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Abstract 

Stiff polyelectrolytes are found to spontaneously form oriented bundles. Con- 

ditions under which bundling occurs are found. Molecular dynamics simula- 

tions show that divalent counterions are necessary, and the chains must be 

sufficiently long and stiff. No aggregation occurs for monovalent counterions. 

For flexible or short chains aggregation occurs, but bundle formation does 

not. Due to dynamical constraints the systems tend to order into a network 

of connected bundles, not a single bundle. 
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There has been much recent interest in systems of stiff polyelectrolyte systems, because 

in these systems net attractive interactions occur between the like-charged macroions [1-6]. 

The general question of when do like-charged macroions attract has much interest, because 

it is counterintuitive and effects the system structure strongly. Furthermore, DX'A is one of 

the archtypes and thus there are biological implications. Recently, it has been shown that 

parallel, charged rods can attract due to  fluctuations in the counterion distribution [4-6]. 

In this letter, simulations of model stiff polyelectrolytes are presented which demonstrate 

not only aggregation in three-dimensions, but also spontaneous bundle formation. The 

previous works restricted the chain (usually a charged cylinder) center to  a plane with the 

chain perpendicular to the plane. Such restrictions are not put on the chains in this xork, and 

various physical parameters are varied. Specifically, the nature of the aggregate structure 

is examined for varying chain length (and thus total charge), chain flexibility, monomer 

density, and counterion valence, 2,. 

The model used is an extension of earlier polyelectrolyte simulations [i]. The system is 

modeled as 121 bead-spring chains with N beads. Each bead is charged so that in the model 

the bond length equals the charge separation along the backbone, b = a. The counterions 

are explicitly treated. All charged particles interact via the Coulomb potential 

where Qi is the charge on particle i and X = e2/ckBT with E the dielectric constant of the 

solution (water). For these simulations we used the particle-particle particle-mesh algorithm 

to calculate the longe range Coulomb interactions [8,9]. The solvent is modeled by a uniform 

dielectric background. The Coulomb coupling strength is determined by the Bjerrum length, 

A. In mater at  room temperature, X = 7A. The average charge separation, a is fixed 

at  1.10 by the bond potential (see below). The value of X = 3 . 2 ~  corresponds to a = 

2.5.4. Particularly, for divalent ions this is within the counterion condensation regime. Most 

polyelectrolytes have larger radii. For esample, DNA has a radius of about lo-%. However, 

the key quantity is the distance of nearest approach of the monomer charge and the solvent 
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ions, and for this distance the diameters are witE,,i the physical range. The effect of the 

monomer radius will mainly be  discussed in a future full length paper and see ref. [5]. 

The bond potential is the standard FENE (finite extensible, nonlinear elastic) potential 

with spring constant IC = 7, and maximum extent, & = 2 [lo], where here: as throughout 

the letter, Lennard-Jones units are used. All particles interact via a repulsive Lennard- 

Jones (RLJ) potential with the cutoff at 21/6&;0, where &;on is the ion diameter. The chains 

are given an intrinsic stiffness by including a bond bending potential? kb(0 - where 

80 = 180" and the spring constant k b  is varied from 0 to 60. 

The d_ynamics of the system is performed at constant temperature, T = 1.2, using the 

Langevin thermostat with damping constant I' = 1, and timestep 0.015 [ll]. For N = 32 

and 64 at  monomer density p = 0.01, the total integration times are about 4 - lo5 and 8 - lo5 

timesteps, respectively. The total simulation time is large enough that chains could diffuse 

more than the average interchain distance. This is an important issue, particularly for the 

cases that do not aggregate. 

In Fig. 1, we show the most dramatic ordering of the stiff polyelectrolytes for divalent 

counterions. The chains bind together primarily in two bundles oriented perpendicular to  

each other. The periodic images show that a connected network of bundles is formed. In 

the initial configuration the chains mere randomly oriented. The bundling is in part due 

to attraction betiyeen two chains due to  counterion fluctuations [MI. Structures similar to  

that in Fig. 1 have been observed in experiments on biopolyelectrolytes (31. This attraction 

by counterion fluctuation brings two parallel chains together [12]. The present simulations 

show that pairs of chains also like to  aggregate, and that they can align themselves when they 

are not oriented parallel. Aggregation occurs quite generally with multivalent counterions. 

As discussed below, aggregation occurs independent of chain lengths and intrinsic stiffness. 

On the other hand, bundle formation depends on these parameters, and there tends to be 

frustration of ordering into a single bundle. 

In general, the initial aggregation occurs rather quickly. However, ordering within ag- 

gregates is slow, because chain motion is strongly constrained by other chains. ,4 chain in 
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a bundle must reptate along its backbone taking much longer to diffuse. The total system 

energy decreases slowly once the system has aggregated. The average system energy reaches 

a constant value in all the simulations. For systems that form bundles, a minimum energy 

is reached once the system has organized into multiple bundles and is stable for several 

hundred thousand time steps. The energy of a system forming a single bundle is lower than 

the multibundle state. It is clear that  the multibundle state is metastable and any transition 

would only occur after a long time. Chains within a bundle are strongly bound to each other 

as will be demonstrated. A transition of a chain from one bundle to  another is extremely 

slow. ‘The chain dynamics in these simulations imply that  transformations of two bundles 

into one will take orders of magnitude longer than the total simulation times performed here. 

Thus any transition to a single bundle is beyond the capabilities of the present simulations. 

Even at low densities constraints on the chain dynamics frustrate bundling. In particular, 

consider two chains that overlap at some point. For example, they cross to form an ‘X’. A 

third chain randomly placed near the first two, will likely end up between one set of the legs 

of the X and not in the plane of the X. The two chains in the X cannot become parallel 

without the chain between them moving out of the way. Such dynamics is seen in these 

simulations. Another typical constraint at densities above overlap, is that  multipIe bundles 

form and the ends of chains in one bundle are connected to two others (e.g. Fig. 1). There is 

then no prefered direction for the chains to  move in order to reduce the number of bundles. 

The chains are likely to oscillate within their bundle for long times before moving to another 

bundle. 

We now describe the nature of the system structure as various parameters are varied. 

Fig. 2 shows the interchain monomer-monomer radial distribution function, g-(r) .  A very 

large peak occurs at  T = 2 due to the presence of an ionic triplet [13] where a divalent 

ion is between two monomers on separate chains. The peak height monotonically increases 

with the chain length, or equivalently, the total chain charge. This is consistent with the 

expectation that the attraction between chains grows with total charge. For the two larger 

chain lengths iY = 32 and 64, a shoulder esists at T = 4, due to ionic quintuplets. Thus, 
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there are many sets of ionic quintuplet n ting 3 chain fo th 5e N.  Th C U l  mb 

energy of just the ions of an ionic triplet is -11.2kBT. Such a large negative energ): suggests 

that  the ionic triplet would be very stable in comparison to  a free counterion, and that  a 

pair of chains containing many ionic triplets are even more strongly bound to each other. 

Note that within a bundle a counterion need not be bound to a monomer to  possess the 

energy of an ionic triplet. The counterion can move between two parallel chains and still be 

in an ionic triplet. Trajectories show this occurs. In fact, the counterions diffuse rapidly in 

comparison with the chains as they move unimpeded within the bundle network. 

An indication of the change in the system order is the crossover of g- betn-een N = 16 

and N = 32 at r = 7. This implies that  at T > 7, one is more likely to find a pair of 

monomers on separate chains a t  N = 16 than N = 32. If all the chains vere in a bundle 

of radius Tb, then for r > Tb the gmm(r) would be zero. On the other hand, if the chains 

aggregate, but do not bundle, then gmm(T) will decay more slowly. The gmm data implies 

that  the aggregation of the chains yields a tighter, more bundled structure as N increases. 

Divalent ions are critical for the aggregation. Fig. 2 shows the gmm(r) for N = 32 

and monovalent counterions. In contrast to the peak present in the divalent systems, the 

monovalent g- eshibits a correlation hole indicating the chains effectively repel each other. 

This is consistent with the body of literature which finds that divalent ions are necessary 

for short-range attraction between like-charged macroions [5,6,14,15]. For monovalent ions 

attraction could occur, but the counterion diameter would have to be unphysically smaller. 

The number of counterions ‘condensed’ on the chains in divalent solution is extremely 

large and clearly drives the aggregation. The distance bekeen  a counterion and a chain is 

calculated as the minimum of the distances between the counterion and all the monomers 

of the chain [16]. The number of condensed counterions, nc2 is taken to be the the average 

number of counterions within 1.50 of the chain. For the system in Fig. 1 n, is 0.80N. 

Given the counterions are divalent, the amount of charge near a chain is 1.6!V; there is 

overcharging of single chains. To attain a charge greater than N depends on the sharing 

of the counterions among multiple chains. Overcharging of the chains yields chain-chain 
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attraction and aggregation. For N = 32 and 16, n, = 0.78N and 0.67X, respectively. Even 

for the N = 8, n, = 0.56N yields a counterion charge greater than N .  These results are 

consistent with the peaks present in Fig.2. 

The orientational order in the system can be determined by examining the following 

correlation function. Let f& be the unit vector in the direction of the end-to-end vector, R 

for the i th chain. A correlation function that  indicates the presence of nematic ordering is 

the second order angular correlation function in the spherical harmonic expansion [17] 

This function is chosen over the other second order functions, because it is a function of ii2 

so that the sign of .i2. is unimportant as i t  is in this case. The position F is taken to  be the 

position of the middle monomer. A maximum occurs when chains are aligned parallel. Fig. 

3 shows a plot of g n o  for the same divalent systems as Fig. 2. The data is noisier than in 

Fig. 2, because here the number of contributions is Ap instead of ( I X M ) ~ .  Xonetheless, 

the N = 64 and 32 show very large peaks at T = 2 due to pairs of chains being strongly 

aligned. The correlated order between chains does not decay for these N until large chain 

separations ( T  2 10) corresponding to the size of the bundles. However, as A- decreases and 

F increases, the alignment disappears. Thus, bundling requires sufficiently large N .  

11-e have seen that bundling occurs for stiff, long chains, and when the chain length 

decreases, the degree of bundling decreases. Presumeably, the same nil1 happen as the 

chain stiffness decreases. Particularly for divalent counterions in the condensation regime, 

the screening of the monomer-monomer Coulomb repulsion nil1 be strong. -1 fully flexible 

chain is as coiled as a neutral chain [18]. Figure 4 shows gmm for a range of kb. Aggregation 

occurs even for k b  = 0, but between k b  = 20 and 3 a qualitative change occurs in the form of 

gmm. For the stiffer chains the initial peak is higher, occurs at  the ionic triplet separation and 

decays faster beyond the bundle width. For the floppier chains the peak becomes very broad 

and shifts to  larger T .  A flexible chain can form ionic triplets between its 0n-n monomers, 

thus shielding monomers from other chains and shifting the peak in g-. Examination of 
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configuration images shows that at k b  = 20 subsets of challis form bundles which then are 

connected to  other similar bundles to  form a fibrous three-dimensional network structure. 

At k b  = 3 bundles do not form at all. Instead the chains aggregate into a 'hairy' mess. 

Since these systems aggregate, i t  is natural to  ask whether phase separation mould oc- 

cur. The osmotic pressure for the aggregating systems is very small and in some cases the 

average is negative. A negative pressure would imply that the phase point is in a coexistence 

region. Such coexistence regions have been predicted for systems with multivalent counteri- 

ons [19,20]. The sign of the pressure is not that  significant. If the magnitude is very small, 

then i t  is likely to be smaller than the pressure a t  very dilute concentrations which will 

approximately be p k B T .  In that  case, there must be a van der Waals loop and coexistence 

in the equilibrium phase diagram. To test this point requires a different set of calculations 

such as constant pressure simulations. A few constant pressure simulations I211 have been 

performed on the larger systems. The system contracts to  the density of 0.1 which is that  

within the bundles. In the process of contracting, the multiple bundles merge, but do not 

orient. Again, it may become an oriented bundle, but only on time scales B-ay beyond what 

can be simulated. 

Another important issue is the system size, particularly the number of chains: Ad, in the 

simulations. For the present set of simulations one cannot determine the structure of the 

bundle network that occurs for the longer chains. For N = 8 and 16, there is not much 

concern since AI = 64 for these smaller chains. In these cases, the cell length is larger than 

the chain length. Even the aggregate does not span the cell. The Coulomb interactions 

outside the aggregate are strongly screened. For aggregates that do not span the simulation 

cell, the system sizes are clearly sufficient. However, for the larger chains at the high densities 

such as in Fig. 1, the situation requires more testing. For A* = 32 and 61  i l t h  111 = 16 at 

p = 0.01, the chain lengths are longer than the cell length. Simulations were performed for 

.V = 32 and 50 with b1 = 50 to  achieve cell lengths greater than the chain lengths. The 

data for these simulations are consistent with the smaller systems' data (Le. Figs. 2-4). 

lloreover, the tendency for multiple bundles to form is even more pronounced. 
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The seemingly odd phenomenon of attraction between like-charged polymers is already 

well founded [1,5,6,14,15] and further confirmed here. The present work shows that under 

the right circumstances ordered structures can result and the dynamics of the interactions 

are important because metastable states easily occur. In particular, stiff chains can spon- 

taneously orient themselves into multiple bundles. The bundles tend to  form a network 

superstructure, because their motion is highly constrained. 

This work was supported by the DOE under contract DE-AC04-94AL8500. Sandia is a 

multiprogram laboratory operated by Sandia Corp., a Lockheed Martin Company, for the 

DOE. 
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FIGURES 
FIG. 1. Bundle cod,wation of N = 64, M = 16, Fl = 60 and zc = 2 system at p = 0.01. 

The figure shows four periodic images in order to exhibit the connecting chains between bundles; 

there are only two bundles in the simulation cell. The counterions are the dark spheres and the 

monomers are the light spheres. 

FIG. 2. The interchain monomer-monomer radial distribution function as a function of chain 

length for p = 0.01. From largest main peak to smallest, the chain lengths are 64, 32, 16 and 8 for 

z, = 2 (solid lines). The dotted line is for N = 32 and z, = 1. 

FIG. 3. The 9220 radial distribution function as a function of chain length for p = 0.01 and 

z, = 2. The chain lengths are N = 64 (solid), 32 (long dash), 16 (short dash) and 8 (dotted). 
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FIG. 4. The interchain monomer-monomer radial distribution function as a function of kb for 

are 60 (solid), 20 (long N = 64, p = 0.01 and z, = 2. From largest main peak to smallest, the 

dash), 3 (short dash), and 0 (dotted). 


