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THERMODYNAMICS AND SOUND SPEEDS AT THE 
CHAPMAN-JOUGUET STATE* 

J. N. F’ritz and C. A. Forest 
Los Alamos National Laboratory, Los Alamos, New Mexico, 87545 

~~ ~ 

Some thermodynamic relations about an equilibrium Chapman-Jouguet (CJ) 
state are obtained. Relations for sound speeds in the wave velocity-particle ve- 
locity plane are derived. A relation between the slope of the sound speed in this r plane and the asymptotic slope of the Hugoniot is suggested. 

INTRODUCTION 

In a previous paper [l] experimental measure- 
ments of sound speeds at high pressures were used 
to determine the Chapman-Jouguet (CJ) state 
of the plastic-bonded explosive PBX-9501. In 
this paper we derive some general relations about 
sound speeds at high pressures, and in particular, 
some relations between the sound-speed curves 
and overdriven detonations in the vicinity of the 
CJ state. Such relations are, of course, implicit 
in the thermodynamic EOS description of a ma- 
terial and have been touched upbn before [ 2 4 ] ,  
When an experimental technique becomes active 
and new results are available, it is appropriate 
to refine and look more closely at these relations 
in the variables appropriate to the experiment. 
We do that here. In section II we review the 
basic thermodynamics for shocks. In III we ob- 
tain the sound speed along the Hugoniot in tenas 
of the Hugoniot.and the Gri@&en function and 
in terms of the. CJ isentrope .and &he G&e&n 
function. Special relations at,the C3 state are de- 
#rived. An approximation relating the slope of’the 
sound-speed curve to the asymptotic slope of the 

‘This work supported by the U. S. Department of 
Energy. 

Hugoniot is derived. In IV we apply a few of these 
relations to the data obtained before [l]. 

The overdriven Hugoniot for explosives has 
certain peculiarities in the velocities plane. These 
peculiarities make many fitting schemes (e.g., a 
simple polynomial in u) ineffective. The exact 
thermodynamic relations obtained here show the 
properties that any effective data-fitting scheme 
must have. 

SHOCK THERMODYNAMICS 

The jump conditions for mass and momen- 
tum across a shock wave (p0u8 = p(us - u] and 
P - PO = pou,u) give pressure and specific vol- 
ume in terms of the shock and particle veloci- 
ties. Inverses (p”uz = (P - Po)/(VO - V) and 
u2 = (P - PO)(% - V)) serve to define the ve- 
locities in terms of the Hugoniot locus P’(V). 
The jump condition for the energy E - 
$(P+ Pi)(% - V) together.kith E(P,V) de- 
h e s  the Hugoniot l& in P(V). The trans- 
‘formation’bm<h P(V)’and u,(u) permits de- 
scription of &erhodynamics’in the wave velocity- 
particle velocity plane, a description suited to the 
measured experimental variables. 

If we have some crosscurve P, (V) (one where 
the volume is varying) and we know the energy 
along this curve (isentropes and Hugoniots are 

= . . 



two types of curves where the energy is readily 
obtained), then we can express the energy in the 
desired E(P, V) form: 

P 
E(P, V) = E,(V) + 

where p is an integration variable with V held 
constant, and 7 = V(BP/BE)v, the Gruneisen 
function. 

If we have a curve P,(V) we define the mod- 
ulus for that curve as B, = -VdP,/dv. The 
isentropic bulk-modulus Bs is related to the ve- 
locity c of a small-amplitude wave in a fluid media 
by Bs = pc? [5]. This velocity is with respect to 
the compressed media,at rest. It is convenient 
to work with the Lagrangian velocity Lc = pc/po. 
We have: 

c2 = Bs/p ,  L ~ 2  = pBs/pg. (2) 

Other moduli will be useful. Along a Hugoniot 
curve Ph(v) we define Bh = -VdPh(V)/dv. 
The chord connecting the initial state to the fi- 
nal shocked-state is the Rayleigh line. We define 
a modulus associated with this slope as BR = 
&(P - PO)/(& - V) = pou;. For the chord the 
choice for the multiplying volume is ambiguous. 
We also define B h  = V ( P  - Pi)/(& - V )  = 
pous(us - u). This will permit a pleasing sym- 
metry in an equation for the Griineisen function. 

The dimensionless curvature of a Pz(V) 
curve is also of interest. If B, = -VPi (a 
prime on P will usually denote a volume deriva- 
tive), then dB,/dV = -Pi - VP:. Alterna- 
tively we have dB,/dV = (dP,/dv)(dB,/dP) = 
-(B,/V)(dB,/dP). Equating these yields: 

(3) 

The ufundamental derivative" 9 used by Menikoff 
and Plohr 141 is half of this y-vature on an isen- 
trope, ,i.: e., 29 = V2Pi/Bs. 

Dimqipdess forms for the,,moduli are fie 
quently used. ,We define 7, = B,/P,. The isen- 
tropic gamma . 

. , I"< .. C I  

BS 
P 

is a variable frequently used to describe 
detonation-product isentropes [SI. 

Following Courant and Friedrichs [5] we use 
the Hugoniot function h(P, V) = E - EO - i(P + 
PO)(& - V). Clearly h = 0 defines Ph(v). Other 
curves with constant-h correspond to Hugoniots 
with a different energy in the initial state. From 
the first law and TdS(dP, dv) we get 
dh = TdS - +(& - V)dP - i(P - Po)dV 

= (5 - v) dp+ (3 - '-'O)dV. (5) 
7 

For dh = 0 we obtain 

This equation can be solved for the Gruneisen 
function: 

7 Bh - Bs -(& - V) = 
2v Bh - Bch 

(7) 

These B's all have a common V-factor, so this ra- 
tio of differences can also be regarded as the ratio 
of differences of the slopes of the various curves. 
Eq. (6) can also be solved for Bs: 

This, with (2), gives the sound speed on the Hugo- 
niot. 

For an exothermic Hugoniot (more precisely, 
for h(P0,Vo) > 0) the "first" solution for a shock 
is obtained when we raise the Rayleigh line to be 
tangent to the Hugoniot curve, i. e., Bh = Bh. 
At  the tangent point we can make the following ob- 
servations. If we insert this condition in Eq. (8) 
we find BS = Bh. This result in Q. (2) im- 
plies = us. This, combined with the.relation 
between Lc and c and the mass jump condition im- 
plies c = u*-u, the Sonic condition. The us at this 
minimum shoCkLvelocity is denoted by D, .the.CJ 
detonation~velocity. ,The 'argument is reversible, 
the sonic condition impliesthe triple-tangency be- 
- t w h  the .Hugonfot,Jtayleigh line, and  isentrope. 
The wsual &+&~' apply;.;these r d t s  are valid 
when reaction rates are.fa$t enough to get a close 
approach to kqbilibrium. 

. . 

SOUND-SPEED RELATIONS 

In this paper we are particularly interested 
in the curves %h(U) (the Lagrange sound-speed 



along the Hugoniot) and us(u) (the OD Hugo- 
niot) as they extend above the CJ state. As we go 
higher in pressure we expect reaction rates to be 
faster, and we expect that measured results will 
be closer to true equilibrium values. The equilib- 
rium Lagrange sound-speed can be obtained as a 
functional of the OD Hugoniot and the Griineisen 
function with the aid of Eqs. (2)  and (8),  i. e., 
'Ch(U) = f : u8(u),7. These would directly ex- 
press %(P, V ) .  We would l i e  it in the us-u plane. 
The jump conditions and their inverses can be 
regarded as transformations between these two 
planes of variables. Differential forms of the trans- 
formation 

(9) 

where ut = dus/du, can be used to effect the 
transformation to the velocities plane. An inter- 
mediate result, using the definition of &,, is 

One notes that Bh = B h  implies 2uu: = 0, i. e., 
you can have this condition at the beginning of 
the Hugoniot (u = 0), or if the tangency occurs 
for finite u the slope of the us(.) Hugoniot must 
be zero. We then have: 
(?z)2 = (1- ('") 5)  us + uu: 

2v u s  us-uu; 

+ ("0) 2v us = G/(us - UU',), (12) 

where 

G=a,+uu;{l- (-) 7% -}. t.4 (13) v us 

We take the logwthm of Ea. (12) and then the 
derivative to obtain: 

where 

We expect "I& G dLch/du to be approximately 
constant over our data range. The complexity of 
(14) is due to the structure a Hugoniot has when it 
represents a detonation. We switch quickly from 
u', = 0 and a non-zero curvature at CJ to u', a 
constant and u: M 0 in the linear range of the 
OD Hugoniot. The complicated form for is 
probably required to keep it roughly constant. At 
the CJ state we have u: = 0, "c = us = G = D,  
and thus: 

This equation gives a close connection between 
the slope of our experimental sound-speed and the 
curvature of the OD Hugoniot at the CJ state. 
This equation is likely to be used to establish a 
good value for the curvature rather than the other 
way around. If a very accurate uf could be ob- 
tained from the Hugoniot curve an estimate of y 
at the CJ state could be made. 

What we would really like is a relation be- 
tween %$ and some other readily measurable EOS 
parameter, e. g., the asymptotic slope of u,(u). 
We have concentrated on %h(U) = f : us(u), y. 
We may expect a simpler result if we consider 
%h(U) = f : Ps(V),7,  where Ps(V) is the CJ 
isentrope. It does not have the complications 
that the Hugoniot does. We do have the ad- 
ditional complication that we follow the sound 
speed along the Hugoniot experimentally, and not 
along the isentrope. In Eq. (1) we let the z- 
curve be the CJ isentrope. Then with Ecj - & = 

we obtain. 
4(Pcj + &)(Kj - &)I and -& = Ecj - J P s ~ ;  

i. e., we have p h  = f : Ps,7. We take the volume 
derivative of (17) and rearrange the terms slightly: 

This combines with (8) to yield 



We note that this equation is the integral form 
of the Maxwell relation, (d(Bs/y - P)/dP)v = 
(a(V/r ) /aV)p .  It does not depend on the P's be- 
ing on particular curves; any two pressures would 
do. Combined with Eq. (2) it does give us the 
sound speed along the Hugoniot in terms of the 
sound speed along the isentrope plus a term pro- 
portional to the offset Ph - Ps. We have a slowly- 
varying major term and a linearly-increasing mi- 
nor term which combine (in view of the experi- 
mental result) to give a h e a r  variation of sound 
speed with velocity. This is in contrast to Eq. (14) 
where both ui and us are major players and 
switch roles as we move from the CJ state to an 
asymptotic linear us(u). We then have: 

to (19). If we take the volume derivative of (18) 
and use the simplifications at CJ we get a sim- 
ple relation between the second derivatives of the 
isentrope and Hugoniot at the CJ state: 

P{ = P;/ { 1 -  - q v o  - V ) } .  2v (23) 

From the volume derivative of u: (P, V )  we obtain 
the general equation: 

(24) 

A linear us(u), where u: = s, a constant, de- 
scribes many inert materials. This is clearly not 
the case for a OD Hugoniot, where Bh = Bch 
at CJ and u: = 0 there; and then increases to 
an asymptotic value for the high-pressure range. 
Another volume derivative yields: 

We could write down the complete equation for 
"dh by introducing a lot of 7-derivatives, but this 
is not particularly illuminating. We concentrate 
on the derivative at the CJ state. There, any 
term with Ph - Ps or PL - Ph as a factor will 
vanish because of the coincidence and tangency 
of the isentrope and Hugoniot. The derivative of 
+ y g h / 7 S ~  has a factor PA - PA. The only term 
contributing is pBs = -PA. Then we use Lc'h = 
(dv/d?J)(dLCh/dv).  From Eq. (9) and the jump 
conditions we have: 

We obtain at the CJ state (freely using Lc = u. = 
D and Bh = Bd = Bs): 

Eq. (18) retains an explicit connection between 
the isentrope and Hugoniot that we lost in going 

At CJ this reduces to: 

II P V2% 
2Po Bch 

uu, = --. 

This, in (16), with the aid of (23) and (3)  again 
leads to (22). 

1 - V/& = up/us, we 
have Ph = p o c & / ( l -  s ~ ) ~ ,  and we can evaluate 
1 + dBh/dP, a measure of the curvature Pl (V)  

For a linear us(u), 77 

as: 

This ucurvaturen has the value 4s times a slowly- 
varying function of q. At the centering point 
1 + dBh/dP = 1 + dBs/dP because of the second- 
order contact between the isentrope and Hugb- 
niot. A linear us(u), an initial porous-state, and 
an appropriate Griineisen function works well (the 
snowplow model) for many materials, at least 
for higher pressures. In the high-pressure range 
the u,(u) for the porous media asymptotes to a 



line slightly below and parallel (i. e., the same 
s) to the linear u,(u) for the solid material. A 
similar description is possible for an OD Hugo- 
niot; one changes the BO for the centering point 
from its regular thermodynamic value just as one 
changed VO to represent a porous material. The 
OD Hugoniot would then asymptote to the base 
linear Hugoniot from above. Setting 1 + d B / d P  
constant is the basis for the Murnaghan family of 
equations of state. If this quantity is constant for 
detonation products and the reverse "snowplow" 
model is valid, the following relation is suggested 
between the slope of the measured sound-speed 
and the asymptotic s of the OD Hugoniot: 

' ~ i  M ~s(G/v),~. (28) 

We consider the relation between the slope of 
c + u and 'c. fiom c = (po/p)% = (1 - u/u,)~c 
we obtain: 

(29) 
US .- uuL LC + Po dLc = I -  d(c t u) 

d u  4 P 

At CJ this reduces to 

APPLICATION TO THE DATA 

In the previous paper [l] an analytic form 
was chosen to represent the overdriven Hugoniot 
of PBX-9501. An alternative approach is to have 
a running local fit to the data with a level of 
smoothing compatible with the precision of the 
data. A tabular function (briefly described in Ap- 
pendix A) is used to fit the detonation-Hugoniot 
data with particle velocities greater than the par- 
ticle velocity of the CJ state. The slope u: of the 
tabular function was set equal to zero at the UNJ 
from the analytic fit, but the detonation velocity 
was allowed to vary. The tabular function rep- 
resenting the slope of the detonation Hugoniot is 
presented in Fig. 1. 

The characteristic shape of the PBX-9501 
detonation Hugoniot is graphically displayed in 
this figure. The slope is zero at the CJ state and 
monotonidy increases with increasing particle 
velocity. The slope linearly increases near the 
CJ state and then gradually flattens out at larger 
particle velocities to essentially a maximum slope. 
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FIGURE 1. The slope ui(u) (solid line) from lo- 

cal running fits. The dotted lines indicate error limits. 
The dashed line is the slope from the previous analyt- 
ical fit. 

The general shape of u', is common to other det- 
onation Hugoniots we have studied (Composition 
B, PBX-9502, and TNT). However, for some of 
these explosives the maximum asymptotic slope 
was not attained over the particlevelocity range 
investigated. For these explosives there was still 
a small non-zero slope to ut(.) at large particle 
velocities. 

The dashed lines above and below the fitted 
curve represent the two-sigma error limits at the 
95% probability limit. The error limits are close 
together at the CJ state, because of the slope 
constraint, and gradually increase at intermedi- 
ate particle velocities. The large error limits at 
the end of the data range occur because central 
centered differences can no longer be taken over 
the usual interval. The other curve in Fig. 1 is the 
slope of the analytic fit obtained in the previous 
paper. If error limits were placed on this m e ,  
a satisfactory overlap of the methods of fitting 
would be obtained. 

fiom the figure we estimate an asymptotic 
slope for the OD Hugoniot of 0.95f0.10. The 
RHS of the approximate relation m. (28) then 
(with our best estimate for the CJ state) predicts 
2.50k0.3 for'%'@), The inferred slope 2.712 [l] 
falls bithin this range. 

Plohr's definition of the derivative 9 to yield 

. 

l3q. (22) can be combined with Menikoff and 

The slope of the sound-speed curve is closely re- 



lated to their fundamental derivative, and the 
measured %‘(u) implies G,j = 2.05. This value 
implies a non-pathological concave-upward curve 
for the CJ isentrope. 

In the previous data fitting we were able 
to choose analytical forms that adequately rep- 
resented the data. This just means the data 
doesn’t uniquely specify a particular functional 
form. However, we do recommend that any func- 
tional form chosen duplicates the u: shape given 
in Fig. 1. This insures that both us and u: are 
smooth continuous functions, which are neces- 
sary constraints to obtain thermodynamic vari- 
ables that are well behaved. 

In Fig. 2 the second derivative of the detona- 
tion Hugoniot is given. The tabular function code 
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FIGURE 2. The derivative uy(u) from the run- 
ning fits. Error limits are shown. 

was also used to calculate this curve. The curva- 
ture is a maximum at the CJ state and mono- 
tonically decreases to zero at the end of the data 
range. The twesigma error limits are also shown 
and have the usual behavior at the constrained 
and unconstrained end points. The exact relation 
(Eq. (16)) gives uf = 1.36s/km at CJ. This is 
considerably larger than the 0.87f0.1 value indi- 
cated on the graph. This is not too surprisiig. 
There weren’t a lot of points in the vicinity of the 
CJ state measuring the curvature. 

The high value for the curvature at the CJ 
state from Eq. (16) and the following measured 
smooth behavior of the Hugoniot imply difiiculties 
in fitting the Hugoniot with some smooth polyno- 
mial. The analytic fit previously used [l] proba- 
bly matches u8(u) at the CJ state, but does not 
match the detailed behavior of U:(U) and u’,’(u) 

mandated by these thermodynamic relations. 

CONCLUSIONS 

The PBX-9501 overdriven-detonation and 
sound-speed data is smooth and relatively feature- 
less. Many smooth functions exist that can repre- 
sent such smooth data. The functions must satisfy 
the conditions imposed by the Chapman-Jouguet 
conditions. Further restrictions come from im- 
posing reasonable extrapolation conditions on the 
functions. 

In this paper a tabular function was used to 
fit the experimental detonation Hugoniot data. 
An interesting functional form for the derivative 
ub(u) of the detonation Hugoniot was observed, 
mainly a derivative that’s zero at the CJ state 
and monotonically increases with increasing parti- 
cle velocity until a constant maximum value is at- 
tained. The measured Lagrange sound-velocities 
displayed a linear dependence with increasing par- 
ticle velocity. 

Eq. (28) can be used to estimate the sound 
speed for experimental design purposes, and, in 
the absence of experimental data, should give 
a reasonable approximation for the sound speed 
in the reacted products of a detonation. The 
near-validity of Eq. (28) and the linearity of the 
measured Lagrange sound-velocities suggests that 
EOS models with relatively constant curvature 
(Murnaghan EOS’s, linear us+) might also de- 
scribe detonation products very well. The lin- 
ear base curve would have to be lower in the us- 
up plane than the OD Hugoniot. The variations 
that ut goes through on the OD Hugoniot would 
have to be achieved through an initial energy off- 
set (i. e., the “reverse snowplow” model discussed 
previously.). 

APPENDIX: DATA FITTING WITH 
A TABULAR, FUNCTION 

Least-squares fitting of data is ofteri done by 
assuming a p a r t i d h  functional form and opti- 
miziig‘with rap& to its parameters. In exam- 
ining a property of the determined function (such 
as its derivative) it may be unclear whether the 
property is strongly related to the data or is prin- 
cipally a result of the assumed functional form. To 
circumvent this uncertainty, leastisquares can be 
done with functions that have no particular func- 
tional form, for instance cubic splines are com- 
monly used. Another choice, which is used here, 



is to represent the fitting function as a uniformly- 
spaced table which is interpolated by a local cu- 
bic Lagrange polynomial. The functional values 
of the table are then the parameters of the fitting 
function. Smoothness of the fitting function is in- 
duced by adding to the merit function a weighted 
sum of squares of the nth order forward-difference 
operator over the domain of the table. Let {zi, yi} 
be the data set and {ti, fi} be the table where ti 
are uniformly spaced over the interval min{zi} to 
max{zi}. Let F ( s )  be the local central-interval 
cubic Lagrange interpolation poIynomiaI for the 
table {ti,fi}. Then the merit function for opti- 
mization is: 

ndbta mtbble 

E = (F(Q) - ~ i ) ~  + wt (Anfi)2. (Al) 
i=l i=l 

The normal equations are then: 

Because the optimizing parameters are the fj’s, 
which are local function-values and thereby are 
directly associated with the residuals of the least- 
squares, the so determined function is highly dom- 
inated by the data and gives residuals randomly 
distributed about zero. For our particular appli- 
cation we had 20 tabular values uniformly cover- 
ing the data (mtable = 20), a third order smooth- 
ing operator (n = 3), and a value for wt that gave 
an effective weight of 2 for the second term rela- 
tive to the first term. 

The derivative table {ti , f l}  is calculated 
from the {ti,fi} table by using a running 4th- 
degree polynomial about central points. A table 
{ti, f!} is constructed similarly from {ti, fi}. 
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