
t

-
Title:

A uthor(s) :

Submitted to:

Notes on Object-Orientat ion

Brian W. Bush

World Wide Web

Los Alamos National Laboratory, an affirmative actionlequal opportunity empidyer, is operated by the Universrty of California for the U S Department of Energy
under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U S Government retafns a nonexclusive, royalty-free llCenSe to
publish or reproduce the published form of this contnbutlon. or to allow others to do so, for U S Government purposes The 10s Alamos National Laboratory
requests that the publisher identify this article as work performed under the auspices of the U S Department of Energy Form No 836 A5

ST 2629 10/91

DXSCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spc-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or impiy its endorsement, recom-
mendation. or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

v

t

t

t

J

Notes on Object-Orientation
B . w . Bush

Los Alamos National Laboratory
7 May 1996

I . Overview of concepts ... 2
A . Definitions ... 2
B . Key features ... 2
C . Issues addressed .. 3
D . Benefits ... 3

I1 . S o h a r e development ... 3
A . Process .. 3

1 . Overview .. 3
2 . Spiral model ... 5
3 . Iterative and incremental development .. 6
4 . Parallel development .. 7

6 . Rapid development .. 7
B . Analysis ... 7

1 . Requirements definition ... 8
2 . Domain analysis .. 9
3 . Use cases .. 10

C . Design .. 10
1 . Architectural design ... 12

a) Layering ... 14
b) Modularity ... 14
c) Frameworks .. 14

2 . Class design ... 15
a) CRC cards .. 15
b) Software diagrams ... 16
c) Design patterns ... 19

D . Coding ... 20
1 . Smalltalk .. 24
2 . C++ .. 25
3 . Eiffel .. 26
4 . Java .. 27

E . Quality assurance ... 27
1 . Tests ... 27

3 . Metrics ... 28
111 . Other topics .. 29

A . User interfaces ... 29
B . Databases ... 29

JY . References .. 30

. .

5 . Prototyping ... 7

. .

2 . Inspections and reviews ... 28

. . C . Distnbuted objects ... 30

1

1. Overview of concepts

A. Definitions
object-oriented
- “Something is object-oriented if it can be extended by composition of existing

parts or by refinement of behaviors. Changes in the original parts propagate, so
that compositions and refinements that reuse these parts change appropriately.”
[GR 951

object
- An object has state, behavior, and identity. [CS 941
- “An object is characterized by a number of operations and a state which

remembers the effect of these operations.” [JCJ 921
class
- “A class represents a template for several objects and describes how these objects

are structured internally. Objects of the same class have the same definition both
for their operations and for their information structures.” [JCJ 921

- “An instance is an object created from a class. The class describes the (behavior
and information) structure of the instance, while the current state of the instance is
defined by the operations performed on the instance.” [JCJ 921

instance

B. Key features
abstraction
- “An abstraction denotes the essential characteristics of an object that distinguish

it from all other kinds of objects and thus provide crisply defined conceptual
boundaries, relative to the perspective of the viewer.” [Bo 941

- allows building models which map to the real world
encapsulation .
- “Encapsulation is the process of compartmentalizing the elements of an

abstraction that constitute its structure and behavior; encapsulation serves to
separate the contractual interface of an abstraction and its implementation.” [Bo
941

- hides implementation details

- “If class B inherits class A, then both the operations and the information structure
described in class A will become part of class B.” [JCJ 921

- enables and organizes code reuse

- “Polymorphism means that the sender of a stimulus does not need to know the
receiving instance’s class. The receiving instance can belong to an arbitrary
class.” [JCJ 921

- reduces software maintenance and increases extensibility.

inheritance

polymorphism

2

C. Issues addressed
scheduling: meeting delivery dates
complexity: modeling complex applications
size: managing interdependencies in large systems
compatibility: making different chunks of code inter-operate

D. Benefifs
reuse of code
reduced code size
increased productivity
lower defect rate

li. Software development

A. Process

1. Overview
“The five habits of a successfid object-oriented project include:
- “A ruthless focus on the development of a system that provides a well-understood

collection of essential minimal characteristics.
- “The existence of a culture that is centered on results, encourages communication,

and yet is not afkaid to fail.
- “The effective use of object-oriented modeling.
- “The existence of a strong architectural vision.
- “The application of a well-manages iterative and incremental development life

cycle.” [Bo 961
“Why do certain object-oriented projects succeed? Most often, it is because:
- “An object-oriented model of the problem and its solution encourages the creation

of a common vocabulary between the end users of a system and its developers,
thus creating a shared understanding of the problem being solved.

- “The use of continuous integration creates opportunities to recognize risk early
and make incremental corrections without destabilizing the entire development
effort.

- “An object-oriented architecture provides a clear separation of concerns among
the disparate elements of a system, creating firewalls that prevent a change in one
part of the system from rending the fabric of the entire architecture.” [Bo 961

0 Booch’s macro process
- “Establish core requirements (conceptualization).
- “Develop a model of the desired behavior (analysis).
- “Create an architecture (design).
- “Evolve the implementation (evolution).

3

,

- “Manage postdelivery evolution (maintenance).” [Bo 941
“A common fallacy in the software industry is that there is one process model that
will work for projects that use object-oriented technology. . . . But one process model
does not fit all software development situations. . . . We identified and classified five
types of projects labeled as:
- “First-of-Its-Kind
- “Variation-on-a-Theme
- “Legacy Rewrite
- “Creating Reusable Assets, and
- “System Enhancement or Maintenance.” [GR 951
SEI Process Capability Maturity Model (CMM)
- “Level I : Initial

- “Level 2: Repeatable
“Characteristics: chaotic; unpredictable cost, schedule, and quality performance.

“Characteristics: Intuitive; cost and quality highly variable, reasonable control of
schedules, informal and ad hoc methods and procedures. The key elements to
achieve level 2 maturity follow:
+ “Requirements management
+ “Software project planning and oversight
+ “Software subcontract management
+ “Software quality assurance
+ “Software configuration management.

“Characteristics: qualitative; reliable costs and schedules, improving but
unpredictable quality performance. The key elements to achieve this level of
maturity follow:
+ “Organizational process improvement
+ “Organizational process definition
+ “Training program
+ “Integrated software management
+ “Software product engineering
+ “Intergroup coordination
+ “Peer reviews.

“Characteristics: quantitative; reasonable statistical control over product quality.
The key elements to achieve this level of maturity follow:
+ “Process measurement and analysis
+ “Quality management.

“Characteristics: quantitative basis for continued capital investment in process

- “Level 3: Defined

- “Level 4: Managed

- “Level 5: Optimizing

4

automation and improvement. The key elements to achieve this highest level of
maturity follow:
+ “Defect prevention
+ “Technology innovation
+ “Process change management.” [Ka 951

2. Spiral model
“Maxims underlying the Spiral Model state:
- “An activity starts with an understanding of the objectives and risks involved.
- “Based on evaluating alternative solutions, use the tool(s) that best reduce(s) the

risks.
- “All related personnel should be involved in a review that terminates each

activity, and plans for and commits to the next activities.
- “Development can proceed in increments at each stage.” [GR 951
spiral model diagram [Ka 951 0

5

3. Iterative and incremental development
“The act of reviewing a prior result for possible change is referred to as iteration.
What people seem to mean is: We do not have to get it all done the first time
around-we can come back later. Just get done what we know, and we’ll add more
later, or we’ll fix the coding of it later, or we’ll replace this h c t i o n later, and so on. .
. . The real intent of iterative development is to allow for the controlled reworking
of part of a system to remove mistakes or to make improvements based on user
feedback.” [GR 951
“Incremental development is a strategy for making progress in small steps to get
early tangible results. . . . The incremental approach requires that a problem be
partitioned into several subproblems so that each can be developed in turn. As each
partition is completed, it is tested and integrated with the other completed partitions
of the system.” [GR 951
iterative process flow chart [Ka 951

0

0

f

6

TRANSIMS iterative process

Design

4.
0

Design

5.
0

Coding

6.
0

Coding

B.
0

Testing

I
1 I

~
I

Research j

Testing Testing Testing

Architecture i

time IOC-1

Parallel development
“[Tlhe basic approach is to decompose a problem systematically into independent
components. . . [Tlhe components must be as independent of one another as possible
. . .
- Development should focus on working in parallel on independent components.
- Systems should be designed as compositions of independently created

components.” [GR 951

Prototyping
“The purpose of prototyping is to seek the information needed to make decisions.
Prototyping can help reduce the risk of making mistakes in setting requirements or in
designing the system architecture. . . . A prototype is a preliminary, or intentionally
incomplete or scaled-down, version of a system. . . . The term rapid prototyping
refers to the process of quickly building and evaluating one or more prototypes.” [GR
951

Rapid development
Rapid development generally involves the following:
- short iterativehncremental cycles
- extensive user involvement and feedback
- evolving prototypes into products

Analysis
“Object-oriented analysis is a method of analysis that examines requirements from the
perspective of classes and objects found in the vocabulary of the problem domain.”
[Bo 941 -

7

Use cases are a tool for the definition of requirements and the analysis of the
problem domain. Requirements are generated both from the customer’s definition of
the problem and results of analyzing the abstractions in the problem’s domain.
analysis process [Lo 937

0 End-User Functions

0 Contracts

Requirements
Specification

User
Manual

~

Customer

Customer
Partner
List

Throwaway
Prototype
Code

Fimrre 4.4 Analvsis-Phasr Prereauisites and Deliverabies

1. Requirements definition
function of requirements
- “Creates a clear, precise and complete definition of the system
- “Limits the scope of the system
- “Defines the functionality of the system
- “Forms a contract between the developer and the buyer of the system” [CS 941
“It is important to keep control of an iterative process. This control is effective by
driving the effort expended and decisions of completion by documented requirements.
. . . Strong control over the requirements can be maintained by regularly:

8

- “Asking customers:
“Is this necessary to satisfy our documented requirements? Does our competition
have this feature? If not, does it provide real value to our customers? Have we
asked them?

“Demonstrations of the latest product under development, getting feedback such
as features ranked by importance.” [Lo 951

- Requirements document: “This is a clear, concise statement of the end users’
needs for a product. It contains functions to be provided and no design.” [Lo 931

Requirements specification contents [Lo 931
- general

- “Showing customers:

+ purpose
+ terms

- system summary
+ background
+ objectives

+ system diagrams
- system and subsystem definition

* major system software functions
* major system software functional relationships

+ interface definition
+ assumptions and constraints

- detailed characteristics and requirements
+ specific performance requirements
+ computer program functional requirements
+ failure contingencies
+ design requirements
+ human performance requirements

- environment
- quality assurance

2. Domain analysis
“Domain analysis attempts to understand the basic abstractions in a discipline. The
goal of domain analysis is to determine a general domain model from which it is
possible to develop multiple applications. . . . The outcome of a domain analysis is
the identification of reuse opportunities across applications in a domain.” [GR 951
information sources
- domain experts
- the customer
- other products

9

- in-house prototypes

3.
e

e

e

Use cases
“The use case model uses actors and use cases. These concepts are simply an aid to
defining what exists outside the system (actors) and what should be performed by the
system (use cases).’, [JCJ 921
“Sequences of actions are captured as use cases (a specific kind of scenario), and the
objects that reside outside the system boundaries are called actors. Use cases identi@
three types of analysis objects: interface, entity, and control.
- “Interface objects translate an actor’s actions into events, and the system events

into results an actor can understand.
- “Entity objects model system information.
- “And control objects are a catchall for behaviors not easily allocated to the other

two types, essentially providing the glue that unites the other system objects.” [GR
951

a use case from TRANSIMS
Producing a Fundamental Diagram

Actor Analyst

Basic Course: A fundamental diagram presents traffic flow vs. density over a path-one
that has no entry or exit nodes other that the beginning and end nodes.

The analyst identifies a set of simulations for which to produce fundamental
diagrams. In addition the analyst specifies (by graphical interaction with a map of the
simulated road network) the path on which to compute the diagram and the time step
to use. Then the toolbox computes and plots vehicle flow vs. density at specified
times.

Alternatives: The analyst can request printed output of the images currently seen.
Alternate methods for selecting a road segment are possible.

C. Design
design procedure
- “Model the essential system: The essential system describes those aspects of the

system required to make it achieve its purpose, regardless of the target hardware
and sofhvare environment. It is composed of essential activities and essential
data. This step has five substeps:
+ “Creating the user view.
+ “Modeling essential activities.
+ “Defining solution data.
+ “Refining the essential model.
+ Constructing a detailed analysis.

- “Derive candidate essential classes: This step uses a technique known as
‘carving’ to identi@ candidate essential classes and methods from the essential

10

model of the system. A complete set of data-flow diagrams, along with
supporting process specifications and data dictionary entries, is the basis for class
and method selection. Candidate classes and methods are found in external
entities, data stores, input flows, and process specifications.

- “Constrain the essential model: The essential model is modified to work within
the constraints of the target implementation environment. Essential activities and
essential data are allocated to the various processors and containers (data
repositories). Additional activities are added to the system as needed, based on
the target implementation environment limitations. The essential model, when
augmented with the additional activities needed to support the target environment
is referred to as the incarnation model.

- “Derive additional classes: Additional candidate classes and methods specific to
the implementation environment are selected based on the additional activities
added while constraining the essential model. These classes supply interfaces to
the essential classes at a consistent level.

- “Synthesize classes: The candidate-essential classes and the candidate-additional
classes are refined and organized into a class hierarchy. Common attributes and
operations are extracted to produce superclasses and subclasses. Final classes are
selected to maximize reuse through inheritance and importation.

- “Define interfaces: The interfaces, object-type declarations, or class definitions
are written based on the documented synthesized classes.

- “Complete design: The design of the implementation module is completed. The
implementation module comprises methods where each provides a single cohesive
function. Logic, system interaction, and method invocations to other classes are
used to accomplish the complete design for each method in a class. Referential
integrity constraints that are specified in the essential model (using the data model
diagrams and data dictionary) are now reflected in the class design.” [Ka 951

11

design process [Lo 931

Design
System User
Architecture Manual

+
Requirements
Specification

User
Manual

0 \

Throwaway
Prototype
Code

8 E nfiL.;rrn-Phaco Prermii is i tes and Ddiverables

1. Architectural design
“Object-oriented design is a method of design encompassing the process of object-
oriented decomposition and a notation for depicting both logical and physical as well
as static and dynamics models of the system under design.” [Bo 941
Architectural considerations become more important the larger a software
development project becomes
- “On a small project, construction is the most prominent activity by far, taking as

much as 80 percent of the total development time.
- “On a medium-size project, construction is still the dominant activity but its share

of effort falls to about 50 percent.
- “On very large projects, architecture, integration, and system testing each take up

about as much time as construction.” [Mc 931
It also pays to do things right the first time.
- “Data fi-om TRW shows that a change in the early stages of a project, in

requirements or architecture, costs 50 to 200 times less than the same change
later, in construction or maintenance.

12

- “Researchers at IBM found that purging an error by the beginning of design, code,
or unit test allows rework to be done 10 to 100 times less expensively than when
it’s done in the last part of the process.” [Mc 931

Defects introduced in the architecture are expensive to correct: [Mc 931

Cost

Phase in Which a
Defect Is Introduced

System test \
.kxilysis Architrcxure Implementation System test Maintenance

Phase in which a Defect Is Detected

7-1.- .---. ,,. c-. .- cl,r,,r -...-- ,.I-... .--... : - - ; I . . _*I *I-- r: ___.. c. _^--- -. . I _^._ J.1- :- _..._ 2 ..-- .J A-

0 Architecture consumes larger fractions of the development time for larger projects.
[Mc 931

1 Wh

Percentage of
Development

T i e

O?h ! I
2K 8 K 3 2K 13% S12K

Project Size in Lines of Code
. . . ._ , ._ - . . . *

0 “A well-structured object-oriented architecture consists of:
- A set of classes, typically organized into multiple hierarchies
- A set of collaborations that specify how those classes cooperate to provide various

system functions” [Bo 961

13

a) Layering

0

0 TRANSIMS architecture

Layering separates the software components into a hierarchy with the application at
the top, the domain in the middle, and the technology at the bottom.
Each layer uses the layer below it, but not vice versa.
Layering encourages the reuse of software components in different parts of the
application.
Layering provides an integrated framework for the software development.

Application Analyst
Toolbox

Simplified lntenm Low Fidelity Input output
HCAD Planner Microsimulator Editor Visualizer

Generator Measur

Low-level subsystem

Representation Representation Representation Representahon Representabon Representation output
Simulation Estaiblishment Traveler Aciiviiy Pian Ne- Vehide

Utility subsystem
I I
I Database

6) Modularity

0

0

“Modularity is the property of a system that has been decomposed into a set of
cohesive and loosely coupled modules.” [Bo 941
Each software component/module has responsibilities and provides services.
The actual implementation of the module is separate from its public interface.
Modularity reduces the coupling between software components that can make
maintenance, reuse, portability, and extension difficult.

e) Frameworks
“We can define an application in sufficiently general or abstract terms, so that we can
change the objects that provide the expected behavior without changing sthe
implementation of the basic application itself. This extends the usefulness of the
application. Applications written in this style are referred to as application
frameworks. An application framework is a set of objects that interact to form the
basic structure and processing of applications within a given domain. The objects that

14

provide the general behaviors required by the application framework are called
components of the framework.” [GR 951
Frameworks need not be limited to abstracting application behavior: there are also
database frameworks, OLE frameworks, etc.
Borland’s ObjectWindows Library
DocMew Classes

w j [T S t r e a r n a b l e B a s e 1
9 S t

1

I I I 1 1 t t

2. Class design
Booch’s micro process
- “Identify the classes and objects at a given level of abstraction.
- “Identify the semantics of these classes and objects.
- “Identify the relationship among these classes and objects.
- “Specify the interface and then the implementation of these classes and objects.”

[Bo 941
CRC cards, software diagrams, and design patterns are tools for designing classes.
Nouns appearing in functional specifications and use cases are candidates for classes.

a) CRCcards
A CRC card is an index card for a class, listing its responsibilities and
collaborators (other classes).
“The CRC card session is a fast-paced, creative exchange. Classes are discovered,
converted into cards, and then annotated with responsibilities and collaborators
through the physical simulation of the system. Each person is responsible for
holding, moving, and annotating one or more cards as messages fly around the system
in support of a particular need or activity.” [Wi 951
- “The brainstorming process consists of one person standing at a board writing

names of classes as they are suggested by the session participants.” [Wi 951
- “As the number of classes being suggested decreases, the session gradually enters

a filtering stage, wherein classes are examined more closely. During this stage,
we use the requirements plus the knowledge of the people in the room to eliminate
redundancies, identifl missing abstractions, and recognize related classes.” [Wi
951

15

- ‘‘The classes, each of which becomes a CRC card, can be assigned as they are
suggested (usually to the person who suggests them) or later after most classes
have been discovered.” [Wi 951

- “Once a reasonable set of classes are suggested, filtered, and well understood by
everyone in the room, it is time to start assigning them the behaviors that will
combine to provide the functions of the appIication. Single responsibilities,
which are derived from the requirements, or responsibilities that are ‘obvious’
from the name of the class can be listed even before the scenario execution is
begun.” [Wi 953

- ‘‘Attributes may also be identified by reading the requirements. Often nouns that
are not classes but characteristics of classes are best represented as attributes.”
[Wi 951

- “Scenarios to be explored are the ‘what happens when’s that illustrate the
expected use of the system. . . . The simulation of the scenarios should be
dynamic and anthropomorphic. The people who own particular cards should hold
the card in the air and ’become’ the object when a scenario causes control to pass
to them.” [Wi 951

Software diagrams
A class diagram shows “the existence of classes and their relationships in the logical
view of a system.” [Bo 941

16

- Booch notation [Bo 941

Class icons
_ - _ _ .-. - - _ __, .
; classname I.

: attributes * - - - operatinso :
*. {conslraints} :

, - ,

.--_ _ - , _.a ._-

: formal 1
, ,-__ - _ * I I arguments ; .____________.

;’ parameterized ;
I_ class name { -.

asmiation

--) inheritance

actual . - --__, arguments

,I’ instantiated ; ._ class name

Relationship adornments

Class relationships

Properties

r--7
class cateqory name

classes

label cardinality
role

(constraint)

\ .
W Y l . ,

\
attributed class

Nesting

Containment adornments

0-w by value

e-0 byreference

Export contra/

Notes

17

- TRANSIMS example

- , - _ . 7-- t--
G s d D i d - _ _ _ - -_ Ft

8Ic r z=z
MultiArray

minator
MultiTree TYeDi&- -

.. minator \ -
, /- / - - _I

- - --
4 c

An object diagram shows “the existence of objects and their relationships in the
logical view of a system.” [Bo 941
- Booch notation [Bo 941

Object icon

attributes (15
Link

order : message
objectivalue

Synchronization - simple

* synchmrious

2 balking

& rimeout - asynchronous

18

- example [Bo 941

Get formatted update

0 An interaction diagram traces “the execution of a scenario.” [Bo 941
- Booch notation [Bo 941

object 1 object 2 object 3 object 4

script

event
b

event
I

I
4 I

operation()

operation()

operationo

-1

c) Design patterns
Design patterns are “descriptions of communicating objects and classes that are
customized to solve a general design problem in a particular context.” [GHJ 951
“A design pattern names, abstracts, and identifies the key aspects of a common design
structure that make it useful for creating a reusable object-oriented design. The
design pattern identifies the participating classes and instances, their roles and
collaborations, and the distribution of responsibilities. Each design pattern focuses on
a particular object-oriented design problem or issue.” [GHJ 951

19

0 example

WIdgetFactorv

[GHJ 951
-.

Client !

CreareScroff6aq)
Create Window()

A
L

h

CreateWindow() Createwindow0

A

i

D. Coding
“Object-oriented programming is a method of implementation in which programs
are organized as cooperative collections of objects, each of which represents an
instance of some class, and whose classes are all members of a hierarchy of classes
united via inheritance relationships.” [Bo 941

20

OOP language comparison [RBP 911

Integration of classes

Strong type checking

Ability to restrict access to attributes:
Control of access from clients
Control of access from subclasses

with primitive types

Standard class library

Parameterized classes

Multiple inheritance

%oping of class names (packages)

Messaging model:
Single target object
Dynamic binding on multiple args

Method combination features:
SUPER concept
&fore & after methods

Assertions and constraints

Metadata at run-time

Garbage collection

Efficiency:
Static binding when possible

C++
2.0

hybrid

Y

Y
Y

N

F

Y

N

Y
N

N
N

N

N

N

Y

Smalltalk CLOS Eiffel Objective
80

pure

N

Y
N

Y

-
N

N

Y
N

Y
N

N

Y

Y

N

C

integrated integrated hybrid

N

N
N

N
-
Y

Y

N
Y

Y
Y

N

Y

Y

N

Y

Y
Y

Y

Y

Y

N

Y
N

Y
N

Y

N

Y

Y

Y

Y
N

Y

Key to table entries:
Y = Yes, the feature is present.
N = No, the feature is not present in common current implementations.
F = Planned in a future release
- t Not Applicable: Parameterized classes are not needed in languages with weak typing.

21

Classes or templates

Encujmlurian
Multiple levels

Circumvention

Polynrarp h i m
Unbounded polymor-
phism

Capture similarity
among like objects

Overhead for applica-
tions that have many
woof-a-kind objects

C++. CLOS, Eiffel.
Objective C , Smalltalk

Flexibility in controlling Reduces potential for Ctt . CLOS
visibility E U S e

Potential performance Violates an object's c++. CLOS,
boost by avoiding mes- encapsulation and intro- Objective C
sage-passing as a way of
accessing data between objects

duces tight coupling

Flexibility in prototyp-
ing and maintenance to checking
replace an object with
another ohject that sup
pons the required inter-
face

Inhibits static type CLOS, Objective C,
Smalltalk

Bounded polymorphisni Provides additional Reduces the flexibility C++. Eiffel
information for typ:
checking and optimiza-
tion

of object references

lnkerirunce

Of interface specifica-
tion without implemen-
tation

Promotes behavior ceuse
and object substitution

Of implementation

Multiple

Promotes code reuse

Useful when a class is
viewed as a combination
of two or more different
superclimes

In isolation no draw
back. but if there is no
impfementation inheri-
tance. then forces redun-
dant coding

Inheritance hierarchies
may not reflect object
type specializations

Can lead to exceedingiy
complex inheritance pac-
terns, dilfcult to under-
stand and maintain

C++, Eiffel

C++. CLOS, Eiffel.
Objective C. Smalltalk

C++. CLOS. Eiffel'

A number of add-on packagts provide multiple inheritance for Smalltalk ptogrdmmners. illthough these are not widcry u d .

continued

22

Less work lor the devel- Oniirs imponant infor- CLOS, Stualitalk
oper mation that could

improve implementation
understandiibil i ty

Formal declarations

Static type checking

Makcs implementations
easier to understand and developer
provides necessary
infortnation for static
type checking

More work for the C++. Eiffel

Detects type mors
before execution

Dynamic type checking Allows flexible con-
struction and testing of
implernentarions

May impede prototyping
by rejecting implemen-
tations that could run

Detects type errors only
at runtime Smalltalk

Ctc, Eiffel, Objective C

CLOS, Objective C.

8indin.q
Stalic

Dynamic

Both

Objea L.i@itne

Classes are objects
available at runtime

Avoids runtime lookup, Requires unique names (C and Pascai)
or use of large amounts
of memory to store corn-
piled code for alterna-
tive execution pathways requirements change

for all system operations.
and may require multiple
code changes when

Creates very flexible Incurs the overhead of CLOS. Smalltalk
code that is resilient to
the addition and removal
of tyws

binding at execution
time, or the creation of
extra ~xde for alterna-
iiw execution pathways

Requires the developer to
know the difference and
to specify the information

Can choose the appro-
priate form of binding
for the situation

Ci-t, Eiffel, Objective C

needed to support both

Additional abstraction Overhead for maintain- CLOS, Objective C.
capability and runtime ing the class information Smalltalk
flexibility to modify and
add classes ment

in the runtime environ-

Manual runtimc storage
reclamation control reclanlation in

Allows the developer to

special situations

Is error pmne and forces
the developer to deal with
a low-level systems issue

Ci-t, Objective C

Automatic runtime stor- Frees the developer Imposes an overhead on CLOS, Eiffel. Smalltalk
age reciamation from determining when the runtime system to do

space is to be reclaimed the reclamation

23

1. Smalltalk
language description [RBP 911

Smalltalk was the first popular object-oriented language, developed at Xerox PARC. and its
success engendered many other object-oriented languages. Smalltalk is not only a Impage
but also a development environment incorporating some functions of an operating system.
For single-user development, it offers arguably the best features of both language and envi-
ronment. Smalltalk falls short in areas where it was not intended lo be used-in multiple per-
son projects and in its weak or unspecified ability to interface with external software or
hardware devices. Smalltalk elegantly articulates the goals of extensibility and reusability.

All aspects of the Smalltalk language system are available through an on-line interpreter
and class browser. The language syntax is simple. Variables and attributes are untyped. Ev-
erything is an object, including classes. Classes can be added, extended. tested, and de-
bugged interactively. A garbage collector frees the programmer of the burden of memory
management.

What does Smalltalk provide the implementor? Perhaps the most important contribution
is the highly interactive development environment, which avoids the edit-compile-link cycle
delays of the traditional compiler-based language. The Smalltalk environment permits rapid
deveiopment of propms. Another strength is the class library. which was designed to be
extended and adapted by adding subcIasses to meet the needs of the application. Because
Smailtalk is an untyped language, library components can be combined to rapidly prototype
an application.

The Modei/View/Controller (MVC) architecture for user interface design is another im-
portant contribution of Smalltalk. A user interface is divided into an underlying application-
defined model, any number of different views of the model, and controllers that synchronize
changes to the model and the views. MVC makes it possible to concentrate on the essentials
of an application (the Model) and add the user-interface (the Views and Controllers) inde-
pendently. The class library provides standard versions of each of these components. which
can be subclassed and extended incrementally. There can be many different viewlcontroller

pairs for each model, and the views and controlfers can be modified extensively with little
or no change in the model. However. the MVC is a complex system that is not easy to learn.

Smalltalk is a pure object-oriented system with extensive metadata available and mod-
ifiable at run-time. Implementation of the ianguage as an interpreter, tightly integrated with
other parts of the its self-contained environment, gives ideal support for rapid increment4
dcveiopment and debugging.

24

language description [RBP 9 11
C++ is a hybrid Iwguage, in which some entities are objects and some are not. C++ is an
extension of the C language. implemented not only to add otlject-oriented capabilities but
also to redress some of the weaknesses of the C language. Many added feature, are orthog-
onal to object-oriented programming, such as inline expansion of subroutines, overloading
of functions, and function prototypes. Because of its origin as an extension of C, its backing
by major coniputer vendors, the perception of it as a nonproprietary language, and the avail-
ability of free compilers, C++ seems likely to become the dominant object-oriented languqe
for general use.

C++ is a strongly-typed language developed by Bjarne Srrousuup at AT&T Bell Labo-
ratories. It was nri_einalIy implemented as a preprocessor that translates C++ into standard
C. As a preprocessor, C+i introduced problems for symbolic debuggers, but direct compii-
ers are now available, and s,mboiic debupgers that suppon objects with inheritance and dy-
namic binding are now available. Commercial vendors offer C++ implementations for a
variety of operating systems. A C++ compiler with debugger and Iibnry are available for no
chruge from the Free Software Foundation (with restrictions on commercial use).

Unlike several other 00 languages, C++ does not contain a standard class library as part
of its environment, although the standard AT&T release includes libraries for UO, coroutine
tasking, and complex arithmetic. Class libraries have been implemented by various develop-
ers, including a class library developed by the USA National Institutes of Health (NIH),
which is achieving wide usage [Gorlen-90]. Class libraries for object-oriented windowing
systems include Inferviews [Vlissides-88 J and ET* [Weinand-881. Unfortunately, because
C++ provides no guidelines for library organization. ditkrent libraries may be incompatible.
?he emergence of a consensus in favor of a standard foundation class library would be an
important asset to C++.

C++ contains facilities for inheritance and nin-time method resolution, but a Ct+ data
structure is not automaticafly object-oriented. Method resolution and the ability LO override
an operation in a subciass are only available if the o p t i o n is declared virrtcal in the super-
class. Thus, the need to override a method must be anticipated and written into the origin
class definition. Unfortunately, the writer of a class may not expect the need to define spe-
cialized subclasses or may no[know what operations will have to be redefined by a subclass.
This means that the superclass often must be modified when a subclass is defined and places
a scrious restriction on the ability to reuse library classes by creating subclasses, cspeciafly
if source code for the library is not nvailahle. (Of course. you could declare ull opcrations as
virr id , at a slight cost in memory and function-calling overhead.)

25

The implc~nt.ntstion ot run-tiiiie method resolution IS efticieni. For each class. ;I pre-
defined .wwf is initialized with pointers t o each method available to the class. Each object
contains a pointer to the method structure for its class. At run-time. a ?- inual operation is re-
solved by retrieving the niethod structure from the object and selecting a member to find the
method address. C++ docs not support run-time class descriptor objects other than the meth-
od pointer structure. C++ 2.0 supports rriultiple inheritance.

C++ contains good facilities for specifying access to attributes and operations of a class.
Access may be permitted by methods of any class (p h k) , restricted to methods of subclass-
es of the class @rommfl , or restricted to direct methods of the class (private). In addition.
"spot" access can be given to a particular class or function using thefriend declaration.

As with C, the declaration syntax of C++ is awkward and its grammar is difficult to
parse. C++ supports overtoaded operators: several niethods that share the same name but
whose arguments vary in number or type. C++ supports severdl memory allocation strategies
for objects-statically allocated by the compiler. stack-based, and allocated at run-time from
a heap. The programmer must avoid mixing objects of different memory types or dangling
references may cause run-time failures. Each class can have several comrrtictor and con~er-
rion functions, which initialize new objects and convert between types for assignment and
argument passing; these are semantically sound but perhaps somewhat confusing for normal

In summary, C t c is a complex, malleable bnguage characterized by a concern for the
early detection of errors. various implementation choices, and run-time efliciency at the ex-
pense of some design flexibility and simplicity.

use.

3. Eiffel
language description [RBP 911

Eiffel is a strongly typed object-oriented language written by Bertrand Meyer. Programs
consist of collections of class declarations that include methods. Multiple inheritance, pa-
rameterized classes (~enerics), memory management. and assertions are supported. A mod-
est class library is provided. including lists, trees, stacks, queues, files, strings, hash tables,
and binary trees. For porrability, the Eiffel compiler translates source programs into C. Eiffel
has good software engineering facilities for encapsulation, access control, renaming, and
scope. Eiffel is arguably the best commercial 00 language in terns of its technical cdpabil-
ities.

The focal point of Eiffel is the class declaration, which lists attributes and operations.
Eiffel provides uniform access to both attributes and operations by abstracting them into a
single concept called a feature. An Eiffel dass declaration may include a list of exported fea-
tures. a list of ancestor classes, and a list of feature dectarations. Eiffei does not treat either
classes or associations as first class objects.

Eiffel supports memory management through a coroutine which detects objects that are
no longer referenced and releases the memory allocated to them. The Eiffel run-time system
executes the coroutine whenever the available memory space is low. Several mechanisms are
provided to control memory management. Automatic execution of the coroutine may be sup-
pressed through a compiler switch or turned on or off at run-time. For operating systems that

26

4.
0

E.
0

0

1.
0

do r i o t support virtual memory. there i s I compiler switch to arriinge for Eiffel's run-time sys-
tem 10 provide autornatic paging.

A contractual model o f propmming is supported by preconditions, postconditions, in-
variants, and exceptions. A prtwwzditio/i is a condition that the caller of an operation agrees
to satisfy. A pmtcondirion is one the operation itself agrees to achieve. An imwriunr is a con-
dition that a class must satisfy at all stable times. Conditions and invariants are a part of &e
class declaration and must also be obeyed by all descendent classcs. If they are violated a
run-time, an exccption occurs, which either causes the faulty operation to fail or executes an
exception handler for the clltss if the programmer provides one. Compiler switches provide
several levels of error checking. Once an application is debugged you can turn off assertion
checking.

Java
Java resembles C++ in syntax but simplifies many of its complexities and avoids the
hybridization present in C++.

Quality assurance
testing process [Lo 931

Business Analysis Design and Test Packaging

.- -.
c

Production , c *
Period x #

/
.4 *

Function A L
Function 8

Test

. . . . L.

. I . . . /

e.;:
System Test $$-; <is
..::.... <,... c v.,.,,....; +:+

-. .e - I. - .-*:-.- ,r-..*:--

Tests, reviews, inspections, and metrics are complementary
software quality.

Tests
testing levels

techniques for assuring

27

- unit
- integration
- system
testing approaches [JCJ 921

2.

regression test
operation test
full-scale test
performance/capacity test
overload test
negative test
requirement test
ergonomic test
user documentation test
acceptance test

Inspections and reviews
0 An inspection is a formal and detailed group examination of a design or

implementation.
“Checklists focus the reviewers’ attention on areas that have been problems in the
past.
“The emphasis is on defect detection, not correction.
“Reviewers prepare for the inspection meeting beforehand and arrive with a list of
the problems they’ve discovered.
“Distinct roles are assigned to all participants.
“The moderator of the inspection isn’t the author of the work product under
inspection.
“The moderator has received specific training in moderating inspections.
“Data is collected at each inspection and is fed into future inspections to improve
them.
“General management doesn’t attend the inspection meeting. Technical leaders
might.” [Mc 931

0 A review is an informal group examination of a design or implementation.

3. Metrics
Metrics (measurements) can be used to assess the quality of design .and
implementation.
“System quality
- “Stability
- “Defect density
- “Defect-discovery rate” [Bo 941

28

“Size/complexity
- “Number of classes
- “Classes per category” [Bo 941

0 “Class quality
- “Number of operations
- “Shape of inheritance lattice
- “Number of children
- “Couplingkohesion
- “Response
- “Primitive/sufficient/complete” [Bo 941

I l l . Other topics

A. User interfaces
0 characteristics

“Users see objects and choices displayed graphically, and choose them by
pointing with the mouse cursor. . . .
“The syntax of commands is ‘object-action ’; the user selects an object (by pointing
and clicking) and then specifies the action on it. . . .
“Users get immediate feedbackfiom actions. This is part of providing the feeling
of direct manipulation . . .
“The interface is modeless. Modes are global states of the interface that affect the
meaning of user actions. Modes can be useful, but if they are not visible,
they can be disturbing because they interfere with the user’s ability to predict the
results of actions. . . .
“The interface dispIays objects in W S W G form (‘ m a t _You See Is m a t _You
- Get 3.
“Objects and actions are consistent both within an application, and across
different applications. . . .” [Co 951

Dafabases
0 “The idea of an Object DBMS (ODBMS) is to store the objects as such, and thus

bridge the semantic gap all the way to the database.” [GR 951
criteria for ODBMS in addition to DBMS criteria
- “Complex objects. It should support the notion of complex objects.
- “Object identity. Each object must have an identity independent of its internal

values.
- “Encapsulation. It must support encapsulation of data and behavior in objects.
- “Types or classes. It should support a structuring mechanism, in the form of

either types of classes.
- “Hierarchies. It should support the notion of inheritance.

29

c

- “Late binding. It should support overriding and late binding.
- “Completeness.

computable function.
- “Extensibility. It should be possible to add new types.” [GR 951

The manipulation language should be able to express every

C. Distributed objects
Distributed objects is a style of computing where objects communicate with one
another over a network.
An Object Request Broker (ORB) “acts as an intermediary between requests sent
from clients to servers.’’ [OPR 961

0 CORBA and COM are the two major specifications for distributing objects.

IV. References
[Bo 941

[Bo 961

[Ca 941

[Co 951

[CS 941

[GG 931

[GHJ 951

[GR 951

[JCJ 921

Em 931

[La 941

[Lo 931

[Lo 951

G. Booch, Object-Oriented Analysis and Design with Applications,
(Redwood City, California: BenjamidCummings Publishing Company,
1994).
G. Booch, Object Solutions: Managing the Object-Oriented Project,
(Menlo Park, California: Addison-Wesley Publishing Company, 1996).
R. G. G. Cattel, Object Data Management, (Reading, Massachusetts:
Addison- Wesley Publishing Company, 1 994).
D. Collins, Designing Object-Oriented User Interfaces, (Redwood City,
California: BenjamidCummings Publishing Company, 1995).
Catalyst Solutions, Object-Oriented Analysis and Design with C+ +, (n.c.:
n.p., 1994).
T. Gilb and D. Graham, Software Inspection, (Wolkingham, England:
Addison-Wesley Publishing Company, 1993).
E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, (Reading, Massachusetts:
Addison-Wesley Publishing Company, 1995).
A. Goldberg and K. S. Rubin, Succeeding with Objects: Decision
Frameworks for Project Management, (Reading, Massachusetts: Addison-
Wesley Publishing Company, 1995).
I. Jacobson, M. Christerson, P. Johsson, and G. Overgaard, Object-
Oriented Software Engineering: A Use Case Driven Approach,
(Wokingham, England: Addison-Wesley Publishing Company, 1992).
S. Khoshafian, Object-Oriented Databases, (New York: John Wiley &
Sons, 1993).
W. LaLonde, Discovering Smalltalk, (Redwood City, California:
BenjamidCummings Publishing Company, 1994).
M. Lorenz, Object-Oriented Software Development, (Englewood Cliffs,
New Jersey: Prentice Hall, 1993).
M. Lorenz, Rapid Software Development with Smalltalk, (New York:
SIGS Books, 1995).

30

[Ka 951 S. H. Kan, Metrics and Models in Sofmare Quality Engineering,
(Reading, Massachusetts: Addison-Wesley Publishing Company, 1995).

[Ma 941 S. Maguire, Debugging the Development Process, (Redmond,
Washington: Microsoft Press, 1994).

[Ma 951 R. C. Martin, Designing Object-Oriented C+ + Applications Using the
Booch Method, (Englewood Cliffs, New Jersey: Prentice-Hall, 1995).

[Mc 931 S. McConnell, Code Complete, (Redmond, Washington: Microsoft Press,
1993).

[OPR96] R. Otte, P. Patrick, and M. Roy, Understanding CORBA, (Upper Saddle
River, New Jersey: Prentice-Hall, 1996).

[RBP91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen,
Object-Oriented Modeling and Design, (Englewood Cliffs, New Jersey:
Prentice Hall, 1991).
N. Wilkinson, Using CRC Cards, (New York: SIGS Books, 1995). [Wi 951

31

	I Overview of concepts
	A Definitions
	B Key features
	C Issues addressed
	D Benefits

	Sohare development
	A Process
	1 Overview
	2 Spiral model
	3 Iterative and incremental development
	4 Parallel development
	5 Prototyping
	6 Rapid development

	B Analysis
	1 Requirements definition
	2 Domain analysis
	3 Use cases

	C Design
	1 Architectural design
	Layering
	Modularity
	Frameworks
	2 Class design
	CRC cards
	Software diagrams
	Design patterns

	D Coding
	1 Smalltalk
	2 C++
	3 Eiffel
	4 Java

	E Quality assurance
	1 Tests
	2 Inspections and reviews
	3 Metrics

	111 Other topics
	A User interfaces
	B Databases
	C Distnbuted objects

	JY References

