 1987), 
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Kashiwa and Rauenzahn (Kashiwa, 1994), Pauchon and Banerjee (Pauchon, 1986, 

1988), Arnold, Drew, and Lahey (Arnold, 1988), Lahey (Lahey, 1989, 1990, 1991), 

Lahey, Park, and Drew (Lahey, 1993) and Grau and Canter0 (Grau, 1994). It is 

interesting to note that the basic forms of the various mass, momentum and energy 

equations are similar. Most of the controversy is over the various forms of the final 

constitutive equations, particularly for the property transport from one fluid to 

another. It is evident that the fluid-to-fluid property transport is extremely important 

for the multi-fluid formulation to be accurate. However, the property transfer has to 

occur across an internal surface area, which can be enormously complex depending 

on the flow regime. Most researchers acknowledge the importance of interfacial area 

to enable correct multi-fluid models (Ishii, 1980, 1995; Kataoka, 1986a,1986b, 1990; 

Lahey, 1993), but the complexity of the problem (Stewart, 1984) has forced most to 

either use an empirical correlation or assume a constant contact area or particle size 

(Kashiwa, 1987). Therefore, a method to calculate interfacial area is important to 

advanced multi-fluid models. 

2.2.4 Calculating Interfacial Area 

An excellent review of empirical correlations for predicting interfacial area in 

a variety of systems up to 198 1 has been done by Tavlarides (1 98 1). Most of the 

work completed until then was based on a dimensional analysis of the important 

variables coupled with Kolmogoroff theory to enable some estimate of the turbulent 

forces that should contribute to drop formation. 
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In an attempt to provide a more fundamental basis, Ishii and Mishima (Ishii, 

1980) used a multi-fluid model to begin to determine the interfacial area. They 

looked at the constitutive equations for drag and virtual mass and used the various 

forms for the different flow regimes to guide the empirical correlation of more than a 

1000 data points. 

Building on this approach Kataoka, Ishii, and Serizawa (Kataoka, 1986a) 

attempted to combine Ishii’s multi-fluid model and geometrical arguments to allow 

experimental measurement of interfacial area using a single electrical resistivity 

probe. This work was continued (Kataoka, 1990) with an improved multi-point 

sensor and more robust experimental data correlation techniques. They examined the 

effect of the inlet conditions on interfacial area and derived a relationship between 

interfacial area and their measurement technique. In addition, they developed an 

empirical correlation that correctly predicted interfacial area concentration as a 

function of velocity and phase fraction. 

Kalkach, Lahey, Drew and Meyder (Kalkach, 1993) have extended Kataoka’s 

experimental work with an improved multi-point probe and reported data at a variety 

of different phase fractions and velocities for gas-liquid flow. However, they did not 

attempt to correlate the data. 

Recently, Delhaye and Bricard @elhaye, 1994) have attempted to correlate a . 

variety of gas-liquid data with several different empirical correlations. None of the 

existing correlations fit all of the data, so they developed a new correlation based on 
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the superficial velocity of the gas and liquid. The non-dimensional form of their 

proposed equation fits all of the data within an error of 30%. 

All of the above work was focused on gas-liquid systems, but there has been a 

corresponding interest in liquid-liquid systems. Experimental and empirical work on 

CSTR's has been done by Calabrese, Chang and Dang (Calabrese, 1986a), Wang and 

Calabrese (Wang, 1986) and Calabrese, Wang and Bryner (Calabrese, 1986b). They 

correlated their data using Kolmogoroff theory and included the effect of viscosity. 

Motionless mixers such as Kenics mixers, tees and co-current jets have also 

been studied. Middleman (Middleman, 1974) measured drop size distributions for 

several systems with viscosity's ranging from 0.6 to 26 cp and interfacial tensions from 

5 to 46 dyneskm in a Kenics mixer. He correlated his data as follows 

- 0 3 2  = 0.49We -% 
Do 

(2.13) 

Middleman derived this equation by using the Kolmogoroff theory. Middleman 

assumed that the dispersive energy causing drop breakage was due to the inertial 

subrange eddies and that the drop was stabilized only by the interfacial tension. The 

above correlation begins to fail as the drop viscosity increases, although it is accurate 

for systems of relatively inviscid fluids. His work also showed that drop size 

distribution was independent of dispersed phase fractions up to 25%. 

Berkman (Berkman, 1988) extended these correlations by examining the effects 

of viscosity and hydrodynamic conditions on drop size distributions produced by a 

Kenics mixer. He found a slight dependence on hydrodynamic conditions for Re > 
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12,000 and a measurable dependence on viscosity, when viscosity is greater than 20 cp. 

He fit his data to the following relationship 

(2.14) 

He concluded that residence time and energy dissipation rate were important to the drop 

production in the contactor. 

A1 Taweel and Walker (A1 Taweel, 1983) measured drop size distributions for 

dilute mixtures in a Lightnin "In-Line" mixer. They were able to correlate their data 

in terms of an energy dissipation rate or Weber number. They, along with Long 

(Long, 1983), discovered that the assumption of equilibrium for two-phase mixing 

systems is not always correct. Long and Reimus (Long, 1988a, 1988b71992a) and 

Long, et.al. (1992b, 1993) observed that equations (2.13) and (2.14) do not fully 

account for the effects noted at a tee junction. In particular, they observed that 

equations (2.13) and (2.14) must be corrected by additive terms that were proportional 

to dispersed phase volume fraction. They attributed this effect to the geometry of 

their system, where one would expect the breakage time to be large compared to the 

residence time. This is an important effect in such systems because it implies that 

even when the Weber number increases without bound, it is impossible to drive the 

droplet size to zero. Rather an additive term reflecting the lower limit must be 

included. It is possible that A1 Taweel and Walker did not discover this effect 



because all of their work was done at a constant and low dispersed phase fraction of 

1 %. 

Yarbro and Long (Yarbro, 1995) examined a simple two-fluid model based on 

prior work by Lahey (Lahey, 1991) to estimate the energy dissipation for a liquid-liquid 

system in a Kenics mixer. For the purpose of this model, it was assumed that the 

system was at steady-state, the fluids were incompressible and gravity effects could be 

neglected. Because there is no phase change, the pressure difference between the fluids 

was negligible and not included. 

To develop the constitutive equations for shear, it was assumed that the flow 

was turbulent and therefore simple friction factor correlations could be used to predict 

wall and interfacial shear. Specifically for the interfacial shear, an approach used for 

submerged objects (Bird, 1960) was used. In the turbulent limit near the entrance of the 

reactor, the friction factor becomes equal to approximately 0.44. Other forces such as 

the Basset and lift forces were assumed to be small with regard to the interfacial shear 

especially for small phase fractions. Viscosity effects were assumed to be small for 

inviscid fluids. 

Drop coalescence was assumed to be negligible for small phase fractions and 

only drop breakage was considered. Based on previous work, drop breakage appears to 

be a function of the energy dissipated by the continuous phase and the contact time. 

Because of the large velocity difference between the two fluids at the entrance of the 

reactor, interfacial shear along with wall shear, would be an important drop production 

mechanism. With this assumption and the assumption that the drop size is a function of 



drop surface energy and surface turbulent forces, an energy balance for drop size was 

derived. 

However, this approach only allowed average interfacial area concentrations to 

be derived and did not explain the drop production mechanism or to the actual 

distribution of interfacial area within the reactor. Kocamustafaogullari and Ishii 

(Kocamustafaogullari, 1995) took a large step and derived an interfacial area transport 

equation of the following form 

(2.15) d 
dt -ai + V - ( a i v i ) = $ d i s  -$co +$ph  

from a population balance on the particle number density. They proposed that the 

source terms, @&, (the particle disintegration), oca, (the particle coalescence), and @ph, 

(the phase change) could be calculated based on the phenomenological models of 

Coulaloglou and Tavlarides (Coulaloglou, 1977) and Prince and Blanch (Prince, 1990) 

or on earlier empirical relationships based on Weber and Reynold's numbers. 

Unfortunately, they did not present any calculations in their paper. 

2.2.5 Conclusion 

A careful survey of the literature has revealed that there are several approaches 

to modeling multi-fluid systems. It appears that the most fundamental method at 

present is to use an appropriate macroscopic/multi-fluid model because the physics can 

be represented by various constitutive equations and the assumptions for choosing the 

equations can be linked to the situation under study. Statistical methods are attractive 

because they can handle the complexity of dispersed phase systems, but they do not 
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necessarily help to understand the phenomena involved. Unfortunately, for multi-fluid 

models to be successful, a better understanding of the property transport from fluid to 

fluid has to occur. Because this happens across an interfacial boundary, a method for 

predicting interfacial area is needed. The literature survey has indicated that there are 

reasonable approaches to deriving a transport equation, but a satisfactory equation for 

area transport has not been demonstrated. Therefore, the remainder of this work will 

focus on deriving and demonstrating a relationship for the transport of interfacial area 

concentration. 
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Chapter 3 

DERIVING THE BASIC EQUATIONS FOR MULTI-FLUID SYSTEMS 

3.1 The Phase k Local Instantaneous General Property Balance 

Consider an arbitrary volume in space containing two fluids as shown below 

in Figure 3.1. 

Figure 3.1 General Two-Fluid System 
An instantaneous general property balance can be written for the volume 

(Bird, 1960, Standart, 1964) as follows 

where dim@k = dimyk + 1 and dim& = dimvki + 1 because the general property is 

multiplied by the velocity vector. 

Writing the balance for each phase k of the volume allows property transfer 

across either of two boundaries. The boundary, S ,  is the external boundary that could 
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be a vessel wall or the entrance or exit of the volume. This is the boundary through 

which the fluids in the volume can exchange mass, momentum or energy with the 

surroundings. The internal boundary, Si, is the surface through which the fluids can 

exchange mass, momentum or energy with each other. 

3.2 Averaging the Phase k Local Property Balance 

Because in multi-fluid systems many properties, such as density, are 

discontinuous across internal surfaces, eqn (3.1) cannot be used without ‘smoothing’ 

the equation to remove the discontinuities. This can be achieved by defining a phase 

indicator (Drew and Wood, 1985) as follows 

1 : If phase k is present at (x, t) 

x (E,t;CL) = 

0: If phase k is not present at 6, t) 

The phase indicator has the mathematical properties of a unit step function and it 

follows that the phase indicator is changing at the interface, Si, of the two fluids so 

that we can define an interface indicator function 

0: If phase k is present at (x, t) 

1: If Si is present at (x, t) 

0: If phase j is present at (x, t) 

Ax &,t;p) = 

In most engineering systems of interest, instantaneous values are too difficult 

to calculate with current computer technology. Since they are often not required for 



design or evaluation, an appropriate averaging procedure is applied. In this case, a 

statistical or ensemble averaging procedure is used. The 'ensemble average' will be 

the statistical average over all values of a property measured in a single experiment 

over a given volume and time. Therefore, the average is defined 

wherefis a probability density function, i.e.,f(p) greater or equal to zero and 

(3.3) 

With this definition, instantaneous values can be defined as the sum of an 

average value and a fluctuation from the average (Bird, 1960) 

Vk =(wk>+V;  (3.4) 

so eqn (3.1) can be re-written 

Carrying out the multiplication produces this equation 
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Because of the many unknown fluctuations, eqn (3.6) will be averaged using eqn 

(3.2). Since the integration limits are arbitrary and the total control volume is 

continuous, the order of integration can be changed and eqn (3.6) can be written term- 

by-term 

1 

(3.7a) 

r 1 

J V 

(3.7c) 

(3.7d) 

Combining eqns (3.7a-d) and treating averaged terms as constants so that they can be 

brought outside the averaging brackets (Brodkey, 1967) give 

Now, because most engineering measurements produce data that is time and 

volume averaged, eqn (3.8) will be volume-averaged (Hestroni, 1982) 
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after applying the Gauss Divergence theorem to the external surface term to give the 

following 

Now the volume averaging operator can be applied in a natural way 

(3.1 1) 

As V -> 0, the left-hand side (LHS) of eqn (3.1 1) reduces to its integrand, but the 

right-hand side (RHS) remains in integral form: 

Up to this point, the approach has been completely general. However, because 

of the complexity of the internal surface, we need to simplify the equation. We will 

extend the definition of isotropy to allow the property exchange rates over the 

internal surface to be constant such that they are independent of the direction of 

Si. We will assume that the property exchange rate on the interface is the same 
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everywhere on the interface at a particular location in the fluid, relative to the 

interface, regardless of the interface orientation. This is a “generalized 

isotropy” condition for the interface. With this restriction and defining the 

following 

ak =(’) 

as the ensemble averaged phase fraction and 

(3.1 3a) 

SiAX ai =- 
V 

(3.13b) 

as the interfacial area concentration, the integrand on the right-hand side of eqn (3.12) 

can be factored out, because the “generalized isotropy” restriction implies this 

integrand is a constant. Therefore, 

{ [ ( ~ k i ) ( ( E & ) -  ( E i > ) +  ($ , ) ] (AX)  + (yiii&D)- (Viv;M)}*gi  =constant (3.14) 

Inserting these definitions into eqn (3.12) and taking the limit as V -> 0 on the RHS, 

where Si is arbitrary, eqn (3.12) becomes 

as the ensemble-averaged general multi-fluid property balance with turbulent 

fluctuations. In eqn (3.15), the interfacial area concentration has been left inside the 

ensemble averaging brackets of the interfacial turbulence terms and the phase fraction 

has been left inside the ensemble averaging brackets of the phase k turbulence term. 

Even though the assumption of “generalized isotropy” allows the terms to be brought 



outside the averaging signs, they will be left inside until the closure relationships are 

defined. As an example, Kataoka, et.al. (Kataoka, 1992) have suggested dividing the 

interfacial area concentration into a sum of “large scale” and “small scale” terms. 

This could be readily accommodated in eqn (3.15). 

Again, note that this general differential balance assumes “generalized 

isotropy” is true. It would have to be modified for cases where eqn (3.14) breaks 

down. 

Several limiting cases can be examined to check the form of this equation. 

First, allow &-> 1 and ai -> 0 so that 

(3.16) 

which is the proper form for the ensembleholume-averaged general property balance 

for the single fluid case. Conversely, if we allow & -> 0 and ai -> A, a constant value 

of interfacial surface area, so that it can be brought outside the averaging signs and 

factored out, then 

which is the local general property ‘jump’ condition (Standart, 1964, Ishii, 1975, 

Delhaye, 1974) 

3.3 Mass, Momentum and Energy Balances for Phase k 

With the general multi-fluid property balance it is possible to begin to derive 

equations for mass, momentum, mechanical energy, thermal energy and entropy. 



3.3.1 Mass 

For mass, define the following 

yk = P k  

$ k  = O  

lpi = o  

Y* =o 

(3.18a) 

(3.18b) 

(3.18~) 

(3.18d) 

where P k  is the total mass concentration of phase k, and because we are only 

interested in total mass conservation at this point, we will set the mass diffusion 

within phase k, $k, and the mass diffusion as a result of an interface, $i, equal to zero. 

As a further simplification, we will restrict the system by having no mass generation, 

so vg is set to zero. Now, these definitions are inserted into the general property 

balance equation, eqn (3.15), to obtain 

Note that the RHS of eqn (3.19) employs the “generalized isotropy” condition 

defined in eqn (3.14b). 

Equation (3.19) can be simplified for incompressible fluids by assuming the 

density is constant so that there are no density fluctuations 

P; = o  (3.20) 



for all of the averaged single fluctuation terms. Also, for systems of fluids that are 

relatively insoluble we can assume that (Ishii, 1975) 

P k i  = P k  

c 

(3.21) 

therefore, eqn (3.19) becomes 

where Ij, is defined as the mass flux at the interface caused by phase change or 

reaction (Drew, 1985). For incompressible systems where &is zero, the mass 

balance for phase k can be simplified further 

3.3.2Momentum 

For momentum, define the following 

(3.22) 

(3.23) 

(3.24a) 

(3.24b) 

(3.24~) 

(3.24d) 

where p k  is the momentum of phase k, & is the momentum diffusion from - - 

viscosity effects within phase k, and T. is the momentum diffusion because of the 
=I 

interaction of two fluids at an interface. Momentum generation from body forces, 

which in this case is only gravity, is p k  g . - 
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Assuming an incompressible fluid and using the simplifications in eqns (3.20-3.21), 

the momentum balance can be written as 

For systems with no phase change or reaction, the momentum can be further 

simplified 

Equation (3.27) is the general momentum balance for an incompressible phase k in a 

multi-fluid system, given the “generalized isotropy” condition. 

If we examine eqn (3.27), all of the terms on the left-hand side (LHS) are the 

familiar terms from a single-phase momentum balance and are the time-rate of 

momentum accumulation, momentum convection (inertial terms), momentum 

diffusion by viscous and Reynold’s stresses and momentum generation by body forces 

(gravity). However, on the RHS, there are additional terms which arise from the 

interaction of one fluid with another across an interface. The first term represents the 

diffusion of momentum from one fluid to another and is similar to the viscous stress 



/ 

single-phase analog. Physically, this term accounts for the transfer of momentum due 

to the relative motion between fluids. The turbulence term is similar to the single- 

phase Reynold's stress except that it contains the interfacial area concentration term 

and therefore accounts for the turbulent interaction between two fluids. 

3.3.3 Mechanical Energy 

Similar to Bird (1960), the scalar product of the average velocity of phase k 

will be taken with the momentum balance, eqn (3.26), to obtain a balance equation 

for mechanical energy. 

(3.28) 

Using the following identities (Bird, 1960) 

(3.3 1) 

(3.32) 



where R is the Reynold's stress tensor for the turbulence stress within phase k and - S = k  - 

is an interfluid turbulent correlation tensor, we can re-write the mechanical energy 

balance. In the mechanical energy balance this allows the total work done by one 

fluid on the other to be split into an interfacial work term that includes T .  and an 
=I 

interfluid turbulent work term which includes - S . Equation (3.28) can be re-written 

A further simplification can be made by assuming no phase change or reaction 

(3.33) 

(3.34) 

In this equation, the terms on the LHS represent the time-rate of accumulation 

of kinetic energy, the convection of kinetic energy for phase k from the surrounding, 

work from turbulent fluctuations within phase k, energy dissipation from turbulent 

fluctuations, viscous work from the viscosity of phase k, energy dissipation from 

phase k viscosity and gravity work (potential energy). On the RHS, the work done by 

one fluid on the other has been split into a contribution from the relative motion of the 
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fluids and the turbulent fluctuations that interact between fluids. Again, on the RHS, 

we note the use of the “generalized isotropy” condition. 

3.3.4 Total Energy 

For total energy of phase k, define the following 

(3.35a) 

(3.3 5 b) 

@i =[gi ‘ ( ! ! k ) ] + q .  --I 

y,q = -(g a (!!k )) + q r  

where v k  is the sum of the phase k internal and kinetic energies, is the diffusion of 

energy by work accomplished by viscous forces and the heat flux to phase k from the 

external surroundings, $i is the diffusion of energy from the work done from the 

(3.35c) 

(3.35d) 

relative motion of the fluids at an interface and heat flux across the interface and vg is 

the generation of energy from gravity and heat of reaction. 

Inserting these into the general property balance, eqn (3.15), gives 
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+a, ( -E  - (Ek ) + 4,j  

+(cxkp;[u; +$);)I 
(3.36) 

Assuming an incompressible fluid and that averaged variables are constants gives 

Equation (3.37) can be further simplified by assuming no phase change or reaction 

Again, the LHS is similar to the single-phase total energy balance and 

represents the time-rate accumulation of total energy, energy convection, diffusion of 

energy from viscous work and heat flux and energy generation from gravity and 

reaction. On the RHS, the terms account for energy transfer across an interface from 



relative motion, heat flux and turbulent fluctuations. Once more, the "generalized 

isotropy" condition is employed on the RHS. 

3.3.5 Thermal Energy 

The equation for thermal energy in a two-fluid system can be obtained in a 

manner similar to Bird (1960), by subtracting the mechanical energy balance from the 

total energy balance. Therefore, subtracting eqn (3.34) from eqn (3.38) gives 

5 a (( p k  ' k  )) + v - [ [ ( p k  ' k  ) ( z k  ) + (1,)1+ (ak p k  a' k -k v' )] 
+ a k  (4,) +a. T :v(v .) + R k : y ( z k )  L = k  - -/. - - 

Assuming an incompressible fluid and the definitions in eqns (3.20-3.21) gives 

(3.39) 

(3.40) 

Equation (3.40) can be further simplified by assuming no phase change or reaction 

and defining 
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which is the thermal energy equivalent of the interfluid turbulent interaction term 

defined for the momentum balance. Equation (3.40) then becomes 

(3.42) 

The LHS of eqn (3.42) represents the time-rate of accumulation of internal 

energy, the convection of internal energy from the surrounding, heat flux to phase k 

from the surroundings, diffusion of internal energy from turbulent fluctuations within 

phase k, heat flux from reaction in phase k, and the dissipation of energy from viscous 

and turbulent fluctuations within phase k. The RHS represents the heat flux across 

the interface and transfer of internal energy from turbulent fluctuations and turbulent 

work. Again, the “generalized isotropy” condition applies on the RHS. 

3.3.6 Entropy Inequality 

Define the following 

4 --f 
@k =r 

4. 
--I 4 =- 
I;: 

w ,  20 
These can be inserted into the general balance to give 

(3.43a) 

(3.43b) 

(3.43c) 

(3.43d) 
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Making the usual simplifications gives 

- [[a; (+)) + pk ((ais; y; ) - (ais;iy;))] .  tzi 2 0 

which represents the general entropy inequality with turbulent fluctuations for a 

multi-fluid system. The "generalized isotropy" condition applies to the last term on 

the LHS of eqn (3.45). 

3.4 General Property for a Control Volume with Multiple Fluids 

Again, consider a control volume such as the one shown in Figure 3.1. For 

this case, we are interested in the total balance over the control volume (Kataoka, 

1986b, Hestroni, 1982) as opposed to the transfer of a property from phase k to phase 

j. Therefore, the individual phase k property balance equations can be added 

and the additional terms Yi and 'Pig, represent properties and the generation of 

properties specific to the internal interfaces that are present. It is important to note 
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that these are not transfer terms but are unique to the interface. For example, the 

interfacial energy that is a result of the surface tension over an area is unique to the 

interface. In contrast, transfer terms represent the transfer of a property across the 

interface and have opposite signs in the individual phase k balances. Therefore, when 

added, these terms cancel out and leave only the interfacial properties. In the above 

equation, the terms are the time-rate of accumulation, convection and diffusion and 

generation. 

3.4.1 Mass 

The following balances are based on a two-fluid system so that n = 2. Given 

eqns (3.18a-d) and assuming that the interface has no mass and no reaction at the 

interface allows the following to be defined 

Yi = o  

Yig = 0 

therefore eqn (3.46) becomes 

which is the overall material balance for a system of two, non-reacting, 

incompressible fluids. 

3.4.2 Momentum 

Given eqns (3.24a-d) and define the following interfacial properties 

Yi = o  
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(3.47a) 

(3.47b) 

(3.48) 

(3.49a) 



(3.49b) 

These follow because above we assumed that the interface has no mass, therefore it 

cannot have any momentum so that Yi is equal to zero. However, because of the 

relative motion of the two fluids, and the presence of an interface with surface tension 

there is an apparent ‘generation’ of momentum due to surface forces which are acting 

on the interface. This ‘generation’ is modeled by eqn (3.49b). Therefore, eqn (3.46) 

becomes 

which is the form for a system of two, incompressible fluids. In this equation, the 

first term is the total time-rate of accumulation of momentum for the mixture, the 

convection and viscous and turbulent dissipation of momentum in the mixture, and 

the generation of momentum from gravity and interfacial forces. 

3.4.3 Total Energy 

Given eqns (3.35a-d) and defining 

Yi =(mi) (3.50a) 

(3.50b) 



so that Yi is the energy associated with the surface tension over the interface and Yi, 

is the combination of the work on the interface by the motion of the interface and the 

energy of mass flux at the interface. In writing eqn (3.50b), we are again assuming 

the “generalized isotropy” condition applies. 

Inserting these definitions into eqn (3.46) gives the following 

which is the total energy balance for a two-phase, incompressible fluid system. 

Assuming no reaction or phase change, eqn (3.51) can be simplified to 

2 at q k=l pk [ (u, ) +y] + 4+ 

which is the total energy balance for the fluid mixture. Note that is equivalent to 

summing eqn (3.42) for each phase and adding the properties unique to the interface 

as described earlier. In this case, besides the energy properties associated with 

mixture, it includes the time-rate of accumulation of interfacial energy due to a time- 
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rate of change of interfacial area concentration, convection of interfacial energy into 

the volume and the generation of interfacial energy due to work exchanged between 

the two fluids. 

3.5 Transport of Interfacial Area 

As shown above and discussed earlier, a knowledge of the interfacial area is 

critical to properly modeling multi-fluid systems. It is a part of all of the interfacial 

transfer terms. Therefore, to make progress we are going to draw an analogy to 

single-phase compressible systems. In a single-fluid compressible system, density is a 

thermodynamic property which can change with the temperature or pressure of the 

system. With the appropriate equation of state and the thermal energy balance to 

calculate the temperature, the momentum balances can be solved. By analogy, we are 

going to assume that the interfacial area is determined by the mechanical energy and 

interfacial properties of the system. With the proper 'equation of state' to predict the 

interfacial tension and the mechanical energy balance, it should be possible to model 

the transport of interfacial area. First, we need to define a transport equation for the 

interfacial area. 

Assume a system of two, isothermal incompressible fluids with no reaction or . 
phase transitions. Adding the individual phase k total energy equations together to 

define the energy associated with fluid and not the interface gives 



2 

- c ak ( P k  (E )  * ( E t ) )  = 
k=l 

This is the internal and kinetic energy associated with the bulk phases in the system. 

Subtracting eqn (3.53) from the total energy balance, eqn (3.52), one obtains 

(3.54) 

The 'equation of state' for most systems with no significant mass or heat 

transfer can be approximated by 

(r = constant (3.56) 

a constant value in the direction normal to the interface. Therefore, eqn (3.54) 

becomes 

(3.57) 

which defines the transport of interfacial area. 

3.6 Constitutive Equations and Equations of State for Multi-Fluid Systems 

3.6.1 Continuum Theory Approach I 

In order to solve the balance and transport equations for mass, momentum, 

energy and interfacial area, additional relationships are needed to describe the density, 

viscous stress, multi-material interaction and turbulence correlations for momentum 



and energy transfer and dissipation. Unfortunately, it is difficult to define the 

appropriate equations for single material systems and often one has to resort to 

defining relationships for ‘ideal’ materials such as Newtonian or non-Newtonian 

materials or assuming incompressibility. Multi-fluid systems are complicated by the 

fact that under different conditions, various flow regimes exist which defy general 

description. Empirical correlations are usually used to approximate the system of 

interest. However, general principles have been determined (Truesdell, 1960) which 

can be used to guide the selection of appropriate constituitive equations. 

Coordinate Invariance 

This is a requirement that the relationship cannot depend on the coordinate 

system. This can usually be achieved by working with the appropriate vector-tensor 

notation. 

Eauiuresence 

This principle requires that all of the dependent variables be functions of the 

same set of independent and dependent variables. For example, if T is a function of 

AV then all other variables must also be functions of AV. It is intended to ensure that 

all of the dependencies are included. However, this is often a difficult principle to 

satisfy because of the complicated relationships that must be defined and often 

functions must be included for which there is no physical evidence (Drew and Lahey, 

1979). 
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Material Frame Indifference (Objectivity) 

This is similar to the first principle of coordinate system indifference except 

that this is referring to coordinate frame, such as, Euclidean or non-Euclidean space. 

Unfortunately, the materials being modeled do not always know the ‘coordinate frame 

of reference’ that we have assigned them. This has been thoroughly studied by 

various researchers (Ishii, 1975, Drew and Lahey, 1979, Dobran, 1984). A conclusion 

is that if the constituitive equations are formulated from objective variables then the 

final expression will be objective (Drew and Wood, 1985). This is the approach 

generally followed in this work. 

Homogeneity 

This principle requires that the equations be formulated for the particular 

material being studied. Therefore, in mixtures, various relationships are needed as 

functions of time and space to properly predict the system behavior. 

Material Isotropy 

Some materials behave differently depending on the direction that force is 

applied. This may be true in some multi-fluid flow situations. If there is no 

’ dependence on direction or orientation, then the material is isotropic. 

Just Setting 

This simple principle requires that the appropriate balance equat,ms, w lLl l  the 

proper constituitive equations and correct initial and boundary conditions, have a 

unique solution. 
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Dimensional Invariance 

All constituitive equations must be dimensionally correct and any arbitrary 

relationships must be satisfied through dimensionless variables. 

Correct Low Concentration Limits 

This principle (Drew and Lahey, 1979) ensures that the limiting cases have the 

appropriate single fluid form. In fact, this principle could be generalized to ensure 

that the equations predict the proper behavior under all limiting cases, such as zero 

velocity or zero interfacial area. 

3.6.2 Entropy Inequality 

The entropy inequality restricts the constituitive equations by forcing the 

second law of thermodynamics to be satisfied. Essentially, this requires that for ‘real’ 

systems, entropy must increase. While exact formulations cannot be predicted, it can 

give guidance on the values and proper final forms. 

3.7 Equations of State 

When working with compressible fluids, conditions of extreme pressure or 

large temperature changes, an equation of state is required to define the 

thermodynamic variables in a system. In this work, the fluids and system conditions 

have been restricted so that the fluids can be considered to be incompressible. Also, 

the systems have been observed at small ambient temperature changes so that they can 

be assumed to be isothermal. Therefore, the equation of state reduces to 

P k  = Kk (3.58) 



which is a constant density. Also, the internal energy equation is not required because 

the system is isothermal. 

3.8 Equation Summary of the General Model 

The general model for predicting interfacial area transport in an isothermal 

system of two Newtonian, incompressible fluids with no phase change, reaction or 

mass transfer is summarized below. 

Mass: 

Momentum: 

Continuous Phase 

Dispersed Phase 

= {[ai (E;)]  + 3. 

(3.59) 

(3.60) 

(3.61) 



Mechanical Energy Continuous Phase: 

Interfacial Area: 

(3.62) 

(3.63) 

To interpret the equations, it helps to non-dimensionalize them and examine 

limiting cases. First, define the following dimensionless variables 

tv 
D 

t' =- 

R' ==k R 
= k  P k V 2  

(3.64a) 

(3.64b) 

(3.64~) 

(3.64d) 

(3.64e) 

(3.640 



T,'=T - D 
=k p k v  

T:  = Z i 7  D 
=I - p k v  

D s* =s- 
= ' P k v 2  

(3.640 

(3.648) 

(3.64h) 

where v and D are a characteristic velocity and length for the system. In this case, we 

will define v as the total final average velocity and D is the outer pipe diameter of the 

system. If we insert these definitions into the vector-tensor form of the various 

equations, we get for the mass, momentum, and mechanical energy (Drew and Wood, 

1985, Bird, 1960) 

- Mass : 

(3.65) 

Momentum: 

Continuous 
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Dispersed 

= {[a;(T;)]+g*}.gi  

Mechanical Energy 

(3.67) 

(3.68) 

For the interfacial area concentration transport equation, we need to scale the 

“source terms” on the RHS. Observations of the mixing process (Reimus, 1983; Lin, 

1985; Jacob, 1995) indicate that most of the drop production process happens very 

rapidly and appears to be mainly the result of interfacial shear. Therefore, based on 

these observations, we shall define the following 

With that definition and inserting into the interfacial area concentration 

transport equation, eqn (3.63) becomes 

and multiplying both sides by D2/v we obtain 
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(3.69) 

(3.70) 



a *  
7 dt a; + - v . (a; (E;)) = -:[(E;) . ({a: (g ; ) + .'). g;)]  

These dimensionless groups can be re-defined as the well-known Weber and 

Reynold's numbers as follows 

We 

(3.71) 

Therefore, we conclude that the general model meets all of the important 

requirements to begin formulating a practical model to predict the transport of 

interfacial area. 
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Chapter 4 

MODELING INTERFACIAL AREA TRANSPORT 

4.1 The One-Dimensional Model 

A one-dimensional model will be derived to predict the interfacial area 

transport in selected static mixing devices. Even though earlier attempts to determine 

the type of turbulence and potentially the mixing phenomena have been inconclusive 

(Tavarez, 1991), and even though mixing is a multi-dimensional behavior, using a 

one-dimensional model is justified to begin to explore the basis of interfacial area 

transport. This allows the focus to be on the main effects in the formulation as 

opposed to numerical problems that can arise from higher dimensional models 

(Gresho, 1982). Many researchers have used one-dimensional models ( Ishii, 1984; 

Jones and Prosperetti; 1985, Bannerjee and Chan, 1980; Pauchon and Bannerjee, 

1986,1988; Lahey, 199 1) to examine various closures relationships for the momentum 

balances, in particular, for the momentum interaction terms. Because of the 

effectiveness of this approach, we will adopt it for this work. 

4.2 Constitutive Equations 

4.2.1 Momentum Diffusion 

For a Newtonian fluid, the following linear relationship is valid for the normal 

and tangential stress within phase k (Bird, 1960) 



=k  T = p k L + 7  - =k (4.1) 

However, for most systems, K , the bulk viscosity can be neglected and will be set to 

zero (Bird, 1960). 

Now, the average of eqn (4.2) is 

The question is what is the average of the divergence and dyadic terms? If we recall 

the definition of the ensemble average and Leibnitz's rule for differentiating an 

integral (Spiegel, 1992) 

where the subscript t represents the differential with time held constant and a and b 

are constants which define the range of p. We also assume that 

differentiable function which is true within phase k. If a and b are constants, then 

is a continuous and 

their differentials are zero and 

which is the result given in Brodkey (1967), 



(4.8) 

and is true for the case 

( V Y )  = V.(Y)  

Given these transformations, we can write the total momentum diffusion term as 

(4.9) 

(4.10) 

We can simplify this for incompressible fluids by setting v. (xk) = 0 .  However, 

when two incompressible fluids are rapidly mixed, such as in static mixers, there can 

be significant acceleration and deceleration. Therefore, there is a question as to 

whether the divergence is zero in this case. For this work, we will allow a non-zero 

divergence because each component in the mixture separately behaves like a 

compressible fluid. Taking the divergence of the expression gives 

With the following identities, assuming a constant viscosity 

-V.a,P,(_ v(v -k ))' = - P k [ v ( V k ) - V C l k  + . k Y ( Y . ( V k ) ) ]  

-V'akPk(Y(Vk)) = -Pn[mx * X ( . k ) + a k V 2 ( V k ) ]  

- v.{ak(Pk)L}= a,v(Pk)+(Pk)v% 

and carrying out the differentiation for the remaining terms give the following 
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(4.12a) 

(4.12b) 

(4.13a) 

(4.13b) 



Inserting these terms into eqn (4.1 1) and simplifying give 

where the first three terms on the right-hand side are the pressure and viscous stress 

associated with phase k and the last four terms are the multi-material pressure and 

stress which arise from having two fluids occupying the same control volume. 

4.2.2 Interfluid Momentum Transfer 

If we take the momentum equation, eqn (3.27), 

and insert eqn (4.14) then 

We can compare this equation to others that have been published, such as Drew 

(1985) and Ishii (1984). 



It has been customary to define & similiar to Ishii (1984) as 

(4.18) 

where the second term is the sum of forces which are associated with drag, virtual 

mass, and unsteady state viscous effects. Allowing for differences in averaging 

approaches, by comparison 

R = -ak zRe 
=k -k 

(4.19a) 

(4.19b) 

(4.19c) 

(4.19d) 

With the above relationships, we can complete the balances for momentum 

and interfacial area concentration. Given eqn (4.18) above 

(4.20) 

and this can be inserted into the transport equation for interfacial area concentration to 

give 
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This allows ai to be calculated in terms of the momentum and mechanical energy 

balances. 

At this point, because of the complexity of the fluid interactions, general 

forms can only be formulated for the various pressure and additional force terms after 

some type of assumption has been made for the flow regime. Flow regimes have been 

extensively studied and various ‘maps’ have been measured. An example is the 

‘Baker’ area plot for two-phase gasfiquid horizontal flow, see Figure 4.1. 

Figure 4.1 Area Plot for Two-Phase Horizontal Flow (Brodkey, 1967) 

This is still an area of much research ( Kalkach-Navarro, 1994) and for the 

present empirical equations are used to describe portions of the flow behavior. 

Unfortunately, since this is still the state-of-the-art, we will use that approach in this 

work. 



Therefore, we will assume bubbly/dispersed flow so that for the pressure 

terms with constant surface tension and spherical drops or bubbles, we can define 

( ~ d i )  = (~d)-2oai (4.22) 

Also, calculations assuming inviscid flow around a sphere (Stuhmiller, 1977) show 

that 

where E, is equal to 114 when the boundary layer remains attached to the bubble or 

drop. 

There is still much active research into the types of forces that influence 

momentum and energy transfer between fluids. Because we are interested in how the 

interfacial area transport affects multi-fluid systems, we are going to assume that the 

forces that dominate the flow situations studied in this work are drag and virtual mass 

and that a simple linear combination is adequate. Other forces, such as lift, Faxen, 

Basset and additional surface tension forces, which are known to exist will be 

neglected, mainly because there is still some controversy over the proper forms (Drew 

and Lahey, 1979; Ishii and Mishima, 1984). 

The drag force can be defined as (Lahey, 1991) 

(4.24) 

where rb is the radius of a bubble or drop. Given eqn (4.24) we are going to re-define 

the drag force as (Lahey, 1990) 



(4.25) 

so that the total drag force is proportional to the interfacial area concentration. 

According to Ishii (1979)’ Cd is a function of the dispersed phase fraction and the 

particle Reynold’s number. A variety of different drag coefficient correlations are 

reviewed in Ishii (1979) and Ishii (1980) and will not be repeated here. Typically, the 

effect of Reynold’s number is accounted for explicitly in the correlations for the 

Stokes and viscous regimes but dispersed phase fraction does not appear. As the 

Reynold’s number increases into Newton’s regime and higher, the main correlating 

factor is the dispersed phase fraction and the effect of Reynold’s number is only 

accounted for by the selection of the correlation. A disconcerting fact is that the drag 

increases with dispersed phase fraction until the churn-turbulent regime is obtained 

and then the drag decreases rapidly with dispersed phase fraction (Ishii and Zuber, 

1979). Because we are interested in rapid mixing conditions we will assume that the 

flow is turbulent and in the “ Newton’s law regime”. This is reasonable assumption 

because in an earlier work (Yarbro and Long, 1995) we used a constant value of Cd = 

0.44 in the turbulent limit of the Newton’s law regime (Bird, 1960) with good results. 

Therefore, the drag coefficient will be defined (Ishii and Zuber, 1979) as 

2 

C, =0.45[ 1 + 17.67[f(ad)] ‘1 
1 8.67f (ad ) (4.26) 

wherefjad) is defined for drops in liquids as 
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f(aJ = (1 - (4.27) 

The virtual mass effect has been defined as (Drew, 1979b, Cook and Harlow, 

1984) for the flows of interest in this work 

(4.28) 

and the virtual volume coefficient can be defined as a function of the global dispersed 

phase fraction (Ruggles, 1988) 

Cvm = 05( 1 + 12(& r) (4.29) 

4.2.3 Turbulence 

Turbulence is an extremely complicated phenomena in single-fluid systems 

and is complicated further in multi-fluid systems with the introduction of an interface. 

Ishii, (Ishii, 1975), Nigmatulin, (Nigmatulin ,1979), Biesheuvel and van Wijngaarden, 

(Biesheuvel, 1984), Theofanous and Sullivan, (Theofanous, 1982), Drew and Wood, 

(Drew, 1985) and VanderHeyden, (VanderHeyden, 1995) have studied the problem of 

multi-fluid turbulence. In many cases, generalizations of a phenomenological mixing 

length or single-fluid K-E approach was used. Because we are interested in predicting 

the transport of interfacial area, we are not going to propose a new turbulence closure, 

but use the current state-of-the-art. In this work, we have identified an new multi- 

fluid turbulence term in eqn (3.27) 

- - s = P k [(ai ifi V; ) - (ai V;i ii )] (4.30) 



which represents the interaction between turbulent fluctuations in the different fluids. 

For the case of incompressible fluids and assuming that the interface has no 

thickness so that 

then - S becomes - 

(4.3 1 a) 

(4.3 lb) 

(4.32) 

If we compare the above equation to similar relationships in single-phase 

turbulence, then R is the same as the conventional Reynold’s stress tensor and =kk 

represents the inertial transfer of energy by turbulent fluctuations within a phase k. 

However, the second ‘Reynold’s’ stress term, & k k + l ,  resembles a spatial statistical 

correlation. 

Consider a statistical property of a random variable at two points separated by 

a distance vector g. An Eulerian correlation tensor can be defined (Brodkey, 1967), in 

Cartesian coordinates as follows 

Physically, this can be depicted as shown in Figure 4.2 
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Figure 4.2 Spatial Velocity Fluctuation Correlations across Phase Boundary 
If the distance becomes zero, then R is the same as the conventional Reynold’s =kk+l 

stress tensor, however, as the separation increases and the value is non-zero, then 

there is a large turbulent interaction between the two phases. However, this is a new 

term and more research is required to begin to positively identify the proper closure 

form. 

Therefore, to proceed, we will define the phase k bubble-induced turbulence 

as (Drew and Wood, 1985, Lahey, 1991). 

for the continuous phase and 

(4.35) 

for the dispersed phase. Because the derivation of this turbulence closure was based 

on the interaction of a bubble with the continuous phase, we will assume for this work 

that it includes, to some order of approximation, the interfluid turbulence, S . - - 
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In this particular turbulence closure, the only unknown is the turbulent eddy - 
viscosity, pt. Since the goal of this work is to define a one-dimensional model for 

interfacial area concentration transport, only the diagonal terms would be modeled by 

the eddy viscosity. For one-dimensional models, the non-diagonal terms of the 

Reynold’s stress tensor are neglected and therefore, only the diagonal terms will be 

retained. Most models for the eddy viscosity mainly define the non-diagonal terms so 

for this work the eddy viscosity will be neglected. Hence, the final form of the 

continuous phase turbulence closure is 

4.3 Constitutive Equations Summary 

4.3.1 Review 

The constitutive equations in the general model were formulated in vector- 

tensor notation to ensure that the principle of dimensional invariance was satisfied. 

The principle of material frame indifference (objectivity) has been carefully studied 

(Drew and Lahey, 1979; Dobran, 1985; Drew and Wood, 1985). Specifically, if a 

constitutive equation is formulated from objective variables, then the total is 

objective. From the previously cited work, velocity differences, opposing 

acceleration differences such as those in the virtual mass term and the linear form of 

the material stress used in this work are objective and therefore admissible. The 

scalars for phase fraction and interfacial area are also objective. Therefore, we 

conclude that the proposed model satisfies the principle of objectivity. The principle 

71 



of equipresence has been followed when possible, except in the drag and virtual mass 

coefficients. Given the empirical nature of these correlations, all of the postulated 

field variables have not been included. However, it was impractical to try to include 

all of the dependencies without a better understanding of the basic physics. 

Incorporating the material phase indicator, X, satisfies the principle of homogeneity 

by identifying the appropriate phases prior to the averaging process. The principle of 

material isotropy is nominally satisfied for the systems selected in this work with the 

exception that the drag correlation was selected based on the assumption of a certain 

flow regime. All of the equations are dimensionally’correct and have been 

demonstrated to reduce to the proper single-phase models. 

4.3.2 Entropy Constraint 

The entropy inequality and its application to developing constitutive equations 

has been thoroughly discussed by Arnold (1988). Based on Arnold’s evaluation, the 

following constitutive equations are consistent with the entropy inequality. 

(4.37a) 

(4.37b) 

(4.37c) 

(4.37d) 



4.4 The Specific One-Dimensional Model 

To begin, we will use the ensemble/volume averaged equations summarized in 

Eqn (3.59-3.63). To approximate an area average, we will re-define the volume 

average 

(4.38) 

and assume that the area, A, is a unit cross-sectional area that is constant for the 

equipment studied. Therefore, we can take the z-component of the equations written 

in cylindrical coordinates for a system of Newtonian, incompressible fluids 

Mass: 

a a -ak = 0 
dt az 

Momentum: 

Continuous 

(4.39) 

(4.40) 



Dispersed 

Mechanical Energy Continuous Phase: 

Interfacial Area: 

(4.41) 

(4.42) 

(4.43) 

Several simplifications can be made. First, if we examine the non- 

dimensional momentum and mechanical energy equations, eqn (3.66-3.68), the 

viscous terms are proportional to the inverse of the Reynold's number. Because we 

are interested in Reynold's numbers above 1000, the z-components of these terms 

will be neglected and the viscous shear will be approximated by a simple friction 

factor model with a friction multiplier similar to the Lockhart-Martinelli method 

(Hestroni, 1982 
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f k  = f m f k  

f, =datafit 

wherefk is defined by 

0.079 1 (Turbulent Re 2 3 100) f k  = - 
Rex 

(4.43) 

(4.44a) 

(4.44b) 

(4.45) 

(4.46) 16 (LaminarRransitional Re<3100) f, = - 
Re 

For this work, a simple pressure model will be used. For incompressible fluids, it will 

be assumed that the individual phase pressures will only differ by the surface tension 

across the contact area. Therefore, the "interfacial pressure", which can be defined as 

(Lahey, 1991) 

can be approximated as (Stuhmiller, 1977) 

(4.47) 

(4.48) 

For horizontal systems (0 = 904, so cos(0) will be equal to zero. Also, 3 in eqn 

(3.63) will be set equal to % as an approximation because the continuous phase 

provides the mechanical energy that generates interfacial area. 

With these simplifications, the mechanical energy equation (4.42) can be 

arranged to equal the surface work term, ((qz)ai(va)) and then set equal to the RHS 



of the interfacial area concentration transport equation. They can be combined as 

shown 

After some re-arrangement, eqn (4.49) becomes 

(4.50) 

Now, eqns (4.41-4.45) can be re-written substituting the above relationships to obtain 

a final set of model equations shown below. 



Mass: 

Continuous 

--ac a +--ac(v,) a = 0 
at az 

Dispersed 

a a 
--a,+--a (v  ) = o  at dz dz 

(4.5 1) 

(4.52) 

Momentum: 

Continuous 

(4.53) 

Dispersed 

(4.54) 
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Interfacial Area: 

(4.55) 

These equations define a one-dimensional transient model for interfacial area 

transport. For the purpose of this initial study, steady-state was assumed and 

therefore all of the time derivatives may be set to zero. 

Furthermore, it should be noted that the “bubble-induced” turbulence is a 

production term. The viscous interaction terms were neglected so that there is little 

dissipation in the model except for “wall friction”. Also, phase distribution constants 

have been defined by some authors (Drew and Wood, 1985, Ishii, 1984) to account 

for the averaging process on the velocity and phase distribution profiles within the 

conduit. However, we shall adopt the assumption by Pauchon and Bannerjee (1988), 

that the distribution coefficients are accounted for in the friction factor and other 

“constant” terms. This is the same as assuming the distribution parameters are equal 

to one as is the custom. 

- - -  
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4.5 Numerical Solution 

The NDSolve numerical package in Mathematica 2.2 was used to solve the 

ordinary differential equations (ODE). Since it is an initial value type solver based on 

Gear’s method (Wolfram Research, 1993), it is very important to define the initial 

conditions correctly. This is because the ODE’S in this work are boundary value 

problems (BVP) which are usually solved by different methods: However, it is 

possible to treat z as t and use an initial value technique to solve the equations using a 

“shooting” method (Finlayson, 1980; Wolfram Research, 1993). The disadvantage is 

that the final solution is very sensitive to the initial boundary conditions, which for 

multi-dimensional problems can be difficult to define properly. 

4.6 Results and Discussion 

4.6.1 Berkman and Calabrese, 1988, Kenics Mixer Data 

4.6.1.1 Background 

It is well-known that drops are stabilized in agitated liquid-liquid systems by a 

combination of surface tension and internal viscous forces. Prior work (Middleman, 

1978) studied the dispersion of a low-viscosity liquid into a turbulent continuous 

phase in a static mixer. Middleman used Kolmogoroff theory to obtain a semi- 

empirical relationship 

(4.56) 



to describe the equilibrium sauter mean drop diameter. Because this approach 

assumes that the drop is acted upon only by inertial subrange eddies opposed by 

surface tension, Berkman (1988) extended the correlation to regions where the 

disruptive force was balanced by both viscous and surface tension forces by 

examining fluids with a range of viscosities and surface tensions in a Kenics static 

mixer. 

4.6.1.2 Experimental Method 

A 24 element, 1.91 cm diameter stainless steel Kenics Mixer with a pitch of 

1.5 was used in all of the experimental runs. A diagram of the experimental facility is 

shown in Figure 4.3. 

Wafer 
Supply 

TEST 
SECTION 

Figure 4.3 Berkman's Experimental Test Facility 
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The dispersed phase was introduced through a 0.25 cm ID, 0.32 cm OD 

capillary tube into the body of the mixer much like the co-current jet described later. 

Drops were photographed and the resulting pictures analyzed for drop size 

distributions. For each dispersed phase, experiments were conducted at Reynold’s 

numbers from 12,000 to 21,000 based on the velocity of the continuous phase. The 

phase fraction was to be held constant at 0.001; however, this was difficult to control 

and varied between 0.00057 and 0.001. 

4.6.1.3 Boundary Conditions 

The initial velocities were calculated from the Reynold’s number and the 

equilibrium phase fraction. 

(4.54) 

(4.56) 

The initial phase fractions and interfacial area concentration were estimated from 

geometrical considerations. Phase fractions were based on the ratio of the areas of the 

capillary tube and the pipe body of the mixer. 

a,  = l-a, 

The initial interfacial area concentration was estimated by 
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(4.58) 

c 



(4.59) 

4 

From Berkman's work, the friction multiplier was estimated to be about 50 as 

shown below in Figure 4.4. 

1 

0.1 

0.0 1 

0.001 

c 

i o  0 m 

5000 1 io4 1.5 io4 2 io4 2.5 io4 
Re 

Figure 4.4 Friction Factor for Kenics Static Mixer 

After a Reynold's number of 10,000, the friction factor, fk,  is approximately 

50 times the Blasius friction factor, f. Therefore, for this case, the friction multiplier 

was approximated at 50 as was done in Berkman's work. 



4.6.1.4 Results 

Only the data for the low viscosity fluids (pk< 1 .O cp) were used because the 

effects of viscous shear were neglected for this study except for the wall shear 

0.0 I6 

0.014 

0.012 ................. 1 
e: nn o.o, ~ . . ~ .  ~~ 

0.008 ................. 

0.006 ............. /; 

0.004 

0.015 0.02 

I . , . . I . , . . I . . . .  

0.025 0.03 0.035 0.04 
We.” 

Figure 4.5 Comparison of Experimental and Calculated Values for the 1.91 cm 
Diameter Kenics Mixer Data (12,000 c Re < 21,000 and Q = 0.001) 
@32m/Do = measured Sauter Mean DiameterDipe Diameter, 
D32c/Do = calculated Sauter Mean Diametermipe Diameter) 

The sauter mean diameters were calculated from the relationship, 0 3 2  = (6 

@)/ui, where the interfacial area concentration was calculated with the model. The 

results are plotted according to We-3’5 shown below. The model overpredicts the 

interfacial area concentration at lower We numbers, but begins to converge at higher 

We numbers. In this case, an average friction factor was used based on the published 

values in Figure 4.4 because this was similar to the approach Berkman and Calabrese 

used in their empirical correlation work. The friction factor was not fit to the data as 
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was done for the following cases. If several values are chosen from Figure 4.4, over a 

Reynold's range of 10,000 to 21,000, the friction multiplier varies from 53 to 63. In 

addition, the equilibrium phase fraction for the experimental data varied from 0.001 

to 0.00057 (Berkman, 1988) and this could potentially cause some variance. 

However, because both the experimental and model lines are straight, it is more likely 

due to the neglect of viscous effects in the model. 

Also, it was discovered that the final velocity of the dispersed phase fraction 

was more accurate if the dispersed phase friction factor was approximately 20% 

higher than the continuous phase. This is because the overall pressure drop was 

calculated with the continuous phase density, therefore the dispersed phase friction 

factor was adjusted to compensate. 

4.6.2 Yarbro and Long, 1995, Kenics Mixer Data 

4.6.2.1 Background 

Several groups have successfully studied the problem of empirically predicting 

interfacial area in systems of immiscible fluids. We are interested in systems where the 

contactor is a "tubular reactor" such as columns, packed beds or in-line mixers. In-line 

mixers, such as Kenics or Sulzer mixers, are attractive because they are simple, have 

low residence times, and are easy to operate and maintain. In this work, a simple multi- 

fluid model based on the work by Lahey (Lahey, 1991) was used with a variety of 

simplifying assumptions to estimate the energy dissipation in a liquid-liquid system in a 

Kenics mixer. The energy dissipation with a residence time correction was equated to 



the surface energy of the drop to estimate an average interfacial area concentration. The 

model results were compared to experimental measurements with fair agreement. 

4.6.2.2 Experimental Method 

In this study, a lZelement, 0.635 cm diameter, 3 1.75 cm long Kenics mixer 

with a pitch ratio of 0.8 was used. Micropump gear metering pumps (2500 ml/min 

capacity) were used with stainless steel pump heads. All hardware was Teflon tube 

with compression fittings. Five-liter glass carboys were used to hold the phases. 

Flowrates and phase fractions were measured by timing the flow into a graduated 

cylinder and measuring the resultant volumes. The drop size distributions were 

measured using a Kodak C O W  electronic camera with a CCD speed of 30 frames-per- 

second, a electronic shutter speed of 1/10,000 of a sec and a drop resolution of 

approximately 30 microns. The light source was a 100 W incandescent bulb. The bulb 

was placed behind a shield with a slit width of 20 mm and a light diffuser of either 

frosted glass or paper. The light source was then oriented to produce some contrast in 

the image to enhance the drops. The data was recorded on VCR tape and processed on 

a Gateway 2000 PC installed with a Raptor frame capture board and Image Pro 

software for image manipulation. Drop sizes were counted manually by taking 

individual pictures from the video tape and counting the drops in the picture. The 

Image Pro software allowed a calibration for length on the picture. This was done by 

placing an object in the picture with a known size. The number of pixels per length was 

calculated. Circles drawn around each identified drop were then measured by the 



software and placed in a data file. Reagent grade dodecane and distilled water were the 

fluids used in this study. The equipment is shown below in Figure 4.6. 

- 

Separator Organic Aqueous Phase 

Slit 

Pump 

Figure 4.6 Kenics Mixer Test Equipment 

4.6.2.3 Boundary Conditions 

Because the liquids were introduced through a “Y” teflon fitting where the 

two inlet areas were equal to the outlet area, setting the initial velocities and 

interfacial area was a challenge. The initial volumetric flowrates were calculated as 

follows 
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Q c n  = Vf (4.61) 

and the final linear velocity measured according to a calibrated pump setting was 

based on the Reynold’s number to make it easier to run the model. 

(4.62) 

Because the phase fractions were high for this portion of the study (0.1 1 < a < 0.28), 

the viscosity and density were estimated according to a simple mixing rule 

p u a d o p d  +(l-adn)pc (4.63) 

P = a d n P d  + ( 1 - a d n ) P c  (4.64) 

and then these values were used to estimate a Reynold’s number so that the proper 

friction factor model was used. 

The initial linear velocities were calculated by assuming that each fluid 

occupied a portion of the common inlet area at the point of the “Y” proportional to the 

volumetric phase fraction. Therefore, each was estimated 

Q c n  

A -  A, vu, = (4.65) 

(4.66) 

(4.67) 



As shown, if the phase fractions are equal at 0.5, then each phase occupies exactly 

one-half of the inlet area and their linear velocities would be equal. In the same 

manner, the initial phase fractions were estimated by 

(4.68) 

a, = 1 -a, (4.69) 

The initial interfacial area concentration was estimated by using the geometry 

of the initial contact plane of the two phases as they contact at the common inlet. 

This was calculated as the intersection plane divided by the inlet area 

(4.70) 

4 

This is also proportional to the phase fraction because the intersection will shift 

depending on the proportion of the inlet volumetric flows. 

In the following cases, the friction factor multiplier was found by adjusting the 

value to get the correct interfacial area concentration for a single data point from each 

phase fraction set. This differs from the Berkman case because he only used low 

phase fractions, 0.001 or less so that the pressure drop was due mainly to the static 

mixer elements. In addition, he had measured the pressure drop and had experimental 

values for the total friction factor. 

After a value was set, it was used for each data point within the same phase 

fraction. Then, the value would be adjusted for the next data set at a different phase 

fraction. Typically, the friction factor multiplier followed a power law curve and 
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could easily be fitted after only three points. For this case, the laminar friction factor 

model that was chosen was used for both the laminar and transitional flows. 

16 
Re 

f =- (4.7 1) 

4.6.2.4 Results 

The experimental and calculated results are shown below in Figures 4.7 and 

4.8. 

0.1 0.15 0.2 0.25 0.3 

Figure 4.7 Experimental Data for the 0.635 cm Diameter Kenics Mixer (1300 e 
Re e 3100 and 0.1 e e 0.28) 
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Figure 4.8 Calculated Values for the 0.635 cm Diameter Kenics Mixer 

With the exception of scatter because of experimental error (estimated at - +/- 

25%)' the data shows a reasonable qualitative fit at low Reynold's numbers. The 

error estimate is based on Azzopardi's (Azzopardi, 1979) paper. Some drop 

coalescence was occurring at the lowest Weber numbers which made it difficult to get 

extremely accurate drop size estimates. In addition, even though the pumps were 

carefully calibrated to ensure consistent flows and the phase fractions and average 

flowrates were checked by timing the volumes captured in a graduated cylinder, the 

actual photos of the drops were difficult to use. In order to get pictures that caught 

rapid drop movements without overlap, the shutter speed of the camera was adjusted 

to between 1/6000th and 1/1O,OOOth of a second. At this high-shutter speed mode, 

c 



only every other ‘horizontal’ line was captured on the video tape and the image had to 

be ‘blended’ to overcome this semi-checker effect. This ‘filtering’ operation caused 

the fine detail to be lost in the image. At high phase fractions (ob > 0.1) some of the 

drop boundaries were estimated and it is most likely that some of the smaller drops 

were lost to view. 

This case is also similar to the Tee mixer discussed later because the phases 

were brought together in a “Y”. With a “Y”, it was difficult to assign exact geometric 

factors for the inlet boundary values for phase fraction and interfacial area 

concentration. This may account for some of the variance between the model and the 

experimental data. Also, as with Berkman’s data, the velocity profile for the 

dispersed phase was better if the wall drag friction factor was set approximately 20% 

higher than the continuous phase. 

4.6.3 Lin, 1985, Co-Current Jet Mixer Data 

4.6.3.1 Background 

Most interfacial area concentration predictions are based on an assumption of 

isotropic turbulence and relate the drop breakage to a total energy dissipation 

calculated from macroscopic system variables, such as pressure drop. In this work, a 

dimensional analysis approach was used to relate the final drop size distribution to 

phase velocities and system geometry. A low viscosity oil (kerosene) was dispersed 

into water in a co-current jet mixer. Data were obtained for two mixer sizes, 0.027” 

and 0.041”, over a Reynold’s number range of 3,100 to 29,960 and were correlated 

by the following equation 
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0.89 -0.711 1.458 

D32 = 8 .8~10~  [ z) [ ?) (V,)-1549 + 5 4  a) 
4 

4.6.3.2 Experimental Method 

The co-current jet apparatus and the supporting equipment are shown in 

Figure 4.9. 

(4.72) 

Figure 4.9 Lin's Co-Current Jet 

Two immiscible phases were mixed over ranges of phase fractions and 

Reynold's numbers. Drop sizes were measured using a light attenuation techniques 

(Azzopardi, 1979). The light attenuation apparatus was calibrated with photographs 

of the flowing dispersion. The data was then correlated to the proposed equation. A 

detailed description of the equipment is given by Lin, 1985. 

4.6.3.3 Boundary Conditions 

The initial volumetric flowrates were available with the geometry of the 

equipment so that initial velocities were calculated as follows 
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QC 
vc* = 

AT - Ad 
(4.73) 

Qd v* =- 
A d  

(4.74) 

Again, like Berkman's work, the initial phase fractions and interfacial area 

concentration were based on the system geometry 

.o,' adi =- 
4 4  

(4.75) 

(4.76) 
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Figure 4.10 Loss Coefficients for Flow through Sudden Area Changes (Fox and 
Macdonald, 1973) 
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As mentioned earlier, the friction factor relationship was found by adjusting 

the value of the friction multiplier to get the correct interfacial area concentration for 

a single data point from each phase fraction set. It appears to follow the expansion 

loss coefficient trend shown above in Figure 4.10. 

In all cases, the friction multiplier was fit to a power law expression similar to 

the Blasius friction factor correlation as shown in Figure 4.1 1. 

E w 
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Figure 4.11 Friction Multiplier for 0.027" and 0.041" Co-Current Jet 

4.6.3.4 Results 

The experimental and calculated values for phase fractions from 0.09 1 to 

0.038 are shown in Figures 4.12 and 4.13. 
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Figure 4.12 Experimental Data for the 0.027" Co-Current Jet 

(2300 < Re c 16,300 and 0.038 c ad < 0.091) 

As shown in the Figures, there is an excellent agreement between the 

measured values and the ones calculated by the model. The data for the 0.041" 

injector is shown in Figures 4.14 and 4.15. 
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Figure 4.13 Calculated Values for the 0.027" Co-Current Jet 
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Figure 4.14 Experimental Data for the 0.041" Co-Current Jet 
(2300 < Re e 16,300 and 0.038 e ad e 0.091) 
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Figure 4.15 Calculated Values for the 0.041" Co-Current Jet 
I 

The agreement is extremely good for Weber numbers up to approximately 

1000 and begins to diverge at the higher Weber Numbers. This is most likely due to 

the fact that the interphase viscosity and turbulence effects were neglected and there is 

not enough dissipation calculated in the model. If we examine eqn (4.14) 

note that there are several 'multi-fluid viscous stress' terms in the last bracket on the 

RHS. When the fluid velocities are equal, these terms are zero and the standard 

engineering assumption of neglecting the viscous terms is probably valid for the 

momentum and mechanical energy balances. However, most of the drop production 
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occurs when the two fluids are mixed and there are large gradients of velocity and 

phase fraction. From the numerical results, these terms should be included in a 

complete model. 

In this case and in the 1.91 cm diameter Kenics mixer case, the experimental 

configuration enabled exact geometric factors to be defined for the inlet boundary 

conditions for phase fraction, velocities and interfacial area concentration. The 

turbulence in jets can be locally isotropic for Reynold’s number > 780 (Brodkey, 

1967). Because the model assumed a “generalized isotropy”, this enabled the model 

to give good predictions for these cases. Again, it was discovered that the dispersed 

phase velocity profile was more accurate if its wall drag friction factor was 

approximately 20% higher than the continuous phase value. 

4.6.4 Reimus, 1983, Tee Mixer Data 

4.6.4.1 Background 

Because static mixers offer many advantages over conventional mixers in 

certain applications, there is a strong interest in how the flow parameters relate to 

mixing characteristics. As mentioned above, a common approach is to use 

Kolmogoroff theory to correlate drop size data. However, this assumes an 

equilibrium has been achieved and in the case of the Tee mixer, a non-equilibrium 

situation exists. Reimus and Long discovered that Kolmogoroff theory only 

approximately applies due to strong non-isotropic wall and non-equilibrium effects. 

They were able characterize the mixing and the droplet breakup process with the 
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energy dissipated in the tee and the residence time. The final equation form for 

prediction of Sauter Mean drop diameter is 

which includes the dissipation energy through the pressure drop, the effect of 

viscosity and phase fraction and a minimum drop diameter. 

4.6.4.2 Experimental Method 

The tee mixer used is shown in Figure 4.16 below. 

(4.77) 

Figure 4.16 Tee Mixer Schematic 

The supporting equipment is exactly like that used by Lin. A light attenuation 

technique was used as described above and was calibrated with a photographic 

method. The runs varied over a phase fraction of 0.01 to 0.2 and Reynold's numbers 
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of 25,000 to 80,000. A detailed description of the equipment and data is in Reimus, 

1983. 

4.6.4.3 Boundary Conditions 

The boundary conditions for this case are considerably more complex than for 

co-current jets, which is essentially what the first two cases were. This system has 

already been demonstrated to be non-isotropic and multi-dimensional. The question 

arises as to what is the initial dispersed phase velocity, phase fraction and interfacial 

area concentration? This is Micult for a one-dimensional model. Therefore the 

following approach was used. If we examine a simple diagram of what is happening 

in the Tee mixer (See Figure 4.17 below) 

z = o  
I 

1 I 

Continuous I - 

Dispkrsed 

Figure 4.17 Boundary Condition for Velocity in the Tee Mixer 



we see that the initial velocities are actually functions of the angle formed when the 

two fluids collide in the junction. Therefore, given the volumetric flowrates and inlet 

pipe cross-sectional areas, the initial velocities can be defined 

v,, = -cos(90' Qc -0) 
A C  

(4.78) 

(4.79) 

Hence, the method was to assign various values of theta to a single data point until the 

final interfacial area concentration agreed, then it was assumed that that angle would 

be constant within a set of data for a single phase fraction. A plot of the angle vs 

phase fraction is shown in Figure 4.18 below. 
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Figure 4.18 Estimates of Phase Contact Angle from Calculations 
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Unfortunately, there is no ‘a priori’ method to predict the initial phase fraction 

and interfacial area concentration. It is evident from Figure 4.17 that the initial 

dispersed phase fraction is close to zero, but most likely not zero, therefore, it was 

estimated as 

a d i  = cos(8) (4.80) 

which allows it to be scaled to the volumetric flow ratio of the two fluids. Following 

that same reasoning, the initial interfacial area concentration was estimated as 

(4.8 1) aii = 100ad 

so that it would be scaled to the final phase fraction in the device. The value of 100 

was chosen because that gave the best results. A similar approach was used for the 

friction multiplier. 

4.6.4.4 Results 

The results from the 0.2 cm Plexiglas Tee mixer at 0.01,0.06 and 0.1 phase 

fractions are shown in Figures 4.19 and 4.20 below. 

The quantitative agreement between the model is not as good with the Tee 

data as with the other cases, but the qualitative agreement is reasonable. 

Most of the discrepancy is likely due to the ‘scaled‘ estimates of the inlet 

boundary conditions. As shown in Figure 4.17, it is difficult to calculate ‘a priori’ the 

inlet phase fractions and interfacial area concentrations for a one-dimensional model. 

For inlet phase fraction and interfacial area concentration, the values were not based 

102 



0.015 ' '  " ' I '  " " " " I '  " " " ' * '  
0.002 0.0025 0.003 0.0035 0.004 0.0045 

Figure 4.19 Experimental Data for the 0.2 cm Plexiglas Tee Mixer 

(27,000 c Re c 51,000 and 0.01 c < 0.1) 

0.002 0.0025 0.003 0.0035 0.004 0.0045 

W P  

Figure 4.20 Calculated Values for the 0.2 cm Tee Mixer 



on geometric factors as in the other cases, but only on empirical scaling factors. From 

the numerical work, it would help to go to a higher dimensional model to better define 

the boundary conditions. 

The mixing in the Tee is the most vigorous of all the applications and 

therefore has the highest gradients of phase fraction and velocity and therefore, the 

additional viscous terms are most important. Also, the conditions are most likely the 

least isotropic of all of the experimental cases. Again, the dispersed phase wall drag 

friction factor was set 20% higher than the continuous phase value. 

4.7 Discussion 

It appears that the model without viscous effects qualitatively models the 

interfacial area, especially when the turbulence conditions are reasonably isotropic 

like the co-current jet. Also, when the inlet boundary conditions can be based on 

known geometric factors, as in the 1.9 1 cm Kenics mixer and the co-current jet, the 

model results are in reasonable quantitative agreement with the experimental values, 

allowing for experimental error. 

To help interpret the results in terms of the balance equations, we will derive 

the non-dimensional form of the final model equation for interfacial area transport. 

Using the dimensionless variables defined earlier and inserting them into the vector- 

tensor form of eqn (4.55) including viscous shear and gravity effects to obtain 
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DO 

- [<)e* OD . [a,.' =C . (.:)I - a c=, .*:v*(E:)) - 

Multiply both sides by D2/v gives 

(4.82) 

(4.83) 

These dimensionless groups can be re-defined as the well-known Weber, Froude and 

Reynold's numbers as follows 

We 
Re 

Assuming steady-state and rearranging the equation we obtain 
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(4.85) 

The Weber number has been moved to the LHS of the equation because 

originally the surface tension was associated with the interfacial area concentration in 

the total mixture energy balance. We restricted the system to those with reasonably 

constant surface tensions so that 0 could be brought outside the gradient operator. 

Allowing the velocity to increase without bound, we find that eqn (4.85) 

becomes 

o =  y* .ac-(E:)+(~:).(.cVP*, (vf") 
2 

+(XI). [( p*)V'a,] + I!* - [ 4: (E:)] - !&I!* (E:) (4.86) 

which resembles the mechanical energy balance for a single phase. Therefore, it 

implies a minimum drop size. This supports results found experimentally (Long and 

Reimus, 1992a) where they correlated their data by adding a constant for the 

minimum drop size so that as the velocity increased, the drop size asymptotically 

reached the minimum drop size. 

For systems with 'constant' surface tension, eqn (4.84) has an interesting 

relationship. The ratio of the Weber and Reynold's numbers appears with the viscous 

stress and dissipation terms. This implies that that 



We - pv viscous forces 
Re CT surface forces 
---= (4.87) 

so that as the viscosity increases, these forces are important even though the 

Reynold's number is high. Therefore, the viscous forces should be included in a 

complete model. This is supported by the comparison of the calculated and 

experimental data. In support of this observation, data on a variety of systems have 

been plotted in Figure 4.21 for a Kenics static mixer as a function of Weber number 

and viscosity ratio 
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Figure 4.21 Drop Size Data for Kenics Static Mixer (Chemineer, 1988) 



Chapter 5 

CONCLUSIONS AND FUTURE WORK 

5.1 Summary 

A multi-fluid model was derived using a combination of ensemble- and 

volume-averaging techniques. The model contained five equations for 

Mass (each fluid) 

Momentum (each fluid) 

0 Interfacial area concentratiodMechanical energy Balance (continuous phase) 

A key concept in the derivation was the assumption that the property exchange 

rate on the interface is the same everywhere on the interface at a particular location in 

the fluid, relative to the interface, regardless of the interface orientation. This was 

defined as the “generalized isotropy” condition for the interface. With this definition, 

the property exchange could be separated from the interface and a separate term, ai, 

the interfacial area averaged over the volume could be defined. Once the interfacial 

area concentration was defined, then it appeared in all of the property exchange terms 

for the interface. In particular, a new turbulence term for the interaction of two fluids 

across an interface appeared as a result from the momentum balance equation. 

Treating the interfacial area concentration as a separate variable enabled an 

equation to be defined for its transport. This was accomplished by looking at a total 

energy balance for the fluid mixture in a control volume and treating the energy of the 



interface as a combination of the surface tension and interfacial area concentration. 

Subtracting the energy carried by the individual fluids that did not contribute 

specifically to the transport of area, it appeared that the transport of interfacial area 

concentration was mainly due to convection and surface work. In the various 

experiments, there were definite continuous and dispersed phases. In these cases, 

particularly for rapid mixing, the continuous phase acts as an ‘impeller’ and disperses 

the second phase through convection and surface work. Therefore, a mechanical 

energy balance on the continuous phase completed the model and provided the source 

term for the ,generation of interfacial area. 

5.2 Conclusion 

Based on the comparison of experimental and calculated data for four different 

static mixer systems over a large range of Weber and Reynold‘s numbers, the 

proposed model is correctly predicting the transport of interfacial area up to Weber 

numbers of 1000. The accuracy of the model is shown below. 

From Figure 5.1, the data points are reasonably distributed about a straight 

line fitted through all of the points. The effect of Weber number is illustrated in 

Figures 5.2 and 5.3 below 
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Figure 5.3 Variation of Measured and Calculated Interfacial Area 
Concentration with Weber Number 

As discussed earlier, viscosity effects were neglected. However, examining 

the non-dimensionlized interfacial area transport equation showed that this is not a 

good assumption for a complete model and viscosity effects are important at the 

higher velocities in contrast with conventional wisdom for single-fluid systems. This 

possibly explains the slope of the line in Figure 5.2. In addition, accurate inlet 

conditions are important for this type of numerical approach. The trends in the data 

seem to indicate that the largest scatter was in the Kenics mixer with the “Y” and the 

Tee. As mentioned earlier, these cases did not have an exact geometric basis for the 

inlet boundary conditions. All of the other cases were essentially co-current jets and a 
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geometric basis was applied to the inlet conditions. However, the general conclusion 

is that the model is accurate and portrays a significant step towards solving a difficult 

problem. 

5.3 Future Work 

The current model should be extended to include the viscosity effects and 

compared to experimental data. This will be difficult because of the numerical 

difficulties in solving the equations with higher-order differential terms. Therefore, a 

more robust numerical procedure, such as a finite-volume or finite-element procedure, 

should be used to enable better definition of the boundary conditions. Also, progress 

should be made in defining better turbulence terms and in particular, defining a 

correlation for the inter-fluid turbulence. 

Some possibilities for better multi-phase turbulence models include using the 

drop-size in a mixing-length model or in defining a multi-fluid K-epsilon such as in 

Kashiwa and Gore, 1992. 

, +  . . 
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APPENDIX A 
Berkman and Calabrese 

1.91 cm Kenics Mixer 

A.l Equation Summary 

A.1.1 Model Equations (Steady-State) 

Mass: 

Continuous 

a -acvcz = o  
ai 

Dispersed 

Momentum : 

Continuous 



Dispersed 

Interfacial Area: 

A.1.2 Equation Coefficients 

Drag Coefficient (Lahev. 1990) 

where f(W) is defined for drops in liquids as (Ishii, 1979) 

f (a , )  = (1 - 

Virtual Mass (Lahey. 199 1) 
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(A.6a) 

(A.6b) 

(A.6c) 

(A.7a) 



and the virtual volume coefficient can be defined as a function of the global dispersed 

phase fraction muggles, et.al., 1988) 

C,, = 05[ 1 + 12(& ,'> (A.7b) 

A.1.3 Turbulence (Drew and Wood, 1985) 

1 2 
- R, = - p p , l v a  - VdJ (A.8a) - 

P d  R =-R =d P, 

A.1.4 Interfacial Pressure and Friction Factor 

Friction Factor (Re > 3000) (Bird. 1960, Hestroni, 1982) 

fkf = f m f k  

f d  =12f, 

where f is defined by 

0.079 1 
Rex 

(Turbulent Re > 3000) f k  = - 

Interfacial Pressure (Stuhmiller. 1977, Drew and Wood, 1985) 

pki =20ai ---p,(v, 1 -vm>2 

(horizontal systems) pg cos(e) = o 

(A.8b) 

(A.9a) 

(A.9b) 

(A.9d) 

(A.9c) 

(A. 1 Oa) 

(A. lob) 



A.2 Boundary Conditions 

A.2.1 Initial Velocities 

A.2.2 Initial Phase Fractions 

A.2.3 Initial interfacial area concentration 

ID dz 40, 
m;dz Dg 

a, =d- -- 

4 

(A.l la) 

(A.l lb) 

(A. 12a) 

(A. 12b) 

(A. 13) 

A.2.4 Friction multiplier 

f,, =50 
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(A. 14) 
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A.3 Results 

Table A.l Results of Modeling the 1.91 cm Diameter Kenics Mixer Data 

ad Re D32m/Do 
0.001 12000 0.0150 
0.001 15000 0.0105 

Kenics Mixer: Diameter 1.9 1 cm, 24 elements, pitch 1.5 

Fluids: Continuous phase - water, Dispersed Phase - p-xylene 

D32c/Do delD32/Do We We(-3/5) 
0.0087 0.0062 235.6 0.0377 
0.0075 0.0030 368.1 0.0289 

I 0.OOll 1800Ol 0.0085l 0.00651 0.00191 530.11 0.02321 
I 0.0Oll 210001 0.00551 0.0055l 0.OOOOl 721.51 0.01931 

D32,,,/Do = measured values, D32JD0 = calculated values 

A.4 Mathernatica 2.2 Program 

Hydrodynamic Model of Drop Formation in a Kenics Mixer 

Test of interfacial area data on Berkman's data for Kenics Mixer 

Define System Constants: 

Density of the continuous and dispersed phases (g/cm3) 

rhoc = 1.0 

rhod = 0.857 

Viscosity of the continuous and dispersed phases (poise) 

muc = 0.01 

mud = 0.01 

Surface Tension of the system water/p-xylene (g/s2) 



ST = 32 

Diameter of the outer pipe, continuous and dispersed phase inlets (cm) 

Dia= 1.91 

Diac = 1.91 

Diad = 0.25 

Radius, Length and Volume (cm,cm3) 

R = Did2 

L = 345 Dia 

Vol = 3.14159 DiaA2/4 L 

Area of the outer pipe, continuous and dispersed phase inlets (cm2) 

area = 3.14159 RA2 

areac = area - 3.14159 @iad/2)"2 

aread = 3.14159 @iad/2)"2 

Calculate initial phase fraction and average phase fraction (c-continuous, d-dispersed) 

phidi = DiadA2/DiacA2 

phido = 0.001 

phico = 1-phido 

Calculate final velocity and initial velocities 

re= 12000 

Vf = ((muc re)/@ia rhoc))/phico 

Vco = ((muc re)/@ia rhoc)) 
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Vdo = Vco (phido/phico) (areadaread) 

Calculate initial interfacial area, We No., Hydraulic Diameter and check Re No. 

we = rhoc Vco"2 Dia/ST 

nre = rhoc Dia Vf/muc 

Dh = 0.25 Dia/L 

aio = 4 Diad/DiacA2 

Calculate Friction Factors: 

f = 50 (0.0791/nreA0.25) 

fd = 50 (0.079 l/nreA0.25) 1.17 

delp = 2 rhoc/Dia VfA2 f 

Calculate Wall Drag, Interfacial Drag, Interfacial Pressure, Virtual Mass, 

Bubble-Induced Turbulence and Interfacial Work: 

Fw = 2 rhoc/Dia Vc[zIA2 f 

Fdw = 2 rhod/Dia Vd[z]"2 fd 

fphid = (1 - phid[z])"2.25 

Cd = 0.45 ((1 + 17.67 fphidA(6/7)) /(18.67 fphid))"2 

Cvm = 0.5 (1+12 (phido"2)) 

DynP = 0.25 rhoc (Vc[z] - Vd[z])"2 

Fd = 3/8 phid[z] rhoc Cd ai[z] (Vc[z] - Vd[z])"2 

Tzz = -0.2 phid[z] rhoc (V~[z]-Vd[z])~2 

Fvm = phid[z] rhoc Cvm (Vd[z] Vd'[z]-Vc[z] Vc'[z]) 

130 



Wi = -(D[phic[z] rhoc 1/2 VC[Z]*~,Z] + D[phic[z] Tzz Vc[z],z] 

- phic[z] Tzz Vc'[z] - Vc[z] phic[z] (delp - Fw) 

+ Vc[z] (2 ST ai[z] - DynP) phic'[z]) 

Define Balance Equations: 

Continuity Equations: 

eqnl = phid'[z] = (-phid[z]Nd[z]) Vd'[z] 

eqn2 = phic'[z] = (-phic[z]Nc[z]) Vc'[z] 

Momentum Equations: 

eqn3 = Vd'[z] == (phid[z] (delp - Fdw) - (2 ST ai[z] - DynP) phid'[z] 

+ (rhodhhoc) D[phid[z] Tzz,~] + Fvm 

+ Fd)/(rhod phid[z] Vd[z]) 

eqn4 = Vc'[z] == (phic[z] (delp - Fw) - (2 ST ai[z] - DynP) phic'[z] 

- D[phic[z] Tzz,~] - Fvm 

- Fd)/(rhoc phic[z] Vc[z]) 

eqn5 = ai'[z] = (1/ST Wi - ai[z] Vc'[z])Nc[z] 

Input Boundary Conditions and Solve: 

sol = NDSolve[ { eqnl ,eqn2,eqn3,eqn4,eqn5, 

phid[O] = phidi, phic[O] == 1-phidi,Vd[O] == Vdo, 

Vc[O] = Vco, ai[O] == aio}, 

{ p hid [z] ,p hic [z] ,Vd[z] ,Vc [z] , ai [z] } , { z,O,L } , MaxS teps->50 001 

Output Plot of Dispersed Phase Velocity: 
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Plot[Evaluate[Vd[z]/.sol], { z,0,5} , PlotRange->All, 

AxesLabel->{ "Length, cm","Vd[z], cm/s"}] 

Vd[zl, cm/s 

60 
50 
40 
30 
20 

1Q Length, cm 
y 1 2 3 4 5  

Output Plot for Continuous Phase Velocity: 

Plot~valuate[Vc[z]/.sol], { z,0,5 } , PlotRange->All, 

AxesLabel-> { "Length, ~m",'~Vc[z] , cds"  } ] 

Vctzl , cm/s 

Length, cm 

Output Plot for Interfacial Area Concentration: 

Plot[Evaluate[ai[z]/.sol],{ z,0,5}, PlotRange->All, 

AxesLabel->{ "Length, crntt,%.i[z], l/cmt'}] 
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APPENDIX B 
Yarbro 

0.635 cm Diameter Kenics Mixer 

B.l Equation Summary 

B.l.l Model Equations (Steady-State) 

Mass: 

Continuous 

a zacva = O  

Dispersed 

a -adv& = o  
dz 

Momentum: 

Continuous 

+cwnadPc[(v& zv&)-(vcz a Z'a)] a 



Dispersed 

Interfacial Area: 

B.1.2 Equation Coefficients 

Drag Coefficient (Lahey, 1990) 

2 

c d  = 0-45[ 1 + 1 7 . 6 7 [ f ( a d ) ]  '1 
1 8.67f(ad ) 

where f(m) is defined for drops in liquids as (Ishii, 1979) 

f ( a d ) =  ( 1 - a d ) 2 ' 2 5  

Virtual Mass (Lahey, 1 9 9 1 )  

1 3 5  



and the virtual volume coefficient can be defined as a function of the global dispersed 

phase fraction muggles, et.al., 1988) 

c,, = 05( 1 + 12((;1d r) 
B.1.3 Turbulence (Drew and Wood, 1985) 

B.1.4 Interfacial Pressure and Friction Factor 

Friction Factor (Re > 3000) (Bird, 1960, Hestroni, 1982) 

where f is defined by 

16 (Turbulent Re > 3000) f, = - 
Re 

Interfacial Pressure (Stuhmiller, 1977. Drew and Wood, 1985) 

pki = 2aa, ---p,(v, 1 -v&)* 

(horizontal systems) pg cos(e) = o 

(B.9b) 

(B.9d) 

(B.lOa) 

(B.lOb) 



B.2 Boundary Conditions 

B.2.1 Initial Volumetric Flowrates and Final Average Velocity 

PRe Vf =- 
DP 

B.2.2 Average Viscosity and Density 

B.2.3 Initial Linear Velocities and Flow Area 

Qco 

A- Af vco = 

Qdo v,, =- 
Af 

1 ado 

2 f f c *  
Af =-A- 

B.2.4 Initial Phase Fractions and Interfacial Area Concentration 

1 ado f f d i  =-- 
2 f f c o  

aci = 1-a, 

(B.lla) 

(€3.1 lb) 

(€3.1 IC) 

(B.12a) 

(B.12b) 

(B.13a) 

(E3.13b) 

(€3.13~) 

(B.14a) 

(B.14b) 
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4 

- - I  , 0.12 3081 0.222 0.291 -0.068 . 
0.11 2271 0.400 0.495 -0.095 -- - 0.1 1 1363 0.495 1.155 -0.660 81 0.2871 

B.2.5 Friction multiplier 

0.12 
0.11 

f,,, = datafit 

3081 0.222 0.291 -0.068 . 43 0.105 
2271 0.400 0.495 -0.095 23 0.152 

(B. 14c) 

0.1 1 

03.15) 

1363 0.495 1.155 -0.660 8 0.287 

B.3 Results 

Table B.1 Results of Modeling the 0.635 cm Diameter Kenics Mixer Data 

Kenics Mixer: Diameter 0.635 cm, 12 elements, pitch 1.5 

Fluids: Continuous phase - water, Dispersed Phase - dodecane 

ad Re D32m/Dol D32cDo del D32/Do We I We(-3/5)] 

I I I 

0.28 2320 0.481 0.434 0.047 
0.27 1383 0.555 1.020 -0.466 

0.20 2299 0.371 0.472 -0.102 
0.19 1363 0.718 1.056 -0.338 8 0.287 

B.4 Mathematica 2.2 Program 

Hydrodynamic Model of Drop Formation in a Kenics Mixer 

Test of interfacial area data on Yarbro's data for Kenics Mixer 

Define System Constants: 

Densities of the continuous and dispersed phases (g/cm3) 

rhoc = 1.0 

rhod = 0.857 



Viscosities of the continuous and dispersed phases (poise) 

muc = 0.01 

mud = 0.01 

Surface Tension of the system water/dodecane (g/s2) 

ST = 35 

Diameter, radius, length and volume of the system (cm, cm3) 

Dia = 0.635 

R = Did2 

L = 50 Dia 

Vol = 3.14159 DiaA2/4 L 

Area and average phase fractions (cm2, dimensionless) 

area = 3.14159 RA2 

phido = 0.12 

phico = 1-phido 

Set Re No. and calculate average viscosities and densities 

re = 3081 

mu = muc phico + mud phido 

rho = rhoc phico + rhod phido 

Calculate final linear and volumetric flowrates 

Vf = ((mu re)/@ia rho)) 

Qco = Vf phico area 
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Qdo = Vf phido area 

Calculate initial flow area and initial velocities 

areaf = 0.5 area (phido/phico) 

Vco = Qco/(area - areaf) 

Vdo = Qdo/areaf 

we = rhoc VfA2 Dia/ST 

Dh = 0.25 Dia/L 

Calculate initial phase fraction and interfacia area concentration 

phidi = 0.5 (phido/phico) 

ai0 = (4/(3.14159 Dia)) phido/phico 

Estimate friction multiplier and calculate friction factors and pressure drop 

fm= 150 

f = N[fm (16/re)] 

fd=f  1.2 

delp = 2 rhoc/Dia VfA2 f 

Calculate wall drag, interfacial drag, interfacial pressure and virtual mass, 

bubble-induced turbulence and interfacial work 

Fw = 2 rhoc/Dia Vc[zIh2 f 

Fdw = 2 rhod/Dia Vd[z]"2 fd 

fphid = (1 - phid[z])"2.25 

Cd = 0.45 ((1 + 17.67 fphidA(6/7))/(18.67 fphid))"2 

140 



Cvm = 0.5 (1+12 (phido"2)) 

DynP = 0.25 rhoc (Vc[z] - Vd[z])"2 

Fd = 3/8 phid[z] rhoc Cd ai[z] (Vc[z] - V d [ ~ ] ) ~ 2  

Tzz = -0.2 phid[z] rhoc (Vc[z]-Vd[z])"2 

Fvm = phid[z] rhoc Cvm (Vd[z] Vd'[z]-Vc[z] Vc'[z]) 

Wi = -(D[phic[z] rhoc 112 VC[Z]~~,Z] + D[phic[z] Tzz Vc[z],z] 

- phic[z] Tzz Vc'[z] - Vc[z] phic[z] (delp - Fw) 

+ Vc[z] (2 ST ai[z] - DynP) phic'[z]) 

Define Balance Equations: 

Continuity Equations: 

eqnl = phid'[z] == (-phid[z]Nd[z]) Vd'[z] 

eqn2 = phic'[z] = (-phic[z]Nc[z]) Vc'[z] 

Momentum Equations: 

eqn3 = Vd'[z] = (phid[z] (delp - Fdw) 

- (2 ST ai[z] - DynP) phid'[z] 

+ (rhodrhoc) D[phid[z] Tzz,z] - Fvm 

- Fd)/(rhod phid[z] Vd[z]) 

eqn4 = Vc'[z] i- (phic[z] (delp - Fw) - (2 ST ai[z] - DynP) phic'[z] 

- D[phic[z] Tzz,z] + Fvm 

+ Fd)/(rhoc phic[z] Vc[z]) 

eqn5 = ai'[z] == (1/ST Wi - ai[z] Vc'[z])Nc[z] 
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Input Boundary Conditions and Solve: 

sol = NDSolve[ { eqnl ,eqn2,eqn3,eqn4,eqn5, 

phid[O] == phidi, 

phic[O] == 1 - phidi,Vd[O] = Vdo, 

Vc[O] = Vco, ai[O] = aio}, 

{ z,O,L} , MaxSteps->5000] 

Output Plot for the Dispersed Phase Velocity: 

Plot@3valuateWd[z]/.sol],{ z,0,5}, PlotRange->All, 

AxesLabel->{ "Length, cm", "Vd[z], c d s "  }I 

Vd[zl, cm/s 

1 2  3 4 5  

Output Plot for Continuous Phase Velocity: 

Plot [Evaluate~c[z]/.sol] , { z,0,5 } , PlotRange->All, 

AxesLabel->{ "Length, cm", "Vc[z], c d s "  }] 



vc[zl, cm/s 

49 
48.5 

48 
47.5 

1 2 3 4 5  
Length, cm 

Output Plot for the Interfacial Area Concentration 

Plot[Evaluate[ai[z]/.sol],{ z,0,5} , PlotRange->All, 

AxesLabel->{ "Length, cm", "ai[z], l/cm"}] 

ai[zl, l/cm 

3. 

2. 

1. 

0. 
Length, cm 



APPENDIX C 
Lin 

Co-Current Jet 

C.l Equation Summary 

C.l.l Model Equations 

Mass: 

Continuous 

d zacva = O  

Dispersed 

Momentum: 

Continuous 
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Dispersed 

-cvtnadpc[  ('dz Z v d z )  a - ( 'a zva)] a 

Interfacial Area: 

C.1.2 Equation Coefficients 

Drag Coefficient (Lahey. 1990) 

2 

c d  = 0.45[ 1 + 17.67[f(ad)] '1 
18.67f(ad) 

where f(m) is defined for drops in liquids as (Ishii, 1979) 

f ( a d )  = (1-ad)2'25 

Virtual Mass (Lahev. 1991) 

F v ~  = c v m a d ~ c [ ( v & ~ v & ) - ( v ~ ~ v ~ ) ]  a a 
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(C.6b) 

(C.6c) 

(C.7a) 



and the virtual volume coefficient can be defined as a function of the global dispersed 

phase fraction (Ruggles, et.al., 1988) 

cym =05[1+12(zdY) (C.7b) 

C.1.3 Turbulence (Drew and Wood, 1985) 

C.1.4 Interfacial Pressure and Friction Factor 

Friction Factor (Re > 3000) (Bird, 1960. Hestroni, 1982) 

where f is defined by 

0.079 1 
Re% 

(Turbulent Re > 3000) f k  = - 

Interfacial Pressure (Stuhmiller. 1977, Drew and Wood. 1985) 

pki = 2aai - ,pc(v, 1 - vrn l2 
(horizontal systems) pg cos(e) = o 

(C.8a) 

(C.8b) 

(C.9a) 

(C.9b) 

(C.9c) 

(C. loa) 

(C.lOb) 



C.2 Boundary Conditions 

C.2.1 Initial Linear Flowrates 

Qd v, =- 
*d 

C.2.2 Initial Phase Fraction and Interfacial Area Concentration 

42.2.3 Friction Factor Multiplier 

2.4251 
f,,, = 40742Pd) 

((2.1 la) 

(C.llb) 

(C. 12) 

(C.13) 

(C.14) 
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C.3 Results 

0.074 
0.074 
0.074 
0.074 

Table C.1 Results of Modeling 0.027” Injector Co-Current Jet Data 

8066 0.055 0.061 -0.00575 853.9 0.017 
5649 0.083 0.087 -0.00432 418.8 0.027 
3590 0.138 0.143 -0.00452 169.1 0.046 
23321 0.260 0.232 0.02767 71.4 0.077 

I 

Co-Current Jet: 0.027” injector 
Fluids: Continuous Phase - water/Dispersed Phase - kerosene 

0.057 
0.057 
0.057 
0.057 

I I I 

10640 0.050 0.057 -0.00765 1444 0.013 
9182 0.056 0.108 -0.05234 1076 0.015 
4734 0.124 0.128 -0.00375 285.9 0.034 
3076 0.210 0.205 0.00513 120.7 0.056 

0.038 
0.038 
0.038 
0.038 

16240 0.038 0.053 -0.01475 3259 0.008 
14020 0.047 0.060 -0.01286 2428 0.009 
7226 0.101 0.110 -0.00892 645.2 0.021 
4696 0.167 0.167 0.00000 272.5 0.035 



Table C.2 Results of Modeling 0.041” Injector Co-Current Jet Data 

Co-Current Jet: 0.041’’ injector 
Fluids: Continuous Phase - WaterDispersed Phase - kerosene 

I 0.091 
0.091 
0.09 1 

0.074 
0.074 
0.074 
0.074 

0.057 
0.057 
0.057 
0.057 

0.038 
0.038 
0.038 
0.038 

R e  ~ D 3 2 f i o  D32cDo delD32Do We We(-3/5) 
6466 0.176 0.171 0.00447 564.1 0.022 
3843 0.292 0.277 0.01505 199.3 0.042 
33941 0.3681 0.3161 0.051961 155.41 0.0481 
18701 0.7261 0.5841 0.142091 47.21 0.0991 

I I I 1 1 

74501 0.2081 0.1831 0.024841 708.11 0.0191 
30761 0.6471 0.4321 0.215781 120.71 0.0561 

~ 

16240 0.072 0.116 -0.04328 3259 0.008 
140201 0.0901 0.1291 -0.039211 24281 0.0091 

- 

8524 0.178 0.190 -0.01207 897.9 0.017 
4695 0.387 0.340 0.04690 272.5 0.035 

C.4 Mathematica 2.2 Program 

Hydrodynamic Model of Drop Formation in a Co-Current Jet Mixer 

Test of interfacial area data on Link data for Co-Current Jet Mixer 

Define System Constants: 

Densities of the continuous and dispersed phases (g/cm3) 

rhoc = 0.997 
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rhod = 0.825 

Viscosities of the continuous and dispersed phases (poise) 

muc = 0.8705 

mud = 1.55 

Surface Tension of the system waterkerosene 

ST = 32.3 

Width, height of the rectangular flow chamber, diameter of the dispersed phase inlet 

and length of the system (cm) 

Wc = 0.5 2.54 

Hc = 0.08 2.54 

Diad = 0.027 2.54 

L = 18 2.54 

Area of the flow chamber, continuous and dispersed phase inlets (cm2) 

area = Hc Wc 

areac = area - 3.14159 @iad/2)"2 

aread = 3.14159 @iad2)"2 

Calculate hydraulic diameter and initial phase fraction 

Dh = area42 Hc + 2 Wc) 

phidi = (3.14 DiadA2)/ (4 area) 

Input volumetric flowrates and calculate initial final linear velocities 

QC = 9296 



Qd = 367.2 

Vco = (Qc/6O)/areac 

Vdo = (Qd/60)/aread 

Vf = (((Vdo aread) + (Vco areac))/area) 

Calculate average phase fractions 

phido = (Vdo aread)/(Vf area) 

phico = 1 - phido 

Calculate average density and viscosity to check Re No. 

rho = rhoc phico + rhod phido 

mu = muc phico + mud phido 

we = 1.748 10A-6 rho (Vf 60)A2 

nre = 0.3388 rho (Vf 60)/mu 

Calculate initial interfacial area concentration, friction multiplier, friction factors 

and pressure drop 

aio = (3.14159 Diad)/areac 

fm = 4074.2 (phid0)~2.4151 

Define Parameters: 

f = fm (0.0791/nreA0.25) 

fd=f  1.2 

delp = 2 rhoc/Dh VfA2 f 

Calculate wall drag, interfacial drag, virtual mass, interfacial pressure, bubble-induced 
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turbulence and interfacial work: 

Fw = 2 rhocDh Vc[zIA2 f 

Fdw = 2 rhod/Dh Vd[zIA2 fd 

fphid = (1 - phid[z])"2.25 

Cd = 0.45 ((1 + 17.67 fphidA(6/7))/(18.67 fphid))"2 

Cvm = 0.5 (1+12 (phido"2)) 

DynP = 0.25 rhoc (Vc[z] - Vd[~] )~2  

Fd = 3/8 phid[z] rhoc Cd ai[z] (Vc[z] - Vd[z])"2 

Tzz = - 0.2 phid[z] rhoc (V~[z]-Vd[z])~2 

Fvm = phidrz] rhoc Cvm (Vd[z] Vd'[z]-Vc[z] Vc'[z]) 

Wi = -@[phic[z] rhoc 112 VC[Z]~~,Z] + D[phic[z] Tzz Vc[z],z] 

- phic[z] Tzz Vc'[z] - Vc[z] phic[z] (delp - Fw) 

+ Vc[z] (2 ST ai[z] - DynP) phic'[z]) 

Define Balance Equations: 

Continuity Equations: 

eqnl = phid'[z] == (-phid[z]Nd[z]) Vd'[z] 

eqn2 = phic'[z] = (-phic[z]Nc[z]) Vc'[z] 

Momentum Equations: 

eqn3 = Vd'[z] = (phidtz] (delp - Fdw) - (2 ST ai[z] - DynP) phid'[z] 

. - (rhodrhoc) D[phid[z] Tzz,z] - Fvm 

- Fd)/(rhod phid[z] Vd[z]) 
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eqn4 = Vc'[z] == (phic[z] (delp - Fw) - (2 ST ai[z] - DynP) phic'[z] 

+ D[phic[z] Tzz,~] + Fvm 

+ Fd)/(rhoc phic[z] Vc[z]) 

eqn5 = ai'[z] = (1/ST Wi - ai[z] Vc'[z])Nc[z] 

Input Boundary Conditions and Solve: 

sol = NDSolve[ { eqnl ,eqn2,eqn3,eqn4,eqn5, 

phid[O] == phidi, 

phic[O] i- 1 - phidi,Vd[O] == Vdo, 

Vc[O] = Vco, ai[O] == aio}, {phid[z],phic[z],Vd[z],Vc[z],ai[z] }, 

{ z,O,L}, MaxSteps->5000] 

Output Plot for the Interfacial Area Concentration 

Plot[Evaluate[ai[z]/.sol],{ z,O, 15}, PlotRange->All, 

AxesLabel->{ "Length, cm","ai[z], l/cml'}] 

ai[z], l/cm 

Length, cm 
2 4 6 8 10 12 14 

Output Plot for the Dispersed Phase Velocity 

Plot~valuate[Vd[z]/.sol], { z,0,15}, PlotRange->All, 

AxesLabel->{ "Length, cm","Vd[z], c d s "  )] 



Vd[zl, cm/s 

Length, cm 
2 4 6 8 10 12 14 

Output Plot for Continuous Phase Velocity: 

Plot~valuate[Vc[z]/.sol],{ z,O, 15}, PlotRange->All, 

AxesLabel-> { "Length, cm","Vc [z], c d s "  }] 

Vc[zl, cm/s 

624 
622 
62 0 
618 
616 
614 
612 

Length, cm ' 2 4 6 8 1 0 1 2 1 4  



APPENDED 
Rebus 

Tee Mixer 

D.l Equation Summary 

D.l.l Model Equations 

Mass: 

Continuous 

a -acv, = o  
& 

Dispersed 

Momentum: 

Continuous 
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9s I 

ts9.a) 

(Sa) 



and the virtual volume coefficient can be defined as a function of the global dispersed 

phase fraction (Ruggles, et.al., 1988) 

D.1.3 Turbulence (Drew and Wood, 1985) 

D.1.4 Interfacial Pressure and Friction Factor 

Friction Factor (Re > 3000) (Bird, 1960, Hestroni, 1982) 

where f is defined by 

0.079 1 (Turbulent Re > 3000) f k  = - 
Rex 

Interfacial Pressure (Stuhmiller, 1977. Drew and Wood, 19851 

pki =20ai ---pc(vcz 1 -vak)2 

(horizontal systems) pg cos(e) = o 

(D.8b) 

(D.9b) 

(D.9d) 

(D. loa) 

@.lob) 



D.2 Boundary Conditions 

D.2.1 Initial Linear Velocities 

vcoz = --cOs(goo Qc - e) AC 

D.2.2 Contact Angle Theta 

8 = datajit 

D.2.3 Estimating Initial Phase Fraction and Interfacial Area 

a d i  = cos(@) 

a, = 100ad 

D.2.4 Friction Factor Multiplier 

0 . 1  la) 

(D.1 lb) 

(D. 13) 

(D. 14) 
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D.3 Results 

a d  
0.1 
0.1 
0.1 
0.1 

Table D.l Results of Modeling 0.2 cm Diameter Tee Mixer Data 

Re D32m/Do D32cDo delD32Do We We(-3/5) 
31060 0.046 0.087 -0.0419 10860 0.0038 
36460 0.038 0.063 -0.0248 16140 0.0030 
43760 0.036 0.046 -0.0099 22540 0.0024 
51060 0.034 0.036 -0.0019 29610 0.0021 

Tee Mixer: 0.2 cm diameter 
Fluids: Continuous Phase - watermispersed Phase - kerosene 

D.4 Mathematica 2.2 Program 

Hydrodynamic Model of Drop Formation in a Tee Mixer 

Test of interfacial area data on Reimus' data for a Tee Mixer 

Define System Constants: 

Densities of the continuous and dispersed phases (g/cm3) 

rhoc = 0.9968 

rhod = 0.826 
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Viscosities of the continuous and dispersed phases 

muc = 0.008705 

mud = 0.0154 

Surface Tension of the system waterkerosene 

ST = 32.6 

Diameter of the inlet and outlet flow channels (cm) 

Dia = 0.2 

Diac = 0.2 

Diad = 0.2 

Radius, length and volume of the system (cm, cm3) 

R = Did2 

L = 21 2.54 

Vol = 3.14159 DiaA2/4 L 

Area of the inlet and outlet flow channels (cm2) 

area = 3.14159 RA2 

areac = 3.14159 RA2 

aread = 3.14159 RA2 

Input volumetric flowrates and calculate average phase fractions 

Qc = 2280 

Qd = 253.3 

phido = N[Qd/(Qc + Qd)] 



phico = 1-phido 

Calculate average linear velocities (cm/s) 

Vco = Qc/(60 area) 

Vdo = Qd/(60 area) 

Estimate contact angle and calculate initial linear velocities 

theta = 89.827 (3.14159/180) 

Vdi = Vdo CotCtheta] 

Vci = Vco Cos[3.14159/2 - theta] 

Estimate initial phase fractions and interfacial area concentration 

phidi = CosCtheta] 

phici = Cos[3.14159/2 - theta] 

aio = 100 phido 

Check final linear velocity and calculate We and Re No. 

Vf = VCO -I- Vdo 

we = rhoc VcoA2 DidST 

nre = rhoc Dia Vf/muc 

Estimate friction factor multipliermd calculate friction factor and pressure drop 

fm = 100 phido 

f = fm (.0791/nreA0.25) 

fd= f 1.207 

delp = 2 rhoc/Dia VfA2 f 
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Calculate wall drag, interfacial drag, virtual mass, interfacial pressure, bubble-induced 

turbulence and interfacial work 

Fw = 2 rhoc/Dia Vc[zIA2 f 

Fdw = 2 rhod/Dia Vd[zIA2 fd 

fphid = (1 - phid[z])"2.25 

Cd = 0.45 ((1 + 17.67 fphidA(6/7))/(18.67 f ~ h i d ) ) ~ 2  

Cvm = 0.5 (1+12 (phidoA2)) 

DynP = .25 rhoc (Vc[z] - Vd[~] )~2  

Fd = 318 phid[z] rhoc Cd ai[z] (Vc[z] - V d [ ~ ] ) ~ 2  

Tzz = -0.2 phid[z] rhoc (V~[z]-Vd[z])~2 

Fvm = phid[z] rhoc Cvm (Vd[z] Vd'[z]-Vc[z] Vct[z]) 

Wi = -@[phic[z] rhoc 112 VC[Z]~~,Z] + D[phic[z] Tzz Vc[z],z] 

- phic[z] Tzz Vc'[z] - Vc[z] phic[z] (delp - Fw) 

+ Vc[z] (2 ST ai[z] - DynP) phic'[z]) 

Define Balance Equations: 

Continuity Equations: 

eqnl = phid'[z] = (-phid[z]Nd[z]) Vd'[z] 

eqn2 = phic'[z] = (-phic[z]Nc[z]) Vc'[z] 

Momentum Equations: 

eqn3 = Vd'[z] = (phid[z] (delp - Fdw) - (2 ST ai[z] - DynP) phid'[z] 

+ (rhodrhoc) D[phid[z] Tzz,z] + Fvm 
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-F Fd)/(rhod phid[z] Vd[z]) 

eqn4 = Vcl[z] == (phic[z] (delp - Fw) - (2 ST ai[z] - DynP) phic'[z] 

- D[phic[z] Tzz,z] - Fvm 

- Fd)/(rhoc phic[z] Vc[z]) 

eqn5 = ai'[z] = (l/ST Wi - ai[z] Vc'[z])/(Vc[z]) 

Input Boundary Conditions and Solve: 

sol = NDSolve[ { eqn 1 ,eqn2,eqn3,eqn4,eqn5, 

phid[O] == phidi,phic[O] == phici, Vd[O] = Vdi,Vc[O] == Vci, ai[O] == aio}, 

{ phid[z],phic[z],Vd[z],Vc[z],ai[z] } , { z,O,L}, MaxSteps->5000] 

Output Plot of the Interfacial Area Concentration 

Plot~valuate[ai[z]/.sol],{ z,0,5}, PlotRange->All, 

AxesLabel->{ "Length, cm","ai[z], l/cm" }] 

ai[zl, l/cm 

35 
30 
25 
20 
15 

Length, cm 
1 2 3 4 5  

Output Plot of Dispersed Phase Velocity: 

Plot[Evaluate[Vd[z]/.sol], { z,0,5}, PlotRange->All, 

AxesLabel->{ "Length, crn",Vd[z], cds"  }] 
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Vd[zl, cm/s 

1200 
1000 
800 
600 
400 
200 

f Length, cm 
1 2 3 4 5  

Output Plot for Continuous Phase Velocity: 

Plot~valuate~c[z]/.sol], { z,0,5 } , PlotRange->All, 

AxesLabel->{ "Length, cm","Vc[z], c d s "  }] 

Vc[zl, cm/s 

1340 
1320 
1300 
1280 
1260 
1240 

Y Length, cm 
1 2 3 4 5  



APPENDIXE 

Results 

0.015 0.02 0.025 o m  0.035 0.04 
We-= 

Figure E.1 Comparison of Data with the Model for a 1.91 cm Kenics Mixer 

(12,000 c Re < 21,000 at = 0.001) 

r :  C .  

03 - .......... 6 .................................. ; ....................... L r 
c 

0 
0.2 ' ' ' ' ' * * ' ' " " ' - ' 

0. I 0.15 0.2 
W P  

0.25 0.3 

Figure E.2 Experimental Data for a 0.635 cm Diameter Kenics Mixer at Low Re 
(1300 < Re c3100 and 0.1 c < 0.28) 
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@: 
tan 

0.2 " " I " " I '  " " " ' 

0.1 0.15 0.2 
We"' 

0.25 0.3 

Figure E.3 Calculated Data for 0.635 cm Diameter Kenics Mixer 

a- 

Figure E.4 Comparison of Experimental and Calculated Values for Drop Size at 
= 0.28 
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a" 

1.1 

1 

0.9 

0.8 

0.1 

0.6 

0.5 

0.4 

0.3 

0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 

We- 

Figure E.5 Comparison of Experimental and Calculated Values for % = 0.2 

1.2 

1 

0.6 
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Figure E.7 Experimental Data for the 0.027" Injector 

(2300 Re < 16,300 and 0.038 < ad < 0.091) 

-D- D32clDo.074 

0 0.02 0.04 0.06 0.08 0.1 

Figure E.8 Calculated Values for the 0.027'' Injector 



0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

we”’ 

Figure E.9 Comparison of Experimental and Calculated Values for the 0.027” 
Injector at = 0.091 

0.3 

0.25 

0.2 

0.15 

0.1 

0.05 
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 

W P  

Figure E.10 Comparison of Experimental and Calculated Values for the 0.027” 
Injector at ad = 0.074 



Figure E.ll  Comparison of Experimental and Calculated Values for the 0.027" 
Injector at aa = 0.057 

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 
Weas 
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Figure E.13 Experimental Data for the 0.041" Injector 
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