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Abstract 

A generalized theory for laminated plates with delaminations is used to consider 
the influence of inelastic deformations on the dynamic behavior of composite plates 
with delaminations. The laminate model is based on a generalized displacement 
formulation implemented at the layer level. The delamination behavior can be 
modeled using any general interfacial fracture law: however, for the current work 
a linear model is employed. The interfacial displacement jumps are expressed in 
an internally consistent fashion in terms of the fundamental unknown interfacial 
tractions. The current theory imposes no restrictions on the size, location, 
distribution, or direction of growth of the delaminations. 

The proposed theory is used to consider the inelastic, dynamic response of 
delaminated plates in cylindrical bending subjected to a ramp and hold type of 
loading. The individual layers in the current study are assumed to be either titanium 
or aluminum. The inelastic response of both materials is modeled using the unified 
viscoplastic theory of Bodner and Partom. It is shown that the presence of both 
inelastic behavior and delamination can have a significant influence on the plate 
response. In particular it is shown that these mechanisms are strongly interactive. 
This result emphasizes the need to consider both mechanisms simultaneously. 

Introduction 

Laminated composite structures have many potential applications in a variety of 
engineering fields. However, laminated structures are susceptible to delaminations 
between layers. The presence of delaminations can cause significant degradation of 
the structural response characteristics, as compared to perfectly bonded structures. 
Additionally, it must be recognized that history-dependent inelastic deformations 
evolve in composite plates under many loading situations. Furthermore, these 
mechanisms can be highly interactive. Therefore, before potential applications 
of these types of structures can be realized, analytical tools which can accurately 
predict these effects must be developed and subsequently employed in the design 
and analysis process. 

A wide variety of work has been done considering the static elastic behavior of 
delaminated structures. Less work has been done considering the dynamic elastic 
behavior of delaminated plates. Much of this work has employed variations of the 
virtual crack extension method to predict the behavior of delaminated composite 
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plates. To date, very little work seems to have been done considering the dynamic 
behavior of inelastic delaminated plates. 

A recently developed formulation that is capable of incorporating any general 
nonlinear interfacial fracture behavior in an internally consistent fashion and any 
general inelastic constitutive model is employed to study the dynamic behavior of 
inelastic delaminated composite plates (Williams and Addessio, 1996a). In general 
the form of the interfacial constitutive relations are given by 

At = f i (Ai ,&) 

where A, are the displacement jumps and t ,  are the interfacial tractions. The 
plate theory is based on an approximate higher order discrete layer analysis. 
No assumptions concerning the location, direction of growth, or number of 
delaminations are made in the theory. This approach has been shown to provide 
excellent agreement with both exact static elastic solutions and approximate dynamic 
solutions. 

Formulation 

Consider a single layer. It is assumed that the displacement field within this 
layer is approximated by 

where j = 1,2,. . . , N. N is the order of the polynomial expansion. The functions 
@(z) are specified functions of the transverse coordinate z and the %'(z,y,t) are 
the associated displacement coefficients. The governing equations for the layer are 
obtained by substituting the above displacement field into the principle of virtual 
work 

where m, j = 1,2, . . . , N .  The corresponding inplane boundary conditions are 

7; + Nlff,ff - R: + F{ = IrnjvY 

K j  = specified on dJZ1 

Tj = Njffnff on dR2 
where i3R = m1 + dR2 and dR is the plate boundary. Explicit satisfaction of 
both the continuity of the interfacial tractions and the jump conditions on the 
interfacial displacements are utilized to couple the equations governing the behavior 
of different layers to obtain the governing equations for the laminate. These 
interfacial conditions are given by 

k (K')k+l - (KN) =A: = fi (Aik,r ik)  

k (4) + (7gk+l  = 0 

The above results are completely general and the displacement jumps are expressed 
in a direct and consistent fashion as a function of the fundamental unknowns in the 
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theory, yj and 7:. Additionally, the interfacial delamination relations can easily 
incorporate the constraint that the layers cannot interpenetrate. 

The above formulation has been carried out in a sufficiently general fashion that 
any constitutive law for the behavior of the layer or interface may be incorporated and, 
therefore, any evolution laws for the local effects can be consistently incorporated 
into the formulation. 

The general theory has been implemented in an explicit finite element code. 
In the code it is assumed that the temporal gradient in the equation of motion is 
approximated as 

. v-vo 
TJ=- 

At 
where v0 and At are the velocity at the preceding time and the time increment, 
respectively. Also the left hand side of the equation of motion is evaluated at the 
previous time step. It is noted that the gradient terms are evaluated using the Mean- 
Value Theorem. 

Use of these expressions in the definitions of the force resultants, and R!, then 
using these results in the governing equations as known forcing terms allows the 
new velocities for the layers to be determined. The new velocities are used to 
update the rate-of-deformation tensor using an expression based on the Mean-Value 
theorem similar to the above expression. The stresses throughout the plates are 
then updated by substituting the new rate-of-deformation tensor into the constitutive 
model for the materials within each layer. Once the stresses are computed, the 
boundary conditions for the plate are updated and the algorithm pursues advancing 
the velocities at the next time step. This process in continued until the problem is 
complete. Further details of the dynamic implementation of the theory are given in 
Williams and Addessio (1  996b) 

Results 

The above theory is used to consider the dynamic inelastic response of a 
composite plate with delamination subjected to cylindrical bending. The plate is 
composed of two lamina. The top lamina is aluminum and the bottom lamina is 
titanium, Table 1 (Aboudi, 1991). 

TABLE 1. Material Properties 

E (GPa) v Do (s-l) 20 ( m a )  21 (MPa) n m dgmlcm3) 

A1 72.4 0.33 104 340.0 435.0 10.0 300.0 2.7 
Ti 120.0 0.34 104 1OOO.O 1400.0 1.0 350.0 4.5 
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The plate is subjected to a ramping half sine load for 1 ps where the peak value 
changes from 0 to qo = 1 GPa. The load is subsequently held at this peak value for 
4 p s .  A linear interfacial constitutive relation is employed. 

A = R r  

where T is the appropriate interfacial stress obtained directly from the theory. Four 
cases are considered. In case 1 it is assumed that the plate is perfectly bonded and 
that the individual lamina are elastic. In case 2 the plate is perfectly bonded but 
exhibits inelastic behavior. In case 3 the lamina deforms inelastically and a value 
of R = 0.25 (for both normal and shear behavior), is used to model the delamination 
growth. Case 4 is the same as case 3 with R = 1.00. The inelastic behavior of 
the lamina is modeled using the unified viscoplastic theory of Bodner and Partom 
(Aboudi, 1991). 

The transverse displacement as a function of time for the four cases is given in 
Fig. 1. An explanation of the elastic response (case 1) will be presented first. Then 
the variations induced by the presence of plasticity and delamination in cases 2-4 will 
then be discussed. The following discussion is based on simple 1D wave propagation 
arguments. It is noted that the sound speed of both materials is approximately 0.5 
cdps.  During the first microsecond the top surface of the laminate is rapidly 
accelerated by the applied ramp loading. Both the interface and the bottom surface 
remain at rest. Just before 1.5 ps the maximum wave value has reached the interface 
causing the interface to deform. At this point have a reflected wave in the top lamina 
and a transmitted wave in the bottom lamina. The top surface begins to deform at a 
relatively constant rate. Just before 2 ps the transmitted and reflected waves reach 
the outer surfaces of the laminate resulting in reflected waves from these surfaces. 
This causes a rapid acceleration of the back surface while the top surface experiences 
a deceleration. During this time the interface deforms at a fairly constant rate. By 
2.5 ps the waves which have been reflected from the outer surfaces of the laminate 
have reached the interface. The top surface of the laminate continues to deform 
at a slower rate than was observed at the beginning of the hold segment of the 
loading history. The bottom surface deforms at a constant rate. As a result of the 
reflected waves reaching the interface, the interface experiences further acceleration 
of the transverse deformation. The wave reflectiodtransmission process continues 
and results in the further acceleration of the top surface and the deceleration of the 
bottom surface observed at later times. 

Comparison of the predicted responses for case 2-4 indicates that the presence 
of plasticity results in a delay of the onset of the different trends observed in the 
elastic case. This is due to the fact that the presence of plasticity mitigates or delays 
the effects of the elastic waves. In general the presence of plasticity results in larger 
deflections, especially at the top surface. The presence of delamination further 
delays the onset of these trends. The delamination represents a stronger impedance 
mismatch than is observed in the perfectly bonded case. This in turn results in 
stronger reflected waves and weaker transmitted waves from the interface. The 
stronger reflected waves in the top lamina result in the observed acceleration of the 
top surface prior to the deceleration observed in the elastic case. As the delamination 
becomes bigger due to a increased value of R the impedance becomes larger and 
the reflected wave effects become stronger. It is also interesting to note that in case 
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3 the internal wave propagation behavior results in closure of the delamination. As 
required no interpenetration of the lamina is observed. Consideration of the relative 
magnitudes of the displacements in the two lamina at the interfaces indicates that 
displacement jump due to delamination represents as significant portion of the total 
displacement change from the top to the bottom surfaces of the laminate. 

Figure 2 presents the axial stress distribution at the midplane through the 
thickness of the lamina at 5 ,US for cases 1-3. The presence of plasticity in case 2 
causes a shift to a higher stress state in the top lamina and to a generally lower stress 
state in the bottom lamina. The maximum shift in the top lamina is about 15% while 
in the bottom lamina the shift is almost 30%. The presence of both plasticity and 
delamination in case 3 results in more dramatic shifts to generally lower stress states 
than in either case 1 or 2. This shift results in the entire distribution for uZz in the 
bottom lamina being negative. 

The effective inelastic strain distribution through the thickness of the plate at 
the midspan is given in Fig. 3 for cases 2 and 3. The presence of the delamination 
results in a decrease in the peak value of the effective plastic strain at the top 
surface. However, in general the effective plastic strain is increased through most 
of the thickness to the top (Al) lamina. The peak value of this increase is about 
50%. Alternatively, in the Ti (lower) lamina the effective plastic strain is decreased 
throughout most of the thickness of the lamina. In fact in the region around the middle 
of the lamina the value of the effective plastic strain is nearly zero. These changes 
in the distributions are consistent with the fact that the delamination represents 
a strong impedance. This impedance maintains stronger wave effects in the top 
lamina and weak wave effects in the bottom lamina as compared to case 2 where no 
delamination is present. Thus, the A1 (top) lamina experiences higher stresses and 
therefore undergoes more inelastic deformation while correspondingly the bottom 
(Ti) lamina supports less inelastic deformation. 

In summary, it can be seen that the presence of plasticity and delamination have 
a significant effect on the behavior of laminated plates. 
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Figure 2. Axial stress distribution at the mid-plane for cases 2 and 3. 
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Figwe 3. Effective plastic strain distribution at the mid-plane for cases 2 and 3. 
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