98-2422 LA-UR-

Approved for public release; distribution is unlimited.

Author(s):

Pascal Balleyguier

Submitted to:

Distribution

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Los Alamos

NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. The Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Sparking rates measured on the CRITS RFQ Pascal Balleyguier

1. Automatic acquisition system.

During the test of the LEDA injector on the CRITS RFQ, an automatic data acquisition system has been implemented (fig.1). The purpose was to measure the sparking rate of this CW RFQ.

Sparks are detected in the blanking box by comparing the reflected power level to a preset threshold. In that case, the blanking box switches the low-level RF off for 70 μ s, and this event is recorded by a pulse counter. The forward, reflected and cavity power levels are measured by RF power meters. The cavity residual vacuum is measured by a vacuum gauge. This diagnostic equipment is with the computer via a GPIB link.

The computer holds a Labview acquisition program that was launched at the beginning of every run. This program acquires the sparking counter every second and displays this information in a rolling window that holds the last four minutes of operation. Every minute, the computer reads the three RF powers and the vacuum pressure. Those information are stored with the total number of sparks during this minute, and the number of second during which at least one spark occurred. The time is also recorded.

The data are stored in an ASCII text file named $spk^{***}.dat$ (*** being a number automatically incremented by the program at each run) that can be read by any text editor. The list of the recorded files is displayed on table 1.

2. Examples.

P.Balleyguier

The example displayed on figure 2 has been recorded on March 16, 1998. One can notice that the sparking rate gradually increased (between 11:30 and 12:00) while the RF power was raised for conditioning. The residual vacuum only slightly increased during that time. The reflected power is low, though not null, as the cavity is over-coupled without beam. At 12:53, the power was dropped down to 120 kW, and no spark occurred during the following 11 minutes.

At 13:05, the beam was switched on. As a feedback circuit automatically compensates the beam loading, the cavity power remained constant. The forward power jumped from 137 to 185 kW and the reflected power almost vanished. The sparking rate increased significantly as the residual vacuum pressure increased approximately by a factor of ten.

Fig.2. An example of automatically stored operating data.

The raw sparking rate is not always relevant information. Sometimes, bursts of sparks occur, and these bursts dramatically affect the average sparking rate. The average sparking rate is not really meaningful during these spark bursts since they can dominate the statistics presented by the average sparking rate. For that reason, we also stored the number of seconds during which at least one spark occurred. Doing this allows us to count these burst as only one event, and makes the statistics more reproducible. As an example, figure 3 is a record of the April 9 operation with an 80-mA beam. A burst of 708 sparks occurred in the middle of a continuous 61 minutes run. This single event changed the raw sparking rate from 5.1 to 16.7 per minute, but the rate of sparking seconds only changed from 3.00 to 3.06.

P.Balleyguicr

May 28, 1998

3. Sparking rate analysis.

3.1. Operations without beam.

The 34 long runs (between 22 and 163 minutes long) of continuous operation without beam that have been collected are printed on table 2. Some of them yielded no sparks at all. Figure 4 plots the number of sparking seconds in a log scale. One spark has been added arbitrarily to each data point in order to be able to plot the zero-spark points. This induces a slight bias to the other data, but takes into account the fact that rates are more accurate if acquired over a long run.

At the design field (1.75 Kilp.), the sparking rate is typically 0.5 per min, i.e. the average time between two bunches of sparks is two minutes. The slope suggests that a 0.22 Kilp decrement in the electric field lowers the sparking tendency by an order of magnitude.

Fig. 4. Sparking rate measured during no-beam operations.

3.2 Operations with beam.

Beam operations have also been considered. The long runs with continuous beam operation are printed on table 3: 24 runs (between 24 and 161 minutes long) for a beam current between 20 and 80 mA. Because of a peak RF power limitation, the RFQ was run at about 10 % below the design cavity field (1.75 Kilpatrick, 77.4 kV intervane voltage, 159 kW measured in the RFQ). The beam current value listed in the table is deduced from RF power data and may differ slightly from the direct current measurements. Figure 5 shows that the range of beam current variations was too narrow to induce a significant variation of the sparking rate. In the range of current tested, the number of sparking second is about 3 per minute, which is about 30 times more than without beam. Figure 6 shows that the sparking rate does not follow the dependency rule versus electric field that has been established without beam. However, this information has to be taken with care, because when the field differs from the design value, the synchronism between

beam velocity and vane modulation is no longer satisfied.

Fig. 6. Sparking rate comparison: with-beam versus no-beam

4. Conclusion

The RF level has some influences on vacuum, but there is no evidence of any reciprocal effect.

The raw sparking rate is very difficult to interpret, since bursts of sparks bias the statistics. A more convenient and useful interpretation is the number of sparking seconds. At the nominal field level (1.75 Kilp), the sparking-second rate is 0.5 per minute without

beam. It strongly depends on the field, with a logarithmic law: 4.5 decade/Kilp.

With beam, the sparking rate jumps to 3.0 per minute. As far as tested, it depends neither on the beam current (20 to 80 mA) nor on the field (1.5 to 1.7 Kilp tested).

With sparking rates as measured here, one could not hope to build an RFQ that would be free of sparks over a several months continuous operation. Such a requirement, based on an extrapolation of the curves presented here, would lead to a maximal electric field much lower than the Kilpatrick value, an unreasonable requirement for a functional RFQ.

A conclusion is that a sparkless RFQ is hopeless, even with a very carefully conditioned cavity. It will probably be necessary to deal with a few sparks per day, and the linac must be able to restart automatically after a short beam interruption.

P.Balleyguier

May 28, 1998

Table 1.

.

List of all the automatically recorded runs of the CRITS RFQ during the LEDA injector experiments (sep 97- apr 98)

file	kbytes date			177	7	24 feb
	•			178	27	25 feb
109	13	12 nov		179	11	26 feb
115	3	13 nov		180	38	4 mar
116	6	14 nov		181	34	5 mar
125	8	7 jan		182	32	6 mar
126	18	9 jan		183	1	8 mar
127	14	9 jan		184	4	9 mar
142	12	14 jan		185	7	9 mar
143	10	20 jan		186	9	9 mar
144	3	21 jan		187	34	10 mar
145	19	21 jan		188	25	11 mar
146	4	22 jan		189	24	12 mar
149	4	23 jan		190	29	13 mar
152	5	27 jan		191	5	14 mar
153	9	27 jan		192	14	16 mar
156	10	27 jan		193	22	17 mar
158	4	29 jan		194	8	18 mar
159	16	30 jan		195	13	18 mar
162	13	4 feb		196	10	23 mar
163	20	5 feb		197	12	24 mar
164	4	9 feb		198	3	26 mar
165	1	11 feb		199	16	27 mar
166	1	12 feb		200	21	30 mar
167	1	12 feb		201	1	30 mar
168	24	13 feb		202	12	30 mar
169	23	17 feb		203	18	31 mar
170	13	18 feb		205	10	1 avr
171	7	19 feb		206	3	3 avr
172	2	19 feb		207	7	3 avr
173	1	23 feb		208	6	8 avr
174	1	13 feb		209	7	9 avr
175	2	24 feb		210	12	9 avr
176	3	24 feb		211	5	9 avr

Table 2.

List of the long continuous runs of the CRITS RFQ without beam recorded during the LEDA injector experiments (sep 97- apr 98)

file	date	time	durat.	RFQ	E-pk	beam	spk	sp-sec	spk	sp-sec	
	m.day	hr.mn	min	kW	Kilp	mA	total	total	/min	/min	
176	2.24	10.2	25	125	155	0	0	0	0.00	0 000	
170	2.24	10.5	23 59	123	1.55	0	12	0	0.00	0.000	
170	2.25	13.5	50	140	1.09	0	12	7	0.21	0.201	
100	3.04	9.5	42	140	1.52	0	51	/	0.40	0.172	
100	2.04	10.4	45	140	1.04	0	24	0	1.31	0.310	
100	2.04	11.4	30 71	140	1.04	0	54 124	4	1.15	0.222	
100	3.04 2.04	12.1	/1	151	1./1	0	134	19	1.09	0.440	
100	3.04	13.5	103	151	1.71	0	300	38	1.84	0.389	
101	3.05	1.5	20	152	1./1	0	105	17	1.47	0.405	
101	3.03	10.5	20	125	1.55	0	42	3	1.40	0.270	
101	2.05	12.2	33 27	155	1.01	0	41 74	12	1.24	0.000	
101	3.05	12.5	21 60	150	1.70	0	74	11	2.74	0.079	
101	2.05	0 1	20	150	1.70	0	95	21	1.30	0.505	
102	3.00	0.1	20	100	1.79	0	90 104	14	2.37	0.014	
102	2.00	9.4	29 10	107	1.79	0	124	10	J.10 1 15	0.004	
102	2.00	14.1	40	154	1.72	0	40	15	1.1.5	0.451	
102	2.00	15.4	20	101	1.70	0	42	11	1.11	0.462	
102	3.00	10.2	29	170	1.01	0	332	10	12.14	0.920	
104	3.08 2.1	1/.1	33.	110	1.01	0	102	10	4.91	0.909	
107	5.1 2.1	0.1	43	110	1.40	0	0	0	0.00	0.000	
107	2.1 2.1	12.4	33 90	150	1.70	0	13	3 19	0.39	0.152	
107	3.1 2.1	14.1	22	155	1.75	0	400	10	4.00	0.337	
107	2.1	16.1	33 26	105	1.70	0	1005	45	52.21	1.022	
107	2.11	55	20	175	1.04	0	150	30	0.00	1.923	
100	2 11	9.1	10	120	1.52	0	0	0	0.00	0.000	
100	2.11	0.1	42	120	1.55	0	100	6	2.62	0.000	
100	2.12	9.5 10.2	25	125	1.50	0	100	1	2.05	0.203	
100	2.12	10.2	<i>JJ</i>	155	1.01	0	111	10	2.00	0.048	
107	2.15	10.2	40 24	155	1.75	0	144	10	12 47	1.520	unctable level
197	2.24	10.5	34 11	150	1.70	0	424	31 31	5 96	0.705	ulistable level
200	3.20	75	44 22	150	1.74	0	230 407	21 10	10 50	1 264	
200	2.2	17 /	40	125	1.75	0	40/ 52	10	1 02	0 442	
200	3.5	19.4	12	135	1.01	Ň	20	7	0.71	0.442	
200	J.J 4 08	10.4	25	133	1.01	0	109	10	2.00	0.210	
200	4.00	13.2	55	134	1.01	V	100	10	5.09	0.470	

Table 3.

List of the long continuous runs of the CRITS RFQ with beam recorded during the LEDA injector experiments (sep 97- apr 98).

file	date	time	durat.	RFQ	E-pk	beam	spk	sp-sec spk		sp-sec		
	m.day	hr.mn	min	kW	Kilp	mA	total	total	/min	/min		
127	1.09	14.3	32	146	1.68	20	1441	85	45.0	4.43		
142	1.14	10.5	36	125	1.55	31	189	66	5.3	3.06		
142	1.14	12.2	69	125	1.55	47	253	161	3.7	3.89		
142	1.14	13.5	24	125	1.55	49	86	32	3.6	2.22		
149	1.23	16.5	30	140	1.64	64	124	66	4.1	3.67		
162	2.04	15.4	75	125	1.55	74	176	102	2.3	2.27		
169	2.17	14.2	22	125	1.55	69	84	54	3.8	4.09		
169	2.17	15.1	23	130	1.58	73	106	67	4.6	4.86		
181	3.05	9.5	52	125	1.55	48	739	156	14.2	5.00		
181	3.05	11.2	54	135	1.61	54	828	171	15.3	5.28		
181	3.05	14.1	48	135	1.61	49	239	82	5.0	2.85		
188	3.11	11.3	36	120	1.52	72	491	157	13.6	7.27		
189	3.12	12.5	45	120	1.52	67	489	147	10.9	5.44		
190	3.13	14.1	60	120	1.52	58	514	162	8.6	4.50		
190	3.13	15.3	41	126	1.56	59	438	116	10.7	4.72		
192	3.16	13.5	30	125	1.55	58	203	116	6.8	6.44		
192	3.16	14.3	24	125	1.55	58	160	91	6.7	6.32		
193	3.17	12.5	24	115	1.49	68	115	55	4.8	3.82		
193	3.17	13.4	62	120	1.52	70	462	187	7.5	5.03		
199	3.26	11.1	37	128	1.57	66	280	116	7.6	5.23	nc	
199	3.26	12.1	52	145	1.67	73	1010	209	19.4	6.70	va	
199	3.26	14.4	26	130	1.58	73	164	61	6.3	3.91	cu	
200	3.3	11.1	161	130	1.58	63	1929	597	12.0	6.18	un	
202	3.3	15.5	65	135	1.61	73	896	257	13.8	6.59		
211	4.09	15.3	61	130	1.58	80	1024	187	16.8	5.11		

noise on current varying level current up to 90 unstable current:42-84 mA