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ABSTRACT 

Computer simulations have a generic structure. Motivated by this we present a new class of discrete dynamic& 
systems that captures this structure in a matematically precise way. This class of systems consists of ( i )  a loopfree 
graph Y with vertex set {1,2,. . . ,n} where each vertex has a binary state, ( i i )  a vertex labeled set of functions 
(Fi,y : Rj + IQ)j and (iC) a permutation ?r E S,,. The function Fi,y updates the state of vertex i as a function 
of the states of vertex i and its Y-neighbors and leaves the states of all other vertices fixed. The permutation R 
represents the update ordering, Le., the order in which the functions Fi,y are applied. By composing the functions 
Fi,y in the order given by ?T one obtains the dynamical system 

n 

[FY ,TI = n FT(i),Y : G + q 9 

i=l 

which we refer to as a sequential dynamical system, or SDS for short. We will present bounds for the number of 
functionally different systems and for the number of nonisomorphic digraphs r [ F y ,  4 (having vertex set 9 and edge 
sets {(E, [Fy, n](z)) I z E F}) that can be obtained by varying the update order and appIications of these to specific 
graphs and graph classes. 

1. INTRODUCTION 

Computer simulations have become an important technique in both science and business. Simulations share a 
generic structure. They typically consist of ( 2 )  entities or agents with some state, where (ii) each agent or entity 
has communication capabilities and ( i i i )  a schedule that gives the order in which the agents or entities (sequentially) 
update their states. The agents (entities) are usually only able to establish communication with agents (entities) 
located 'close' to themselves, i.e., they have a local region of perception. One possible way to translate this into 
mathematical terms is to 

0 interprete agents or entities as symmetric Boolean functions, 
0 interprete the endpoints of the communication links as the (state) variables over which the Boolean function 

interprete the schedule that decides the order in which the agents update their states as a permutation. 
is defined, and 

This brings us to the concept of SDS. An SDS consists of 

0 a set of symmetric functions F associated to the agents, 
1 
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0 a graph Y where vertices are the agents and where edges represent the communication links, and 
0 a permutation R (the update schedule). 

Thus an SDS can be written written as a triple (F = (fi), Y,n).  If all the functions fi are the same we write (f, Y, A). 

Ezample 1. Consider the following example of a market where there is only one stock and where each agent (labeled 
0 to n) in turn is allowed to buy or sell one share. Agent 0 knows the most recent action of all other agents. Agent i 
(2 5 i 5 n - 1) only knows the most recent action of agent 0, agent i - 1 and agent i + 1. Agent 1 sees agent 0,2 and 
n and agent n sees agent 0 , l  and n - I. Assume that every agent sells one share if the majority of its neighbors (and 
itself included) just sold one share and buys one share otherwise. Let Maj be the symmetric function that maps 
(21,. . . xk) to 0 if 0 occurs more often than 1 and to 1 otherwise. Assign a binary state to each agent that is 0 if the 
agent just sold a share and 1 if it just bought a share. The communication among the agents are given by the graph 
W, = Circ, @ 0, i.e., the vertex join of the circle graph on n vertices with the vertex 0. Thus, e.g., the graph We is 

Finally, let R be the order in which the agents are acting. Thus our example is accurately described by the SDS with 
Maj as the locd functions, W, as the dependency graph and A as the update order, i.e., (Maj, W,, R). Of course, 
this is a very simple example. One can easily derive more redistic/complex models. Nevertheless, it shows how the 
sequential nature of markets can be modeled by SDS in a very natural way. 

Example 2. A sequential cellular automaton (&A). An sCA consists of the circle graph on n vertices (Circ,), e.g., 
Circs is the graph 0. Each vertex i has associated a binary state xi. The state of each vertex is updated with the 
same function f : 3 4 IF2 in the order specified by a permutation R. Thus an sCA is a triple (f, Circ,,,n). It is 
interesting to note that every (parallel) cellular automaton (PCA) on n vertices (or cells) can be realized as an SDS 
over a graph on 2n vertices. The theory developed in [ lJ  2,5,4] applies in particular to the study of sCA. 

In this paper we continue’ the work on the class of discrete dynamical systems referred to as sequential dynamical 
systems. The work on SDS was initiated in [l, 2, 5, 41. In these papers combinatorial, probabilistic and dynamicd 
system aspects are analyzed. This paper focuses on the combinatorial aspects. The emphasis is on ideas and 
applications of the theory and for this reason some proofs have been left out. In these cases we refer to [5, 41 for 
full proofs. We start by reviewing the concepts and the setting needed for the definition of a sequential dynamical 
system (SDS). 

Let Y be a finite, loopfree, undirected graph with vertex set v[YJ = (1,. . . , n) and edge set e[Y]. Let &(i) be the 
set of Y-vertices adjacent to vertex i and let 15i = I&(i)l. We denote the increasing sequence of elements of the set 
Bo(i) u ti) by 
(1.1) &(i) = h,. . . , i,. . . ,h,) , 
and set d = maxl<iS, Si. To each vertex i there is associated a state zi E Fz, and for each k = 1,. . . , d + 1 let 
fk : !$ + IF2 be a &en symmetric function. For each vertex i E I# = { 1,2, .  . . , n} we introduce the map 

projy[i] : -+ I$ + I ,  (21,. . . , x,) t) (q1,. . . ,xi,. . . , zjCi . 
Further, let S k  with k E N denote the symmetric group on k letters. Let ( f k ) l < k < $ Y ) + l  - -  be a multiset of symmetric 
functions fk : e + El. Set x = (x1,x2,. . . ,x,). For each i E N, there is a Y-local map Fi,y given by 

yi = fa.+l oproju[i], 
F,(z) = (21, .. * , x i - l ,  Yi(X),zi+l, .. . , ~ n ) .  
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We refer to the multiset (4,y)i as Fy. It is clear that for each Y < K ,  the multiset (fk)l<k.Cn induces amultiset F y ,  
i.e., we have a map {Y < K,} + {Fy}. Let 'IT E S,. Now defme the map & : Sn + Q by $ ~ ( n )  = n:='=, FT(i),y. 
The sequential dynamical system (SDS) over Y with respect to the ordering r is $F{?T) which we also denote as [Fy, .I. 
Introduce the equivalence relation N(Y,F) on Sn X Sn by 'IT y y , ~ )  a iff $(r) = $(a) and let s(jk)k(Y) = $F(sn). 
The digraph I'[Fy,r] is the directed graph having vertex set Q and edge set ((~,[FY,'IT](z)) I 2 E Q}. For 
'IT = (il,. . . ,in) write i <* j if i = ik, j = ir and k < 1. For each graph Y < K ,  we define the update graph U(Y) as 
the graph having vertex set Sn and in which two different vertices (il, . . . ,in) and (hl, . . . , hn) are adjacent iff (a) 
it = he, # k, k + 1 and (b) {ik,ik+l} 4 e[Y].  Let m y  be the transitive closure of the adjacency relation in U(Y) 
and set [T]Y = {d I A' -y r } .  Clearly, ?r' E [r]y implies [Fy,lr] = [FY,~']. 

IF- 

One symmetric function that will be referred to in the following is Nor defined by (z1, . . . , zk) w 21 V - - V zk. 
The function Par defined by (21,. . . , zk) I+ E:=, xi has the important property that the induced SDS is invertible 
independent of the underlying graph Y. 

2. COMBINATORIAL RESULTS 

In [2] the emphasis is put on counting the number of different SDS, that is, determining the number of equivalence 
classes of -(Y,F). In [3] it is shown that there is a bijection 

(2.1) f(Y,) : [Sn/ NY] + Acyc(Y), 
where Acyc(Y) denotes the set of all acyclic orientations of Y. Thus u(Y) = JAcyc(Y)I _> J~F(S,)J- Moreover, in 
[5] it is shown that for any graph there is always a set of local symmetric functions for which this upper bound is 
achieved. It is interesting to note that this result is not limited to SDS, but applies just its well to non-symmetric 
local functions. Thus the question of determining the best possible bound for the number of functionally different 
systems that can be obtained by varying the update order is completely answered. 

The bijection in (2.1) gives rise to a map 

(2.2) i+ : Acyc(Y) + S,, D I+ D#, 
that assigns to an acyclic orientation its canonical permutation, see [3]. 

Example 3. Example: Circ4. There are 14 different acyclic orientations of this graph and consequently the maximum 
number of SDS that can be obtained by varying the update order is 14. Note that there are 4! = 24 possible update 
orderings in this case. 

Example 4. Consider again the graph W, defined in example 1. Let u(Y) denote the number of acyclic orientations 
of the graph Y. For the computation of u(W,) we make use of the recursion relation a(Y) = u(Y') + a(Y") where Y f  
is the graph obtained from Y by deleting the edge e, say, and Y'' is the graph obtained from Y by contracting the 
edge e. Let WA be the graph obtained from W, by deleting the edge {1,n}. Applying the recursion relation then 
gives 

It is easily seen that a(WA) = 2.3,-' and by solving the recursion relation we obtain u(W,) = 3, - 3. Thus for the 
graph W, with fixed local maps one can at most obtain 3, - 3 different systems by changing the update ordering. 
This number should be compared to number of different orderings which is n!. 

a(Wn) = a(WA) + a(Wn). 

For applications the concept of dynamically equivalent SDS is of importance. In, e.g., a modeling setting one wants 
to prescribe systems with a given number of orbits and orbit sizes and possibly also a given transient behaviour. 

http://fk)l<k.Cn
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Clearly, two systems can differ as functions but even so they may have the same dynamical properties. To make 
this more precise let [Fy,  TI and [Fy, a’] be two SDS. If there exists a bijection cp : Q -+ IQ such that r[Fy, T’] = 
cpo[Fy, ~‘10q-l we will say that [Fy , T ]  and [Fy, d] are dynamically equivalent SDS. Note that cp can also be regarded 
as an isomorphism of the corresponding digraphs. For classical dynamical systems the definition of dynamically 
equivalent systems coincides with the concept of topologically conjugate systems when cp is a homeomorphism. 

An object important in some of the questions to be raised later is the set 

(2.3) C ~ [ F ~ , ~ ]  = {D E ACYC(Y) I ~[F~,D#] 2 ~ [ F ~ , T ] }  . 
In the following we will simply write S(Y) for S(~,J* (Y). 

Proposition 1. Let Y < Kn and define the Sn-action on E by p(z)  = (zP(l), . . . , Z p ( n ) ) *  

1. The map Aut(Y) x S,/ my+ Sn/ -y defined by  (7, [T]Y) I+ [7 0 T]Y is 012 Aut(Y)-action on Sn/ NY. This 

2. FornES,, andyEAut(Y) we have[Fy,yT] =yo[Fy,?r]oy-l. 
3. The map Aut(Y) x S(Y) -+ S(Y) given by (7, [Fy, 7r]) t) [Fy, y 0 T] i s  an Aut(Y)-action ma S(Y) with the 

action induces an Aut(Y)-action on Acyc(Y) given by {y D } ( { i , k } )  = D({y-’(i),~-’(k)}). 

property [ F y , y  o T ]  = 7 o [Fy, a] o 7-l. In particdar Cy[Fy, T ]  is an Aut(Y)-set. 

For the proof of this proposition we refer to [SI. 

As a consequence of this proposition we derive the following bound for the number of nonequivalent SDS. 

Corollary 1. Le€ Y < Kn.  We have 

where Fix(7) = {r) E Acyc(Y) I y 0 r) = D}. 

The corollary is essentially a consequence of Burnside’s theorem and the details can be found in [SI. In the following 
we will set A(Y) = &EAut(Y) I Fix(r)l/l Aut(Y)I. In order to efficiently calculate the bound A(Y) we may proceed 
as follows. Let G be a group and let Y be an undirected graph. We will denote Y-automorphisms by 7. The group 
G is said to act on Y if there exists a group homomorphism u : G + Aut(Y). 

Definition 1. Assume G acts on Y < K,,. Then G \ Y is the graph with 

v[G \ YI = Wi) I i E V[YI}, e[[G \ YI = I Y E e[Yl) 
and TG is the surjective graph morphism given by 

TG : Y + G \ Y, i t) G(Z) . 
Proposition 2. Let Y < K, be an undirected graph . Then we hove 

Let (0 @ Y) denote the vertex join of 0 and Y. The map TG has the property 

(2-6) nG(O @ Y) = 0 @ T G ( Y ) .  
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The proof can be found in [4] 

Some words of caution are in order. To begin, take y E Aut(Y) and write it as a product of disjoint cycles where 
cycles of length 1 are also included, say 7 = c1 q . . Ck. The vertices in G \ Y are (in a 1-1 correspondence with) 
the cycles c1, c2,. . . , Ck. However, G \ Y is in general not a simple graph as it may contain loops. 

There are two main factors making the computations of a( (7) \ Y) relatively simple. The graph (7) \ Y is typically of 
a nature well suited for computing its number of acyclic orientations. The procedure is also simplified the fact that 
if (7) \ Y has loops every orientation is necessarily cyclic. The graph (7) \ Y also has fewer vertices than Y when 
7#1*  
Example 5. To illustrate the concepts and theory above let us consider the cube €I$ as shown in figure 1. Note that 
cycle notation is used throughout the entire example. We have Aut(Q3,) E 2; x 273. Here we will simply use the fact 

6 7 

FIGURE 1. The graphs Qg and ((04)(15)(26)(37)) \ 0:. 

that the automorphism group is generated by, e.g., p = (0132)(4576), p = (0)(124)(365)(7) and T = (04)(15)(26)(37). 
The graph (7) \ 0; is shown to the right in figure 1. The only automorphisms contributing to A(Y) are given in 
figure 2 along with their reduced graphs. Since we have .(a:) = 1862 we get A(Q:) = 54. Thus there are at most 

0 - 0  0 - 0 - 0  

/ I  Cl:, Circq, K4 

0- 0 0 - 0 - 0  

FIGURE 2. The elements of Aut(€Ii) with their reduced graphs. 



54 nonequivalent SDS on the cube. Explicit computations for the function Nor shows that this bound is sharp. 

In the following we show how one we can take full advantage of the results above when we apply i t  to families 
of graphs and vertex joins of such. As usual denote by Circ, the graph with vertex set { 1,2,. . . , n} and edge set 
{ { i , i t l } l  1 < i ~ n - l } U { { l , n } } .  Set Wn=Circ,@OandP,=W,@(n+l).  DefineQ, byv[Q,]=v[P,]and 

Proposition 3. Let n > 2. Then we have 

e[Qnl = \ (Io,  n + 1)). 

Here 4 as the Eder  $-function. 

Proof. Let Circk be the graph obtained from Circ, by deleting the edge {i, i + 1). Similarly define WA, PA and 
as the graphs obtained from W,, Pn and Q, respectively by deleting the edge {i, i + 1). Straightforward calculations 
show that 

~(Circ:) = 2n-1, u(WA) = 2 3"-l, u(P~) = 6 .  qn-l, a(Q;) = .(PA) - @Vi), 
u(Cir%) = 2, - 2, a(W,) = 3n - 3, a(P,) = 2 (4, - 4), a(&,) = a(P,) - a(W,). 

Consider the graph Circ,. Clearly Aut(Circ,) S D,, i.e., the dihedral group on 2n elements. Now D, = (7) M (a) 
where, using cycle notation, a = (1,2,. . . ,n) and T = n{zcl(i,n - i + 2). 

i )  If o(&) = n then (d) \ Circ, contains loops and consequently I Fix(&)] = 0. Here o( ) denotes order. 
ii) If o(uk)  = n/2 then (ak) \ Circ, is a graph with two vertices connected by an edge and we obtain IFix(d))) = 
2 = 242  - 2. 
i i i)  In the case where ak has order $, d > 2 we have (d) \ Circ, 
iu) Fmally it is seen that the only case in which ( 7 ~ ~ )  \ Circ, does not contain loops is when n, k E 0 mod 2, and 
in this case {mk} \ Circ, 2 Circ&,+, and I Fix(7cr'))J = 2R/2 for $1 k. 
Thus 

2- 

Circ,/d and thus I Fix(ok)l = 2,id - 2. 

1 A(Y)  = - (C I Fix(ak)l + I Fix(rak))o 
2n k k 

NOW consider W,. Clearly we also have Aut(Wn) 
what we did above. To be specific: 
i) By the same argument we have I Fix(d)l = 0 whenever uk has order n. 
ii) Since TG(O@Y) = O@G(Y) we have (gk)\Wn S Circs when rk has order n/2 and thus I Fix(a'))( = 6 = 3n/2 -3. 
i i i)  When o(&) = n / d ,  d > 2 we have obtain (ck) \ W, 2 Wn/d and we get I Fix(ak))l = 3,jd - 3. 

Dn. The calculation of A(W,) now follows effortlessly from 

n - 



i w )  Using the property of TG again we obtain (T&) \ W, E W&,+, when n,k 3 0 mod 2 and consequently 
I Fix(mk)l = 2 . 3"j2. Adding up produces the given formula. 

The graphs P, and Qn can be dealt with similarly. The only difference is that now we have Aut(Pn) = Aut(&,) = 
0 (6) M ( (T)  x (a)) where S = (0,n + 1). 

An important question is the following: Are there graphs Y < K ,  such that no matter what the choice of the local 
symmetric functions are it turns out that the A(Y) is not the best possible bound? A closely related issue is that of 
determining if &[Nor,r] = {D E Acyc(Y) 1 D E Aut(Y)(f(Y,n))). A positive answer to the latter question will 
of course imply an affirmative answer to the former. Although this is hard to determine we are able to show it for 
some graph classes, or more precisely: 

Proof. It is shown in [5] that h~~~ : S,/ -St=,, + S(Y) is a bijective Aut(Star,)-map and thus it suffices to consider 
the Aut(Star,)-action defined in Proposition 1. For j = 1,. . . , R we select = til,. . . , in) E S, such that ij = 1. It 
follows immediately from Aut(Starn) Y S,-1 that 

n 

sn/ -Star,= U Aut(Starn)([rjIstar,) - 
j =1  

It remains to prove that the SDS [Nor, nil, i = 1,. . . , n exhibit pairwise non-isomorphic digraphs I'[Nor, nil. 
Let ?r E Sn be a permutation with ~ ( i )  = 1. Set 5 = (Z*(I), . . . , zr( i -~))  and y = (z=(i+I), . . . ,z*(n+l)). If i # 1,n 
one obtains the following orbits in phase space: (underline denotes vectors.) 

(2.11) 

In the case i = 1 one obtains 

(2.14) 
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In the case i = n one has 
(2.15) 

(2.16) 

2 #O,l 
5 # a. 

/ 
It is clear from the above diagrams that for any i the associated digraph has a unique component containing a 3-cycle 
and on this cycle there is a unique element vi with indegree(vi) > 1. In the first case indegree(vg) = 2i-1, in the 
second case indegree(wi) = 2 and in the third case indegree(q) = 2"-'. The only case in which these numbers are 
not all different is for i = 2. But in this case one can use, e-g., the structure in (2.13) to distinguish the corresponding 

0 digraphs. It follows that if i # j the corresponding digraphs are not isomorphic. 
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