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Threedimensional finite element simulation of 
viscoelastic fluid flow using the EVSS-G 

A. Benard, P.M. Lovalenti, D.L. Tullock, E.D. Montalbano and D.C. Guell 
Los Alamos National Laboratory, Los Alamos, NM 87545 

Abstract 

An implementation of the EVSS-G method in a finite element framework is presented 
for modeling three-dimensional viscoelastic flows. The extension from two to three dimen- 
sions is discussed, along with the use of the Picard and Newton-Raphson iterative tech- 
niques. A selection of benchmark problems, with known analytical solutions are presented 
as validation of the implementation as well as results for secondary flows in rectangular 
ducts. 

Injection molding simulation software typically uses the Hele-Shaw approximation to formulate 
the governing equations. However, as molded parts become increasingly complex and filling 
times become shorter, three-dimensional and viscoelastic effects that cannot be included in 
such a treatment may become important [L] . Recently, the EVSS-G method (elastic-viscous 
split stress) has been introduced for simulation of two-dimensional viscoelastic flows [2]. As 
computer power increases, extending such methods to three-dimensional flows becomes more 
feasible. 

In this paper, after a brief review of the governing equations, implementation issues for the 
EVSS-G method are discussed. These issues involve the use of the Picard iterative method 
together with the Newton-Raphson iterative scheme. Results for problems such as flow in a 
duct with weak secondary vortices will also be presented. 

GOVERNING EQUATIONS 

The governing equations for steady, isothermal, viscoelastic flow are presented in this section. 
The equations include the continuity equation, given by 

v.v=o, (1) 

for an incompressible fluid. The momentum equation is written in dimensional form as 

(2) pv. vv+ v -7 + v p  = 0, 

where p is the fluid density, v the velocity, and p the pressure. In viscoelastic constitutive 
equations, the deviatoric stress tensor r is often divided into a polymer contribution rp and a 
solvent contribution r,, i.e.7 = rp + r,, and where r, = -q,j. j is the rate-of-strain tensor 



and qs is the solvent viscosity. In the EVSS/EVSS-G formulations, another change of variable 
is introduced, i.e. E rp + qp+, where 2! corresponds to the elastic part of the deviatoric 
stress [3]. Combining these variable changes provides r = E - qo+, and substituting into the 
momentum equation yields 

This change of variables has the advantage of yielding the viscous operator V2v unweighted by 
the solvent viscosity so that problems in which qs = 0 can be solved. Also, the mathematical 
type of the equation set is strictly elliptic for velocity and pressure and strictly hyperbolic for 
stress [3]. In the EVSS-G method, the velocity gradients are treated as additional unknowns 
in the problem and approximated by Lagrange linear basis functions. The additional equations 
required are provided by the definition of the velocity gradient, i.e. G -= Vv. 

For the Giesekus model, the polymer contribution to the stress satisfies 

which can be used with the Newton-Raphson method discussed below. For the Picard iterative 
method, another more complex form of this equation is required, with 2! as dependent variable. 
This form is obtained when the change of variables E 

The equations were discretized using the standard Galerkin formulation but are omitted 
here for the sake of brevity. The weight and shape functions employed were all linear, except 
for the velocities, which were quadratic. In addition, the streamline-upwind-Petrov-Galerkin 
method was applied to the constitutive equation. The features of this technique are discussed 
in several papers for two dimensional problems and the reader is encouraged to refer to them 
for further information [2,3]. 

rp + qp+ is introduced. 

IMPLEMENTATION ISSUES 

A frontal solution technique was employed to solve the discretized system of linear equations 
[4]. Picard and Newton Raphson iterative methods are used to solve the non-linear system 
of equations. Typically, two or three Picard iterations were used first to bring the solution 
within the radius of convergence of the Newton-Raphson scheme, which is then used to bring 
the solution to the required degree of convergence. 

For the Picard iterative method, the implementation of the equations is straightforward, 
but is also rather tedious due to the complexity of the constitutive equation that emerges after 
the change of variables. With Picard’s Method, the full matrix for the equations based on E, 
j,v and P must be used as it requires that the following system be solved 

K(Un)Un+1 = F(Un), ( 5 )  

where K is the element matrix, U is the solution vector, and F is a forcing vector. 
As mentioned above, Newton’s method with analytical Jacobians was also employed. This 

method is actually somewhat more simple to implement due to simplifications that can be made 
in implementing Newton’s Method and the EVSS-G together. In summary, Newton’s method 
consists of solving 

J(Un)AU = -R(Un) (6) 



for AU at each iteration and updating the variables U .  J is the Jacobian matrix (or tangent 
matrix) given by 

and R is a vector containing the residuals of the equations. With this method, the entire set 
of equations need not be recast with as the dependent variable. Instead, T~ can be used, 
which leaves the constitutive equation in its more simple form. Implementation of the combined 
EVSS-G/ Newton methods then consists of [5] 

0 Computing T~ from the previous iterate with T~ = X - q p j ;  

0 Writing the residuals for the equations based on E (R(X)) since they are identical to 
those based on T~ ( R ( T ~ ) ) ,  within numerical error; 

0 Computing the entries of the Jacobian matrix and employing the chain rule to compute 
the derivatives with respect to the velocity gradients. 

Entries of the Jacobian matrix are then computed for the E formulation from the equations 
written with T~ as the dependent variable. The momentum equation is written in terms of X 
and the constitutive equation in terms of rp. Otherwise, the case qs = 0 in the momentum 
equation results in a singular system of equations for J. Also, when using Newton’s method, 
the EVSS transformation, rp + q p j ,  takes place when the derivatives with respect to G 
are performed and the chain rule is used in computing the Jacobian matrix. 

RESULTS 

Our implementation of the method was tested satisfactorily against several known analytical 
solutions. These include simple shear and elongational flows, and a point source/sink problem 
based on a solution of Gartling [GI. Several interesting cases can be studied in three-dimensions. 
A popular one involves capturing the secondary vortices created by the flow of a viscoelastic 
fluid in a duct [I], which will be presented. The method was tested extensively and can be 
shown to require less memory than its predecessor the EVSS, from which it emerged. The 
method also proved to converge to higher De number than the EVSS for the source/sink flow 
problem. 
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