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ABSTRACT 

The Information-efficient Spectral Imaging Sensor (ISIS) approach to spectral imaging seeks to bridge the 
gap between tuned multispectral and fixed hyperspectral imaging sensors. By allowing the definition of 
completely general spectral filter functions, truly optimal measurements can be made for a given task. 
These optimal measurements significantly improve signal-to-noise ratio (SNR) and speed, minimize data 
volume and data rate, while preserving classification accuracy. The following paper investigates the 
application of the ISIS sensing approach in two sample biomedical applications: prostate and colon cancer 
screening. It is shown that in these applications, two to three optimal measurements are sufficient to 
capture the majority of classification information for critical sample constituents. In the prostate cancer 
example, the optimal measurements allow 8% relative improvement in classification accuracy of critical 
cell constituents over a red, green, blue (RGB) sensor. In the colon cancer example, use of optimal 
measurements boost the classification accuracy of critical cell constituents by 28% relative to the RGB 
sensor. In both cases, optimal measurements match the performance achieved by the entire hyperspectral 
data set. The paper concludes that an ISIS style spectral imager can acquire these optimal spectral images 
directly, allowing improved classification accuracy over an RGB sensor. Compared to a hyperspectral 
sensor, the ISIS approach can achieve similar classification accuracy using a significantly lower number of 
spectral samples, thus minimizing overall sample classification time and cost. 

INTRODUCTION 

Complexity of spectral imaging approaches vary from the most simple red, green, blue (RGB) cameras 
taking three simple fixed measurements, through liquid crystal tunable filters taking a number of arbitrary 
band-pass images, up to Fourier transform spectral imagers, taking hundreds of spectral samples per scene 
point. Each approach increases data volume, and each increases measurement time for a fixed signal-to- 
noise ratio (SNR). Therefore applications requiring higher spectral resolution are burdened by a 
corresponding increase in data volume, and decrease in speed of operation. Increased data sizes also 
decrease the rate at which image analysis and classification can occur. Therefore, for clinical biomedical 
applications, high spectral resolution correlates both to an increase in cost and complexity of the optical 
analysis system, and to net decrease in speed of sample acquisition and classification. Since sample 
analysis speed is typically correlated to cost per sample, and speed is correlated to number of spectral 
measurements, the spectral method that achieves the m i m u m  classijication accuracy in the minimum 
spectral data samples will ultimately minimize overall analysis cost per clinical sample. 
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WHAT IS ISIS? 

The Information-efficient Spectral Imaging Sensor (ISIS)'.273" approach breaks this previously necessary 
correlation between spectral resolution and data volume, speed, and cost, by allowing truly optimal spectral 
measurements to be defined for a given application. This is accomplished through optical design concepts 
that allow arbitrary definition of spectral filter functions that can have positive and negative spectral 
weights. These optimal measurements carry the maximum discrimination information in the fewest number 
of data samples. In the context of this paper, such a measurement is coined a spectral basis 'vector'. An 
example of such a vector is shown in figure 1. 

Figures 2 and 3 illustrate one type of optical instrument capable of capturing spectral basis vectors directly. 
Shown is the ISIS field test instrument, constructed to evaluate the potential of ISIS applications for remote 
sensing. Such a device would be similar to that used in a biomedical application. Functionally, the 
instrument operates as follows. The instrument is a push-broom imager that takes a line image and scans it 
over the illuminated sample. Referring to figure 2, the light enters from the left through collection optics 
and passes through the input slit. The slit image is then spectrally dispersed and imaged onto a liquid 
crystal spatial light modulator (SLM) which can be adjusted to transmit or reject the various spectral 
components. The light is then spectrally de-dispersed and imaged on to a linear array. Since the liquid 
crystal SLM requires polarized light to operate, two linear polarization components are split off in the fore 
optics to create two independent channels without loss of light. To achieve the basis vector shown in figure 
1, a spatially variable transmission function is applied to each of the SLMs and the resulting signal at the 
two detectors is differenced to achieve positive and negative weights. This optical design approach is only 
one of a number of optical design approaches recently included for patent appli~ation.~ Other researchers 
are investigating similar optimal vector approaches using acousto-optic tunable filters6 or dielectric coating 
stacks.7 The basic thesis of all these approaches is to directly acquire optimal spectral measurements. In 
doing so, SNR and speed are optimized. For all these systems, development of the optimal spectral 
measurements would require general spectral process analysis done at moderate to high spectral resolution 
using traditional HSI or MSI approaches. Following is a biomedical example of developing those optimal 
measurements. 

BIOMEDICAL EXAMPLES OF OPTIMAL BASIS VECTORS 

This paper considers two sample ISIS applications: prostate and colon cancer screening. Samples were 
obtained that had been formalin-fixed and stained with hematoxylin and eosin, standard dyes used in 
pathology. Even though there are only two dyes in this mixture, they have the potential to interact with 
sample constituents, and with each other, causing complex spectral features. Hyperspectral images of the 
two test samples were taken using a Fourier transform spectral imaging system at 53 spectral samples over 
400 - 700 nm, and 107 spectral samples over 450 - 700 nm, respectively. 

The prostate and colon hyperspectral data sets were then analyzed and expert classified+. The RGB images 
of the samples and the associated hyperspectral reference classifications are shown in figures 4 and 5.  
These classifications were utilized as the reference classifications for the following evaluations. Based on 
these classifications, training and test regions were selected in each image as shown in figures 6 and 7. 
Training and test sample regions were mutually exclusive to reduce the potential for training on data 
peculiarities. Spectral class statistics were then generated for the training regions using MultiSpec' and 
methods outlined in the software manual? These statistics provide the basis for MultiSpec to compute 
optimal spectral basis vectors. 

MultiSpec contains functionality that enables the definition of two optimal basis sets, principal 
components" (PC), and projection pursuit" (PP). The former is a basis set that describes the spectral 

+ R. Levenson used pathology experience to select key spectral scene constituents, and representative 
spectra. The entire scene was then classified using a mean square error classifier. 
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directions in N space* of decreasing total training set variance. The latter describes the directions that 
maximize class separation. Both methods are considered potential optimal sets for ISIS consideration. 
Since these basis functions are simply inner product functions that are applied to the original hyperspectral 
data, they can be considered to be linear spectral filter functions with positive and negative weights -just 
the optimal filter functions ISIS needs to optimize information content and minimize data volume. The 
software computes a number of these basis vectors, N, in either the PC or PP cases that maximally describe 
the training classes. 

MultiSpec also contains the ability to sort through all NxN combinations of these basis vectors to determine 
the most optimal subset, M, for class discrimination. For this analysis, M was chosen initially to be three, to 
match the dimensionality of the RGB measurement. Using this method and the training sample regions, 
three basis vectors sets were evaluated: 

- an RGB basis set derived by subdividing the entire spectral region into three equal sections, 
- three optimal PC spectral basis vectors, 
- three optimal PP spectral basis vectors. 

The optimal PC and PP basis vectors for the prostate cancer example are shown in Figures 8 and 9 
respectively, and Figures 10 and 11 for the colon cancer example. Note that the PC basis vectors are broad 
in spectral feature, while the PP basis vectors highlight specific narrower regions in the spectra. 

CLASSIFICATION ACCURACY RESULTS 

Using the RGB or optimal basis sets defined above, MultiSpec was used to classify the test regions using a 
standard quadratic gaussian maximum likelihood meth0d.l2 From these results, classification accuracy was 
determined by the percentage of correctly classified pixels in a test class. The classification accuracy results 
for the three vector measurements are shown below in figures 12 and 13. The relative improvements of the 
optimal basis sets over RGB are shown in figures 14 and 15. 

In the prostate cancer example, classification accuracy on non-essential components was quite high with all 
basis sets, above 95%. But on the more critical elements for making malignant determination, epithelial 
and myoepithelial nuclei, the RGB performance was as low as 80%. Here choice of an optimal basis set 
improves classification accuracy between 4% and 8%. 

In the colon cancer example, classification accuracy on non-essential components was also quite high, all 
again above 97% for all basis sets. The only anomaly in the results is that the PP basis set appears to have 
lower classification accuracy than RGB or PC in the Cytoplasm 1 case. Evaluation of the classification 
data indicates that this reduction in classification accuracy was the result of switching a number of samples 
between Cytoplasm classes and not reclassifying to more critical classes. This error is discussed in more 
detail below. Most importantly, discrimination between the malignant and benign cell nuclei is 
significantly improved by use of optimum basis vector sets. In the case of benign nuclei, the PP optimal 
vectors achieve 92% accuracy, up from 72% obtained with the RGB measurement. This represents a 28% 
relative improvement in classification accuracy. For the malignant nuclei, the PP vectors achieve 96% 
accuracy, up from 79% achieved with the RGB measurement. This represents a 22% relative improvement 
in classification accuracy. 

This increase in accuracy can make a significant difference in the diagnostic outcome of a particular 
sample. In the colon cancer example here, the difference in final result is dramatic. Figure 16 shows the 
reference classification as well as that using each of the three basis sets. The important difference is seen 
between the classification result using the RGB basis set and the PP basis set. In the RGB classification, 
the cell nuclei in the upper left quadrant of the sample are classified as malignant, while in both the 

* ‘N space’ is the N dimensional subspace defined by N independent spectral measurements. 



reference and the PP classification, these cells are classified as benign. Obviously, in this example, the 
choice of an optimal basis set sign$cantZy effects the diagnostics outcome.* 

HOW MANY VECTORS ARE OPTIMUM? 

The original choice of three element basis vector sets was based on matching the size of the three element 
RGB basis set. The question is now posed - how many vectors are actually necessary to maximize 
classification accuracy? Is it more or less than three? 

The same procedure was followed as described previously, using MultiSpec to optimize the vector set of 
length M, where M varies up from 1 to 9. Figures 17 and 18 show the classification accuracy of the key 
components of the prostate and colon cancer samples as a function of RGB, PC, and PP basis set length. 
For the prostate cancer case, figure 16 shows that all three basis sets gain significant discrimination going 
from a single optimum basis function to two, and little difference between two and three. Therefore in this 
application, two optimal spectral basis vectors may be enough. In the colon cancer example, figure 18, the 
RGB and PP basis sets gain significantly from a single measurement up to two. The RGB case maximizes 
at two, but the PP case gains an additional 5 %  from two to three. After 3 the PP case is flat. On the other 
hand, the PC basis set continues to climb up through five basis vectors where the classification accuracy of 
the best three PP vectors is matched. These results bring two conclusions. First, the dimension of either 
problem is approximately three, and second that the PC vectors do not contain the same discrimination 
capability of the more optimum PP vectors. This is not entirely surprising since the PP vectors are 
designed in MultiSpec to maximally separate the expected classes. 

One final problem needs addressing. Previously, it was shown that there was a net decrease in classification 
accuracy of Cytoplasm 1 in the colon cancer example when using PP vectors relative to RGB. Figure 19 
shows the classification accuracy of all the colon cancer sample classes as a function of optimal 
measurement dimension. The plot indicates that all classes improve in classification accuracy from two 
measurements up to three, except Cytoplasm 1. Cytoplasm 1 starts high and drops at three basis vectors and 
then stays completely flat above three dimensions. The authors conclude that this indicates a problem with 
the Cytoplasm 1 test set possibly having some originally misclassified pixels that should have been 
correctly classified as a different type of cytoplasm. Thus the drop in classification accuracy is not a 
reflection on the optimal basis set, but reflects an error in the original reference classification. 

Figure 19 also reinforces the conclusion that the three optimal basis functions carry virtually all the 
classification information of the entire data set. With the exception of malignant cell nuclei, all sample 
components maximize classification accuracy at three measurements or less. For malignant nuclei, the 
majority of classification can be done with three measurements, and only 2% additional accuracy is added 
in jumping from three to ten measurements. 

CONCLUSIONS 

The results presented here are an example of biomedical applications of the ISIS spectral sensing approach 
where the majority of critical classification information can be achieved with three optimally chosen 
spectral basis vectors. These optimal basis vectors are particularly useful in discerning the difference 
between benign and malignant cell nuclei, particularly in the colon cancer application where a 28% 
improvement was shown over an RGB sensor. Of the two optimal vector sets chosen, projection pursuit 
vectors are more effective in classifying these samples at lower measurement dimension than principal 
component vectors. This is expected since projection pursuit vectors are designed in the MultiSpec 
software to maximally separate the expected classes, not merely describe total training set variance. It is 
concluded that in practice, some similar optimal spectral basis vector sets would significantly improve the 
classification accuracy of cancer screening over a competing RGB system. Most importantly, an ISIS style 
spectral imager can acquire these optimal spectral images directly, allowing improved classification 

* In actual practice, other spatial morphological features are used to differentiate benign and malignant 
features and actual cell and sample classification results would be better than represented here. 



accuracy over an RGB sensor. Compared to a hyperspectral sensor, the ISIS approach can achieve similar 
classification accuracy using a significantly lower number of spectral samples, thus minimizing overall 
sample classification time and cost. 
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Figure 1: Example Spectral Basis Vector 
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Figure 2 ISIS Field Test Sensor Schematic Layout 
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Figure 3: ISIS Field Test Sensor System 



Blue-Myoepithelial Nuclei 
Red-Malignant Epithelial Nuclei 
Green-Other Epthelial Nuclei 
Salmon-Connective Tissue 
Y ellow-Cytoplasm 
WhiteBackground 

Figure 4: Prostate Cancer RGB Image and Reference Classification 

Figure 5: Colon Cancer RGB Image and Reference Classification 
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Figure 8: Optimal Three PC Basis Vectors for Prostate Cancer Example 
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Figure 9: Optimal Three PP Basis Vectors for Prostate Cancer Example 
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Figure 10: Optimal Three PC Basis Vectors for Colon Cancer Example 
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Figure 1 2  Classification Performance on Prostate Sample with Three Measurement Basis Sets 

100 1 

Benign Malignant Cytoplasm Cytoplasm Cytoplasm Cytoplasm 
Nuclei Nuclei 1 2 3 4 

Figure 13: Optimal Basis Set Performance Improvement on Colon Sample 



Myoepithelial Malignant Other Connective Cytoplasm 
-2% Nuclei Epithelial Epithelial Tissue 

Nuclei Nuclei 
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Figure 17: Classification Accuracy of Prostate Cancer Nuclei vs. Measurement Dimension 
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Figure 18: Classification Accuracy of Colon Cancer Nuclei vs. Measurement Dimension 
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Figure 19: Colon Cancer Classification Accuracy vs. PP Measurement Dimensions 


