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Fracture Assessment of HSST Plate 14 Shallow-Flaw 
Cruciform Bend Specimens Tested under 

Biaxial Loading Conditions 

B. R. Bass, W. J. McAfee, P. T. Williams, and W. E. Pennell 
Oak Ridge National Laboratory 

Oak Ridge, Tennessee 

Abstract: A technology to determine shallow-flaw fracture toughness of reactor pres- 
sure vessel (RPV) steels is being developed for application to the safety assessment of 
RPVs containing postulated shallow surface flaws. Matrices of cruciform beam tests were 
developed to investigate and quantify the effects of temperature, biaxial loading, and 
specimen size on fracture initiation toughness of two-dimensional (constant depth), shal- 
low, surface flaws. The cruciform beam specimens were developed at Oak Ridge National 
Laboratory (ORNL) to introduce a far-field, out-of-plane biaxial stress component in the 
test section that approximates the nonlinear stresses resulting from pressurized-thermal- 
shock or pressure-temperature loading of an RPV. Tests were conducted under biaxial load 
ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading 
can have a pronounced effect on shallow-flaw fracture toughness in the lower transition 
temperature region for an RPV material. The cruciform fracture toughness data were used 
to evaluate fracture methodologies for predicting the observed effects of biaxial loading on 
shallow-flaw fracture toughness. Initial emphasis was placed on assessment of stress- 
based methodologies, namely, the J-Q formulation, the Dodds-Anderson toughness scaling 
model, and the Weibull approach. Applications of these methodologies based on the hydro- 
static stress fracture criterion indicated an effect of loading-biaxiality on fracture toughness; 
the conventional maximum principal stress criterion indicated no effect. A three-parameter 
Weibull model based on the hydrostatic stress criterion is shown to correlate the experi- 
mentally observed biaxial effect on cleavage fracture toughness by providing a scaling 
mechanism between uniaxial and biaxial loading states. 

1. Introduction 

The Heavy-Section Steel Technology (HSST) Program at Oak Ridge National 
Laboratory (ORNL) is developing technology to determine the shallow-flaw fracture 
toughness of steels for application to the safety assessment of reactor pressure vessels 
(RPVs). In the lower transition temperature region, shallow-flaw fracture toughness data 
for RPV materials exhibit mean values and scatter that are greater than those for deep flaws 
because of the relaxation of crack-tip constraint [ 11. Previously, uniaxial full-thickness 
clad beam tests [2] were used to quantify this shallow-flaw effect in specimens (taken from 
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an RPV of a canceled nuclear plant) which are representative of RF'V wall thickness and 
material properties. However, the uniaxial ham tests did not address the issue of near- 
surface biaxial stress fields produced by pnzssurized-thermal-shock (PTS) or pressure- 
temperature (P-T) loading of an RFV [see Fig. l(a)]. The out-of-plane biaxial stress com- 
ponent has the potential to increase constraint at the tip of a shallow crack and thereby re- 
duce the shallow-flaw fracture toughness enhancement. 

Cruciform beam specimens [3-71 developed at O W  introduce a far-field, out-of- 
plane biaxial stress component in the test section [see Fig. l(b)] that approximates the 
nonlinear stresses of PTS or P-T loading [Fig. l(a)]. The cruciform specimen (Fig. 2) 
permits controlled application of biaxial loading ratios that can produce controlled variations 
of crack-tip constraint for shallow surface flaws. The biaxial load ratio is defined as 
P,/ PL , where P, is the total load applied to the transverse beam arms and PL is the total 
load applied to the longitudinal arms. A special test fixture was also designed and fabricated 
permitting testing under uniaxial loading, P,/ PL ratio of (0: l), and two biaxial loading ra- 
tios, P, / P, ratios of (0.6: 1) and (1 : 1). The specimen and test fixture have been described 
extensively in prior HSST publications [3-51. 

Matrices of cruciform beam tests were defined within the HSST Program to evalu- 
ate biaxial loading effects on the fracture toughness of 2-dimensional (2-D) (infinite-length) 
[3] and 3-D (finite-length) [7] shallow surfact: flaws. An A 533 B steel, heat treated to 
obtain an elevated yield strength, was fabricated into cruciform specimens incorporating 2- 
D flaws and tested with the load ratio and temperature as independent parameters [3]. 
Fracture toughness tests were run with biaxial load ratios, P,/ P,, of (O:l), (0.6:1), and 
(1: 1). Five different temperatures through the transition temperature region for toughness 
were sampled in this series. These test data are essential for validation of a cleavage fracture 
methodology that can predict the observed effects of biaxial loading on shallow-flaw 
toughness of W V  steels in the lower transition temperature region. 

Conventional fracture-prevention technology has relied on the use of fracture cor- 
relation parameters (K or .I) to characterize both the applied loading and the resistance of 
engineering materials to crack initiation. As documented in numerous references (for exam- 
ple, see Refs. 8- 12), the shortcomings of these one-parameter cleavage-fracture method- 
ologies have been addressed using different strategies that share a common emphasis on in- 
plane maximum principal (opening-mode) stress as the relevant criterion for unstable crack 
propagation. O'Dowd and Shih [9] introduced a correlative approach based on the two- 
parameter J-Q description of the crack-tip fields. In that model, the &-stress parameter 
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characterizes the level of near-tip stress triaxiality (relative to small-scale yielding condi- 
tions) over distances extending a few crack-tip-opening displacements (CTODs) ahead of 
the crack tip. Dodds and Anderson (D-A) [lo-1 11 employed a local fracture criterion in 
their toughness scaling model to characterize the relative effects of constraint on cleavage 
toughness. In the D-A model, the local fracture criterion is based on the material volume 
ahead of the crack front over which the maximum principal stress exceeds a critical value. 
Other stress-based local approaches adopted the Weibull stress [ 121 as a fracture parameter 
that reflects local damage near the crack tip and reaches a critical value at material failure. 
Conventional applications of the Weibull methodology utilize the maximum principal stress 
as the equivalent tensile stress in the integral representation of the Weibull stress. 

Initial emphasis in the HSST studies was placed on assessment of three stress- 
based methodologies (J-Q formulation, D-A scaling model, and Weibull approach) as ap- 
plied to the cruciform specimen and biaxial fracture toughness data. McAfee et al. [5] dem- 
onstrated that the J-Q methodology and D-A toughness scaling model predicted essentially 
no effect of biaxial loading on cleavage fracture toughness in the cruciform bend specimen 
when the maximum principal stress is adopted as the fracture criterion. The latter result 
provided motivation for considering alternative fracture criteria that are sensitive to mul- 
tiaxial loading states. 

A number of previous studies (for example, see Refs. 13-15) investigated alterna- 
tive fracture criteria using extended weakest-link models suitable for brittle materials (e. g . , 
ceramics) subjected to multiaxial loading. These models consider flaws as planar cracks, 
with the loading expressed in terms of some suitably defined equivalent stress which de- 
pends on the orientation of the crack plane in the local stress field. Selected equivalent 
stress functions defined in terms of multiaxial stress components were used to evaluate 
failure criteria through applications to measured data. Another alternative is the hydrostatic 
stress function, which has been applied as a critical fracture parameter. Weiss [16] de- 
scribed an experimental program in which he investigated the effects of stress biaxiality on 
fracture strain and successfully reconciled measured data using a critical hydrostatic stress 
fracture criterion. Also, the J-Q methodology utilized an operational definition of the Q- 
stress expressed in terms of the hydrostatic stress [ 171, which is consistent with its inter- 
pretation as a triaxiality parameter. 

Recently, analyses of the cruciform specimen were performed within the HSST 
Program using functions of multiaxial stress components as failure criteria in the stress- 
based methodologies, in place of the maximum principal stress. Particular attention was 
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given to construction of a scaling mechanism between uniaxial and biaxial loading states 
using a three-parameter Weibull model and the: hydrostatic stress criterion. This paper pro- 
vides an interim report on the results of these analyses. The following sections present a 
summary of the HSST biaxial testing program, the test results and fracture toughness de- 
terminations, and finally, applications of the constraint methodologies to the cruciform 
specimen and measured data from the biaxial testing program. 

2. Specimen Configuration and Testing Facility 
A basic functional requirement for the cruciform test specimen is that stresses in the 

ligament beneath the shallow flaw remain in the elastic range up to the point of fracture. 
Reasons for this requirement are (a) this is the condition whch exists in an RPV under PTS 
loading, and (b) biaxial tests [ 181 have shown that when substantial plastic strains are al- 
lowed to develop in the ligament, the effects lof biaxial loading on fracture toughness are 
lost. Thus, acceptance criteria were adopted for the cruciform bend specimen that require 
the specimen to exhibit contained yielding at the crack tip at cleavage fracture under 
biaxial (1: 1)  loading, at test temperatures in the lower transition region where biaxial load- 
ing effects on fracture toughness have been demonstrated. In Ref. 19, analysis results 
demonstrate that a cruciform specimen with a test section dimension of approximately 
100 mm thickness is the smallest size that can meet the acceptance criteria for the heat- 
treated Plate 14 material over the range of fracture toughness values of interest in PTS as- 
sessments. Plots of Mises stress contours in the cruciform specimen subjected to 
biaxial (1 : 1 )  loading indicate the onset of loss-of-containment in the cruciform specimen 
near a KI - level of approximately 200 MPadm. 

The cruciform beam specimens are fabricated with a test section that has dimensions 
of 104 mm x 104 mm x 104 mm [see Fig. 2 (a)], except for three specimens that had a 
reduced thickness of 96 mm [see Fig. 2(b)]. For all cruciform beams, a 2-D shallow flaw 
having a flaw-depth ratio of a/W = 0.1 was fabiricated into the specimen. The flaw was lo- 
cated in material near the middle plane of the original plate. Load-diffusion control slots 
(LDCS) were machined into the specimen loatling arms to create the boundary conditions 
required to achieve a uniform stress field in the central test section. For each cruciform 
specimen, the shallow 2-D flaw was fatigue-sharpened and a mechanical milling process 
used to relieve each corner of the sharpened flaiw and remove a small region of material at 
the LDCS/flaw intersection. That region had exhibited preferential crack growth during the 
fatiguing process due to prior surface embrittlernent resulting from wire-EDM fabrication of 
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the LDCS. (Development tests [5] confirmed that initiations occurred in the central portion 
of the crack front.) Next, the transverse loading arms were attached by electron-beam (EB) 
welding. Measured temperature data taken during EB welding of the transverse arms imply 
that temperatures produced in the cruciform test section (e 150°C) were not high enough to 
initiate processes which would reduce fracture toughness, such as locally-intensified strain- 
aging embrittlement. The specimen design, coupled with a statically determinate load- 
reaction system installed in the ORNL testing machine, permitted the specimen to be loaded 
in either uniaxial (4-point bending) or biaxial (8-point bending) configurations. Tests of 
nominally identical specimens could be performed with the level of stress biaxiality as the 
only loading test variable. 

Instrumentation applied to the test specimens included thermocouples, strain gages, 
clip gages, and displacement transducers. Both crack-mouth-opening displacement 
(CMOD) and load-line displacement (LLD) were monitored continuously throughout each 
of the tests. Control of the test temperature was achieved with various liquid nitrogen dis- 
tribution systems. Mechanical loading is applied to the cruciform specimens using a large- 
scale cruciform test fixture mounted in a 3.1 MN Instron servo-hydraulic testing machine at 
OWL. 

3. Material Preparation and Characterization 
HSST Plate 14 (A 533 B steel) was the source material for the cruciform bend 

specimens. A chemical analysis of Plate 14 is given in Table 1. This plate was selected 
primarily for its relatively high carbon content of 0.22 percent (specification for A 533 B 
steel is 0.25 percent maximum), which made it more responsive to increasing the yield 
strength by heat treatment and retaining relatively uniform properties through the thickness 
of the plate after tempering. The base material underwent heat treatment to achieve an ele- 
vated yield strength approximating that of a typical radiation-sensitive RPV steel irradiated 
to a fluence of 1.5 x 1019 n/cm2 (> 1 MeV). The heat treatment was performed success- 
fully, providing a room temperature yield stress in the desired range. Fabrication of the 
cruciform specimens has been described in Refs. 3,5, and 6. 

Characterization of the heat-treated material was performed to provide verification 
of properties and data for the determination of appropriate test conditions. Tensile, Charpy, 
drop-weight, and 1/2T compact tension specimens were tested. From Charpy V-notch 
(CVN) testing, Tcv was determined to be 56 "C (132 OF), and the drop-weight nil-ductility 
temperature (NDT) was found to be 40 "C (104 OF). Thus, NDT controlled the reference 
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temperature, and RT,,, = 40 "C. A comparison was made between the Charpy results for 
Plate 14 and data from the HSSI Fifth Irradiation Series Weld 73W [20] in the irradiated 
[1.51 x 10'' n/cm2 ( > 1 MeV)] condition (see Fig. 3). From this comparison, it was 
observed that the trend of the Charpy data for IPlate 14 very nearly matched that of the irra- 
diated 73W [20]. It can be concluded that the heat treatment was successful in providing the 
desired material properties. 

American Society for Testing and Mai:erials (ASTM) standard 6.35-mm (0.25-in.) 
gage diameter tensile specimens were machined from material near the midplane of the plate 
and at four locations through the half thickness. To characterize temperature dependency, 
tests were performed at four different temperatures using specimens taken from a single 
layer near the mid-plane of the plate. These test temperatures - -30 "C (-22 O F ) ,  10 "C 
(50 OF), 40 "C (104 O F ) ,  and 60 "C (140 OF) -- were selected as representative of the an- 
ticipated test temperature range for the cruciform specimens in the verification test matrix. 
Four locations through the thickness of the plate were also sampled. The variation of tensile 
properties with both temperature and location through the plate thickness was observed to 
be relatively small. Temperature-dependent material properties representing stress-strain 
behavior for this material at -30 "C and -5 "C (are given in Table 1 and Fig. 4. 

A series of 1/2T compact specimens, taken from different locations within the par- 
ent plate, were tested over the range of -130 "C to room temperature. This data set was 
used to determine a reference temperature To based on the Master Cuwe approach [21]. 
First, the 1/2T data were adjusted to a 1T constraint condition using 

K,, =20+(K,,,,-20) (0.5/1): . 

The valid data were then fitted using the Master Curve equation, 

KJc(med) = 30+70exp[0.019(T-T,)] , [ M P a f i ]  , 

from which a value of To = -37.3 "C (-35.1 "€7) was determined. 

4. Testing of Cruciform Specimeiis 
Six cruciform specimens were tested at -30 "C (T  - To = 7 "C) to provide data for 

(a) three biaxial load ratios and (b) two duplicate tests at each condition. The load vs 
CMOD data for these specimens are shown in Fig. 5, which compares the centerline 
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CMOD for each of these six specimens. The deformation response for all specimens was in 
good agreement. The specimens exhibited very little plastic deformation as measured by 
both CMOD and LLD, regardless of the applied biaxial load. Failure conditions, load and 
deformation (CMOD and LLD), seemed to vary randomly; i.e., there was no clear correla- 
tion between applied biaxial loading and failure load or deformation. Examination of the 
fracture surfaces showed that initiation occurred within the center 50 mm of flaw front, in- 
dicating that the cleavage initiation toughness values were not influenced by edge condi- 
tions. 

The estimated toughness values for these specimens are shown in Table 2. Esti- 
mates were made using CMOD and LLD results, the measured crack depth at the probable 
initiation site, and the 77-factor procedures that have been used previously in estimating 
toughness from shallow-flaw tests [ l ,  61. The values for all these tests are near the esti- 
mated lower shelf toughness for this material, which is consistent with the observed de- 
formation behavior, Le., elastic tests. For cases where primarily elastic deformation oc- 
curs, biaxial loading would be expected to have little effect on constraint at the flaw tip, and 
thus little effect on toughness. The elastic response of these specimens gave an indication 
that the test temperature was too low (i.e., -30 "C was on or nearly on the lower shelf) to 
produce a biaxial loading effect. 

A second set of fifteen cruciform specimens was tested at a nominal test temperature 
of -5 "C (23 O F )  (normalized temperature T - To = 32 "C). This higher temperature was 
expected to provide a better balance between cleavage behavior and accumulated plasticity 
at failure for evaluation of biaxial effects on toughness. Six specimens each were tested un- 
der uniaxial (0: 1) and equibiaxial(1: 1) loadings, and three specimens under (0.6: 1) biaxial 
loading, as shown in Table 2. Deformation responses of longitudinal load vs CMOD re- 
sults are shown in Fig. 6. The longitudinal load vs CMOD traces for these specimens were 
comparable, but the failure deformation magnitudes and scatter exhibited a strong depend- 
ence on the applied biaxial load as shown in Fig. 6. The unloadreload deformation trace of 
Specimen PZB was due to initial interference with the transverse beam arm load seats. The 
test was interrupted; the specimen was unloaded; and the fixture was then reconfigured 
while 'holding the specimen temperature near -5 "C. It was concluded from post-test 
evaluation that this perturbation in the load histogram was insignificant as far as affecting 
the final toughness results. 

Additional tests were performed at higher temperatures to investigate fracture be- 
havior through the lowerhid-transition curve. The uniaxial tests at -5 "C indicated border- 
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line plastic collapse; therefore, no additional uniaxial specimens were tested at higher tem- 
peratures. Biaxial (0.6: 1) and (1: 1) tests were performed near 5 "C and 15 "Cy as shown in 
Table 2. Although scatter in the data set increased, the clear distinction between the effect 
on toughness of different biaxial load ratios was retained. 

5. Fracture Toughness Determination 
Three-dimensional elastic-plastic finite element analyses of the cruciform specimen 

were performed with the ABAQUS program [ 221 to generate q-factors for determination of 
fracture-toughness values from test data. For the -30 "C tests, generally good agreement 
was obtained for the deformation response, as expected since the tests were essentially 
elastic. These analyses over-predicted the stiffness of the specimen, with this over- 
prediction being greatest for the biaxial (1 : 1) load case. A comparison of analysis and ex- 
periment is shown in Fig. 7 for this biaxial case. For the tests performed at -5 "Cy the 
agreement was dependent on the biaxial load ratio. Good agreement was obtained between 
the biaxial (1 : 1) analytical and experimental nzsults; however, comparison of the uniaxial 
results showed the analysis to predict substantially stiffer longitudinal load vs CMOD re- 
sponses than were measured in the test (see Fig. 8). 

The estimated toughness values obtained from the Plate 14 cruciform specimens are 
shown graphically in Figs. 9 and 10 for the -:30 "C and -5 "C test sets, respectively, The 
-30 "C specimens behaved in an elastic manner and little biaxial effect was observed. For 
the six specimens tested, the toughness increased slightly with an increase in biaxial ratio. 
It is expected that additional specimens would show statistically no difference between 
uniaxial and biaxial loading at this temperature. For the tests performed at -5 "Cy the test 
data demonstrate a significant effect of biaxial loading on shallow-flaw fracture toughness, 
as is shown in Fig. 10. The mean value of the biaxial (1:l) toughness resulted in ap- 
proximately a 42 percent decrease from the mean uniaxial toughness (KJc / K/, (o..l, 

= 0.58). 
Figure 11 is a summary of all the cruciform data generated in this test series pre- 

sented as a function of normalized test temperature ( T - To ). Trend curves were devel- 
oped through these data to provide a visual interpretation of the relationship between biaxial 
loading and temperature, Note that these trend curves are not rigorous fits to all the data but 
are intended primarily to identify and separate alata sets. The curves were all normalized to 
the same toughness values for normalized temperatures less than 0 "C. These toughness 
values were developed using data from the X!T CT specimens tested on the lower shelf 
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which were then adjusted to a full-constraint condition using the modified Irwin PIC ap- 
proach [23]. Also, the mean of the data set for the cruciform tests at -30 "C was used as a 
common point for all three curves. The trend curve for the (0.6: 1) data was developed by 
ratioing the biaxial (1 : 1) trend line upward so that it would pass through the centroid of the 
(0.6:l) data set. Figure 11 shows the development of a family of curves, each corre- 
sponding to a particular biaxial load ratio. The biaxial (1: 1) data form a lower bound to this 
data set. Based on these trend lines, the mean of the estimated toughness values from the 
uniaxial tests increases much more sharply with increasing temperature than do those of the 
biaxial tests. 

6. Applications of Constraint Methodologies 
6.1 Finite Element Models and Local Crack-Tip Fields 

Three-dimensional finite-element models were developed for local crack-tip field 
analyses of the cruciform bend specimens subjected to the uniaxial and biaxial loading con- 
ditions represented by the test data in Fig. 10. The cruciform bend specimen shown in Fig. 
2(a) is modeled in Fig. 12 and the reduced thickness specimen [Fig. 2(b)] in Fig. 13. Both 
blunt-crack (20,754 nodes and 4317 20-node isoparametric brick elements) and sharp- 
crack (18,775 nodes and 3886 elements) models were generated for these analyses. For the 
blunt-crack model, the initial finite-root-radius at the crack tip was 0.0254 mm (0.001 in.) 
(see Fig. 14). Corresponding J-integrals were calculated with the sharp-crack models to 
obtain a more accurate determination of J as a function of loading. All models were ana- 
lyzed with the ABAQUS code utilizing a nonlinear elastic-plastic constitutive formulation 
with incremental loading of the specimen. Temperature-dependent properties were taken 
from tensile characterization tests of the heat-treated Plate 14 material (see Table 1, Fig. 4 
and Ref. 3). All model results reported herein assumed a specimen temperature of -5 "C, 
consistent with the toughness data shown in Fig. 10. Also, these assessments neglected 
the potential impact of ductile tearing observed in three of the uniaxially loaded cruciform 
specimens, which were tested at -5 "C and failed at high toughness values (see Fig. 10). 

Applied load vs J-integral values computed for the original and reduced-thickness 
specimens are compared in Fig. 15. A similar comparison for CMOD shown in Fig. 16 il- 
lustrates the increased compliance associated with a reduction in test section thickness of 
the cruciform specimen. 

Results generated from local crack-tip field analyses include the profiles of effective 
stress, oeP and total effective plastic strain, E,,, depicted in Fig. 17 for the uniaxial (0:l) 
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and biaxial (x:l) (x = 0.6 and 1.0) loading cases. The parameters are computed at 
J = 13 1 kJ/m2 (0.75 in.-kip/in2), which coirresponds approximately to a measured frac- 
ture toughness data point for biaxial (1 : 1) loading depicted in Fig. 10. Profiles of these pa- 
rameters are plotted vs distance Y in front of the crack tip (8=0, Fig. 14) normalized by 
J/cr,, where 0, is the proportional limit of 512 MPa (74.2 ksi). These fields clearly dem- 
onstrate that biaxial loading suppresses development of plasticity in front of the crack tip, 
with the effect becoming more pronounced with increasing biaxiality ratio. 

6.2 J-Q Theory 
O'Dowd and Shih [9] developed the J-Q methodology in which the J-integral sets 

the scale of deformation at the crack tip, and the hydrostatic stress parameter, Q, quantifies 
the level of stress triaxiality over distances of approximately 1 e r/(J/o, ) e 5 ahead of 
the crack tip. The annular zone over which the family of stress fields described by 

accurately determines the actual field is called the J-Q annulus. In Eq. (3), Y and 8 are cy- 
lindrical coordinates (Fig. 14) with the origin at the crack tip. The crack-tip stress fields 
within the J-Q annulus were represented by the: sum of a J-dominant reference solution and 
a difference field ( o ~ , ) ~ , ~ ~ .  O'Dowd and Shih [9] observed that the difference field corre- 
sponds approximately to a uniform hydrostatic shift in the stress field in front of the crack 
tip. They designated the amplitude of this approximate difference field by the letter Q, 

Two operational definitions of the Q-family of fields are presented in Ref. 17. The 
first definition is given in terms of the opening-mode stress, on, 

where SSY refers to the small-scale-yielding reference solution. The second definition, 
which is consistent with the interpretation of 42 as a triaxiality parameter, is based on the 
hydrostatic stress, oH , 
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where oH (also known as the mean stress) is 1/3 of the first invariant of the Cauchy stress 
tensor. These two operational definitions of Q-stress are applied in Fig. 18 to the local 
crack-tip field analysis of the uniaxially-loaded cruciform bend specimen. Normalized 
opening-mode stress vs normalized distance in front of the crack tip is compared with SSY 
results for a range of J-values in Fig. 18(a); results based on the hydrostatic stress are 
shown in Fig. 18(b). The SSY solution was developed using a 2-D plane-strain modified 
boundary layer (MBL) [8] model with the same finite-root-tip geometry and material prop- 
erties as the 3-D finite-strain model. For the uniaxially-loaded specimen, the two definitions 
of Q-stress provide results that are equivalent, a result confirmed previously in Ref. 17. 

In Fig. 19, opening-mode stress profiles for the three loading cases under study 
are plotted with the SSY solution. In Fig. 19(a), the Q-stresses calculated using the first 
definition for Q , Eq. (5 ) ,  do not present significant differences among the loading cases 
due to the observed insensitivity of the opening-mode stress to biaxial loading. The second 
definition, Eq. (6), was used in Fig. 19(b) to calculate a Q,-stress based on the hydro- 
static stress profiles. At a nominal J-level of 131 kJ/m2, the &-stress differentiates be- 
tween the different levels of biaxiality, such that the Q,-stress decreases (in absolute value) 
monotonically with increasing biaxiality ratio. The peak values of normalized stress coin- 
cide for the three loading cases. In contrast to the uniaxial loading case, the difference fields 
for the biaxial loading cases vary with normalized distance over the range of 
1 < r/(J/oo) < 5;  i.e., they do not correspond to a uniform shift in the hydrostatic stress 
field relative to the 2-D SSY solution.' 

In Fig. 20, the two definitions of Q-stress are plotted as a hnction of normalized J 
to determine their evolution over the loading path for the three biaxiality loading ratios. 
These curves terminate approximately at J-values corresponding to fracture toughness data 
points given in Fig. 10 for the three loading conditions. The J-integral in Fig. 20 has been 
normalized by the initial crack depth, a, and the proportional limit, (T,, . For both defini- 
tions of Q, the loss-of-constraint increases with increasing load. The Q-stress based on the 
opening mode stress (Fig. 20(a)) shows no significant differentiation among the three 
loading cases. For the biaxial (0.6: 1) and equibiaxial(1: 1) loading cases, the QH parameter 

In Section 7, it is shown that the distribution of cleavage initiation sites determined from fracture surfaces 
of a limited number of the heat-treated Plate 14 cruciform specimens falls predominately in a region (0.4 < 
Aa/(J/o,) e 1.2) where normalized hydrostatic stress is not significantly influenced by biaxial loading ratio. 



based on the hydrostatic stress (Fig. 20(b)) diverges from the uniaxial (0:l) path as the 
load level increases. A conventional interpretation of the QH parameter in Fig. 20(b) is that 
a higher level of crack-tip constraint is maintained under increasing load as the biaxiality ra- 
tio is varied from uniaxial (0: 1) to equibiaxial ( 1 : 1) conditions. 

6.3 Cleavage Toughness Scaling Model 
Dodds and Anderson (D-A) [ 10-1 11 quantified effects of constraint on cleavage 

fracture toughness using a toughness scaling model that couples the global parameter J with 
a local failure criterion. The D-A model adopts the material volume ahead of the crack tip, 
over which the normalized maximum principal stress (0, / 0,) exceeds a critical value, as 
the local fracture criterion, See Appendix A for a discussion of some computational aspects 
of the D-A model. The convention applied in this paper for ordering the principal stresses is 
o3 2 CT, 2 a;,, where (T, is essentially equivalent to the opening-mode stress, CT,, , in the 
cruciform specimen. The toughness scaling model requires that equal-stressed volumes ( or 
equal areas in 2-D models) be attained ahead of the crack tip for cleavage fracture to be re- 
alized in different specimens. Equality of stressed volumes implies an equal probability of 
achieving cleavage fracture, even though J-values may be markedly different. 

For the plane strain model described in Ref. 17, the normalized maximum principal 
stress has the approximate form 

The area enclosed within the specified contour C T ~ /  CT, = C depends on J and the triaxiality 
level as quantified by Q. Let A,, and J,, represent the area and J-value for the SSY condition 
with zero T-stress and Q = 0 field. If Af and Jf represent corresponding values in a finite 
cracked structure having a Q < 0 field, then the ratio of Jf / J, for which 
A , ( c T , / ( T , ) = A ~ ( ( T ~ J c T , )  serves to quanti@ the size and geometry dependence of fracture 
toughness. For the latter conditions, a ratio Jf / J, > 1 implies a loss of constraint in the fi- 
nite structure that is associated with an increase in measured cleavage fracture toughness. 

Computational studies of shallow-flawed, uniaxially-loaded, bend specimens per- 
formed by D-A [ 171 revealed that computed ratios of Jf / J,, are relatively insensitive to the 
magnitude of the selected 03/ 6, contour (for sufficiently large values) up to large-scale 
yielding. The principal stress contours were shown to exhibit a self-similarity that is im- 
plied by the J-Q relation of Eq. (7); Le., the shape of the contour is preserved with in- 
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creasing load as measured by J, even though the enclosed area of the contour varies with 
the hydrostatic stress Qo,. At high loads, this similitude breaks down and the ratio Jf / J, 
becomes strongly dependent on the magnitude of o, / 0,. 

Previously, McAfee et al. [SI demonstrated that the D-A toughness scaling model 
predicted essentially no effect of biaxial loading on cleavage fracture toughness in the cruci- 
form bend specimen due to the insensitivity of in-plane maximum principal stresses to far- 
field out-of-plane biaxial loading. Recently, analyses were carried out which utilized the 
hydrostatic stress variable as the failure criterion in the D-A scaling model in place of the 
maximum principal stress. Applications of this modified D-A model involved integrating 
over the volume contained withm a range of selected hydrostatic stress contours immedi- 
ately ahead of the crack front for a range of applied loads as measured by J .  Effective 
cross-sectional areas for these contours could then be calculated by simply dividing the 
computed volume by the half-length of the crack front in the finite-element model 
[x,,, = 56 mm (2.2 in.)]. 

Figure 21 shows the variation of the predicted fracture toughness ratio Jo,,/Jss, 
with o,/ 0, for the shallow-flaw cruciform specimen subjected to uniaxial (0:l) loading. 
Each curve represents a given applied J-value, normalized using the constants a and 6,. 
The ratio .lo.,/ Jssy is relatively insensitive to the selected oH/ o, over the interval 
1.8 < o, / o, < 2.35 for the range of applied loads considered in the analysis. In 
Fig. 22, values of J,, and Jsv, producing equal-stressed areas of material in the uniaxially 
loaded cruciform specimen and in the SSY model, are plotted on separate axes. The analy- 
sis is based on hydrostatic stress contours having a normalized stress ratio of 
o, / o, = 2.35. With increasing load, extensive plastic flow develops in the crucifonn 
specimen and more applied J is required to produce the same stressed effective area as 
compared to the SSY model. 

Figure 23 depicts results from a fracture toughness scaling analysis of the cruci- 
form specimen for the three loading cases represented by the measured data in Fig. 10. A 
value of oH / 0, = 2.35 was selected as the stress contour for use in the scaling model. In 
Fig. 23(a), the evolution of applied loading Q vs equal-stressed volumes within the con- 
tour 6, / CT, = 2.35 is shown for uniaxial and biaxial loading conditions. The J-value re- 
quired to achieve a critical equal-stressed volume within the critical stress contour decreases 
with increasing biaxiality ratio. Furthermore, the uniaxial (0: 1) loading condition ap- 
proaches saturation beyond J = 500 kJ/m2; Le., the volume within the critical stress con- 
tour no longer increases with increasing applied J-value. In contrast, the biaxial loading 
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conditions do not exhibit any tendency to saturate for the range of loadings considered in 
the analysis. Analysis results from Fig 23(a) were used to produce the plots of J, I vs J, I 

(x = 0.6 and 1.0) in Fig. 23(b) that correspond to equal-stressed volumes of hydrostatic 
stress within the contour oH / o0 = 2.35 for the three loading cases. The biaxial loading 
values were used in place of the conventional SSY values in Fig. 23(b) in order to com- 
pare the relative effects of biaxial and uniaxial loading on the crack tip fields. As demon- 
strated in Fig. 23(b), the departure from the no-effect line is significant for both biaxial 
(0.6: 1) and (1 : 1) loading cases, the effect being more pronounced with increasing biaxiality 
ratio. Also shown in Fig. 23(b) are the measiured cruciform data for the heat-treated Plate 
14 material tested at - 5 “C (Fig. lo), where biaxial data are plotted near the vertical axis 
and uniaxial data near the horizontal axis. The D-A toughness scaling model, modified to 
use hydrostatic stress, is shown to provide ,an approximate correlation of the effects of 
biaxial loading on cleavage fracture toughness; depicted in Fig. 10, based on a critical con- 
tour oH / 6, = 2.35. Figures 23(c) and (d) present J,] (x = 0.6 and 1.0) vs equal- 
stressed volume and J,.] vs J,.] curve, respeciively, for the cruciform specimen based on 
the maximum principal stress fracture criterion (critical contour 6, / CT, = 2.8). These re- 
sults [Fig. 23(d)] incorrectly predict essentially no effect of biaxial loading on toughness at 
-5 “ C .  

Figures 24(a) and (b) illustrate the evolution of maximum principal 
(03 / o0 = 2.8) and hydrostatic (oH / 6, = 2.35) stress contours, respectively, ahead of 
the crack tip for both uniaxial (0:l) and biaxial (1:l) loading conditions. The maximum 
principal stress contours indicate some difference in enclosed area between the two loading 
states for the lower J-values shown. As J increases, this differentiation decreases. For 
comparable J-values, the area enclosed within the hydrostatic critical stress contour is 
shown to be greater for the biaxial loading case as compared to the uniaxial case, with the 
difference becoming more pronounced with increasing J-values. 

I 

The sensitivity of J, I vs J, I (x = 0.6 and 1.0) curves to selection of the critical 
stress ratio oH / o, is depicted in Fig. 25 for the range 1.8 5 oH / 6, I 2.35. Increasing 
the stress ratio beyond this range [toward the common peak value of oH / 0, - 3.2 calcu- 
lated for the three loading conditions in Fig. 19(b)] would produce a family of curves that 
converges monotonically to the “no effect” line shown in Fig. 25. In Fig. 26, curves of 
J,.]  / 1, I ratio (x = 0.6 and 1.0) for equivalent-stressed areas vs critical 6, / B, ratio are 
computed over a range of applied J-values. The dependence is shown to be more pro- 
nounced for oH / (3,s 2.2. A critical stress ratio of oH / 6, = 2.35 was selected for the 
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toughness scaling analysis presented in Fig. 23(b) to provide a reasonable correlation for 
the measured cruciform data given in Fig. 10. 

6.4 Weibull Stress Applications 
The methodology implemented in the WSTRESS (Version 2.0) computer code [24] 

was used to study effects of biaxial loading on Weibull analyses of shallow-flaw fracture 
toughness data in the lower transition temperature region. The WSTRESS code employs a 
multiaxial form of the weakest link model applicable for a 3-D cracked solid; the Weibull 
stress, ow , is characterized as a fracture parameter reflecting the local damage of the mate- 
rial near the crack tip. The Weibull stress, ow, given by the expression 

r .  2 x  x 
1 

-I= 

is evaluated by integration of the equivalent stress, 04, over the process zone. In Eq. (8),Vo 
is the reference volume; m is the Weibull modulus; 8 and cp are curvilinear coordinates for 
integration of the tensile stress; and 0 denotes the volume of the near-tip fracture process 
zone. Details regarding the derivation of Eq. (8) are presented in Appendix B. 

6.4.1 Fracture Criteria 
A fracture criterion must be specified to determine the equivalent (tensile) stress, oq, 

acting on a microcrack included into the fracture process zone. Three options for fracture 
criteria are implemented in the distributed version of WSTRESS [24] to evaluate the critical 
stress at which the crack becomes unstable: maximum principal stress (MPS), coplanar en- 
ergy release (CER) rate, and normal stress averaging (NSA). Three additional fracture cri- 
teria were added to WSTRESS: the principal of independent action (PIA) [25] as proposed 
by Dortmans et al. [26], the noncoplanar energy release (NCER) rate [27-281, and the hy- 
drostatic stress (HYDRO) criterion, developed during the present study. These criteria are 
implemented using the following definitions for the equivalent tensile stress, o4 : 
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MPS 

NSA 

PIA 

CER 

NCER 

Maximum Principal Stress 
Normal Stress Averaging 

Principal of Independent Action 0, = ( (o,)~ + + ( C J ~ ) ~ )  

Coplanar Energy Release Rate 
t 

4T2 
0, = [ 0: + ( 2 -  Y,2] 

Noncoplanar Energy Release Rate G~ = (0.4 + 6 0 ~ ~ 7 ~  + x4) a 
tr0 - 0:,f0,+03 

%=-- 3 3 
HYDRO Hydrostatic Stress 

where the state of stress is defined by the principal stresses (G,, 02, 0,) and the normal 0, 
and shear z stresses are calculated by 

Normal Stress 

Shear Stress 

on = 0, sin2 cp cos2 9 + o2 sin2 cp sin2 9 + 0, cos2 cp 

7’ = 0,’ sin2 <pcos2 8 + 0,’ sin2 cpsin2 9 + 0,’ cos2 <p - on2 

See the discussion in Appendix B for definitions of the angles cp and 9. 

Figure 27 illustrates the response of the Weibull stress function for a range of m 
values and two definitions of oq, when applied to the Plate 14 cruciform specimen sub- 
jected to uniaxial (0: 1) and biaxial (1: 1) loading conditions. The equivalent stress options 
selected for analysis were MPS and HYDRO. For those two choices, the values of oq are 
independent of microcrack location and orienta.tion, and the Weibull stress is, therefore, 

In Fig. 27(a), the equivalent stress was set to MPS, and the Weibull stress was then cal- 
culated for values of the modulus m = 8, 10, and 20. No significant effects of biaxial 
loading were detected for the three rn values using the MPS criterion. In Fig. 27(b), the 
calculation is repeated with the equivalent stress taken as HYDRO. Differentiation between 
uniaxial (0: 1) and biaxial (1: 1) loading can be observed when the Weibull modulus m is 
set to values of 8 and 10. By increasing the FVeibull modulus to 20, any distinction be- 
tween uniaxial and biaxial loading is essentially lost. (Computations of rn values appropri- 
ate for the cruciform fracture toughness data in Fig. 10 are described in following sec- 
tions.) 
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6.4.2 Cumulative Probability of Failure 
The cumulative probability of cleavage fracture (Po) is estimated by either a two- 

parameter Weibull distribution of the form 

or a three-parameter Weibull distribution 

where the parameters of the distribution are the Weibull modulus rn , the scaling stress 
(scaling factor) cru , and the minimum Weibull stress for cleavage fracture ow-min. 

6.4.3 Required Experimental Data and Finite Element Models 
The WSTRESS code requires experimental fracture toughness data and the results 

of a finite element analysis in which the stress and deformation fields ahead of the crack tip 
are calculated as a function of the J-integral over a range of loading states. The toughness 
data for cruciform specimens (a/W = 0.1) fabricated using Plate 14 material and tested at - 
5°C are given in Table 3 and compared to the results of a finte element model in Figs. 28 
and 29 for uniaxial (0: 1) and biaxial (1 : 1) loading cases, respectively. The finite element re- 
sults were obtained from the 3-D elastic-plastic models of the cruciform specimen depicted 
in Fig. 12 (for calculation of “FEM” curves) and Fig. 13 (for calculation of “FEM 
REDUCED’ curve) using the ABAQUS [22] code. The finite element curves for the J- 
integral were calculated in the ABAQUS code by the domain integral method, and the ex- 
perimental J-integral values were calculated using the q-factor technique described previ- 
ously [6] .  

6.4.4 Weibull Parameter Estimation: Statistical Inference Method 
The maximum likelihood (ML) method is implemented in WSTRESS to calculate, 

by statistical inference, point estimates for the parameters of the Weibull distribution. As 
discussed in the previous section, the estimation of the Weibull parameters rn and ou re- 
quires both the results of experimental fracture mechanics testing to produce a sample 
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population of toughness data and the results of a finite element analysis of the specimen for 
a range of loading states (as measured by the J-integral). The results of the Weibull pa- 
rameter estimation calculations for each of the: six equivalent stress criteria (using the two- 
parameter model) are summarized in Table 4, where the sample population included all 15 
toughness data points at -5°C: 6 at (0:l) loading, 6 at (1:l) loading, and 3 at (0.6:l) load- 
ing. As noted in Ref. 24, despite the large-sample properties of the ML estimates, the re- 
sulting Weibull parameters are biased to highler values for small sample population sizes. 
The degree of bias in m is independent of the lme value of (hi, oU ) ; however, the bias is a 
function of the sample size (i.e., the number of experimental fracture toughness data 
points, NeJ.  WSTRESS calculates a corrected estimate mcorr using unbiasing factors 
B(Nw) generated from an appropriate asymptotic distribution. 

A comparison of Weibull parameter estimates for three sample populations is given 
in Table 5 for the two-parameter model. The first two sample populations consist of the 
toughness data partitioned by loading state, with 6 data points each for both the uniaxial 
(0: 1) and biaxial (1 : 1) loading cases. Table 5 demonstrates a significant dependence of the 
estimated Weibull parameters on population size and loading state. 

Figure 30 shows a Weibull probability plot of the cumulative failure probability 
@(ow) formulated as the log-log parameter lnln[l1(1-@(ow))] vs the log of the Weibull 
stress, 6, , normalized by the scaling stress, CY,. With this scaling, the failure probabilities 
are functions only of the Weibull modulus, highlighting variations in the Weibull modulus 
as demonstrated by differences in the slopes of the straight lines in the plot. As shown in 
Fig. 30, the first five criteria form a relatively consistent grouping; however, the hydro- 
static stress (HYDRO) criterion is separated from this group by a lower Weibull modulus. 

The evolution of the Weibull stress for the six fracture criteria under uniaxial (0:l) 
loading is shown in Fig. 31 for the two-parameter model. The estimated Weibull parame- 
ters m given in Table 4 (based on N e ,  = 15) for the M P S  and PIA criteria produce es- 
sentially identical Weibull stresses in Fig. 3 1. These two criteria also form an upper bound 
for the Weibull stresses. The NCER, CER, and NSA criteria (all involving a dominant 
normal tensile stress) group together with intermediate values for the Weibull stress. The 
HYDRO criterion provides a lower bound. The 15 toughness data points are plotted in 
Fig. 3 1 along the abscissa to demonstrate the range of the distribution. 

Figure 32 compares the biaxial (1 : 1) and uniaxial (0: 1) normalized Weibull stress 
curves for the (a) maximum principal stress (IMPS) and (b) hydrostatic stress (HYDRO) 
fracture criteria. The M P S  response is typical of the PIA, NCER, CER, and NSA criteria in 
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showing no significant sensitivity to the loading state. HYDRO is the only fracture criterion 
tested that is responsive to the out-of-plane stress field. 

A three-parameter Weibull distribution was also investigated using the HYDRO 
fracture criterion. The minimum Weibull stress for which cleavage is assumed to be possi- 
ble, , is calculated from the functional relationship between the Weibull stress and 
the loading parameter, the J-integral, that evolves during the iterative process within 
WSTRESS. The third parameter ow-min (continually updated during the iterations) is cal- 
culated from the intercept of the CT, = F(J,rn) curve at K ,  = 20MPa-& + 
J = 2.05 kJ/m2 . Table 6 presents a comparison between the two- and three-parameter 
model parameters for the partitioned biaxial (1: 1) and uniaxial (0: 1) sample populations and 
the mixed sample population of 15 toughness data points. 

The WSTRESS code offers an alternative approach for calculating point estimates 
for the Weibull distribution parameters that involves a stochastic simulation of the fracture 
toughness data. In this approach, a statistical sample of fracture toughness is generated 
from a Weibull distribution. The fracture parameter, J,, is assumed to be described by ei- 
ther a two-parameter Weibull distribution of the form 

or a three-parameter Weibull distribution 

where a, p, and y are the shape, scale, and threshold parameters of the distribution, re- 
spectively. The shape and scale parameters can be input explicitly or can be estimated by 
the maximum likelihood method based on the experimental toughness data set. The thresh- 
old parameter must be input as problem data if a three-parameter Weibull distribution is to 
be applied. The WSTRESS code uses a Monte Carlo simulation with inverse transforma- 
tion to generate a large statistical sample. This Monte Carlo simulation has the form 

where U is a random variate uniformly distributed between [0,1]. Table 7 presents a com- 
parison of Weibull parameter point estimates based on Monte-Carlo-generated sample 
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populations of 10,000 data points for both two- and three-parameter Weibull distributions 
of the toughness data. For the three-parameter models, the threshold value of 
y = 2.05 kJ/m2 corresponding to a Kmin of 20 MPa-dm is explicitly specified. Figure 33 
compares the resulting Weibull distributions in terms of the associated Weibull probability 
density function 

In Fig. 33, the two curves that represent H partitioning of the data by loading state 
(Nexp = 6 )  demonstrate that the highest (1: 1) and the lowest (0: 1) data points are located in 
the tails of their respective distributions. 

6.4.5 Weibuli Parameter Estimation: Gao-Ruggieri-Dodds (G-R-D) Method 
- Multiconstraint Mapping to SSY Weibull Stress Space 
A new calibration scheme has been proposed by Gao, Ruggieri, and Dodds [3 11 to 

determine unique values of the Weibull parameters ( m , ~ , , )  by applying toughness data 
measured under low and high constraint condiiions at the crack front. This new scheme (G- 
R-D Method) arises from the authors’ experience [31] with calibration methods based on 
statistical inference (as discussed in Sect. 6.4.4) in which they observed a strong sensitiv- 
ity to the number of toughness data values (J,) comprising the sample population. They es- 
timated that reliable estimates for the shape parameter, a, in the Weibull distribution of the 
toughness data (see Eqs. (12) and (13)) woulid require many tens of J,-values; however, 
fewer J,-values (approximately 6-10) might be required to establish the median value of the 
distribution, p. This new scheme involves mapping the available toughness data back to a 
small scale yielding (SSY) Weibull stress space where a takes on the theoretical values of 2 
or 4 for Weibull distributions expressed in terms of J,  or KJ,, respectively. In the SSY 
Weibull stress space, the scheme requires iteraitions with the Weibull modulus m to deter- 
mine a unique value of p and thereby a unique m-value. The calibration process employs 
large scale yielding (LSY) toughness data from two sample populations that represent dis- 
tinctly different levels of crack tip constraint. Tlhe procedure then seeks the unique m-value 
that, upon mapping the two LSY sample populations back to the corresponding SSY 
Weibull stress space, results in constraint-corrected toughness distributions that have the 
same statistical properties, specifically the s m e ,  SSY Weibull distributions as described by 
the (a$) parameters. 
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In addition to elastic-plastic analyses of the LSY specimens, the G-R-D calibration 
scheme also requires the results of a finite element analysis of a stationary crack under 
small scale yielding conditions. The plane-strain, modified boundary layer (MBL) model 
[8,32] provides asymptotic crack-tip stress fields which have the general form 

where K is the stress intensity factor. The special case of T = 0 corresponds to the small 
scale yielding limit. An MBL finite-element model (see Fig. 34) was obtained from the 
authors of Ref. (31) and converted into an ABAQUS model with the same material prop- 
erty data used in the analyses of the Plate 14 cruciform specimens at -5 “C. Small scale 
yielding solutions, corresponding to an applied Mode I loading of the finite-root-tip crack, 
can be obtained by imposing the displacements 

along the outer circular boundary (Y = R) of the model, where the stress intensity factor K 
is related to the J-integral by the plane-strain formula 

The MBL model shown in Fig. 34 has one layer of 2,671 3-D elements (20-node 
isoparametric) with plane-strain constraints (uz = 0 imposed on all 5708 nodes). The 
Weibull stress for the plane-strain case is 

where B is the finite thickness of the model and r* is the radius of the fracture process 
zone. To be consistent with the Weibull stresses calculated for the cruciform specimen, the 
reference volume, V,, that is input to the WSTRESS code for the MBL model should 

maintain the same B*/V,* ratio implied by the geometry of the cruciform specimen. The 
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MBL model had a thickness B = 0.0254 m., and the thickness and reference volume for 

the 1/4 model of the cruciform are B * = 55.88 rnm and V,* = 1 .O mm3, respectively; 

therefore, the reference volume input to the WSTRESS code for the MBL model calcula- 
tions was 

V, = B[ c) = 0.0254( ") = O.0004M55 mm3 . 
B* 55.88 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Step 5.  

The G-R-D calibration scheme proceeds by the following steps: 

Test two sets of specimens with different levels of crack tip constraint. In the 
terrninology of Ref. [3 11, the biaxial (1: 1) data are designated as Configura- 
tion A (high constraint), and the uniaxial (0: 1) data are designated as Configu- 
ration B (low constraint). 

Perform detailed 3-D finite element analyses for Configurations A and B and for 
a plane-strain SSY model with a reference thickness adjusted to be consistent 
with the specimens in Configurations A or B. The nature of this adjustment is 
described above. 

Assume a trial rn-value, and calculale the 0, vs J histories for Configurations A 
and B and the SSY model. Constraint-correct the Configuration A and B tough- 
ness data by mapping the data poirits on the CY,,, vs J curves back to the SSY 
curve as shown in Figs. 35(a) and (b) such that JC+) + J,n-ssu. 

Estimate 
by the maximum likelihood point estimate relation 

and p,,:l) in SSY Weibull stress space for the two configurations 

and calculate a relative error R(rn) by 

(P,,,, - P,,:,,) 
P,1:1) 

R(m) == 

Repeat Steps 3 and 4 for a range of trial rn-values and determine the rn-value 
that produces an acceptably small relative error R(rn). 
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The scaling stress, oU, can be calculated from the converged SSY-( ow-SSY vs J )  curve by 

6, = o w - S S Y  at JSSY = P(0,) = PW) * (23) 

For the 3-parameter Weibull distribution, the third parameter, ( T ~ - ~ ~  , is calculated from the 
intercept of the ow-SSY vs J curve at J = 2.05 kUm2 (KJ = 20 MPa- 6). 

The G-R-D calibration scheme was carried out using the toughness data presented 
in Table 3 for the uniaxial (0:l) and biaxial (1:l) cruciform tests. As noted in Table 3, 
two of the uniaxial (0:l) specimens experienced precleavage ductile tearing. These tests 
produced the two highest toughness data values in the sample population. However, finite 
element ABAQUS solutions were unobtainable for these two high ductile tearing data 
points. At these high loading levels, the nonlinear elastic-plastic problem in ABAQUS 
failed to converge. As a result, two approximations were tested to assess the sensitivity of 
the calibration scheme to uncertainties in the Weibull stresses calculated for these two 
uniaxial (0:l) points. For the first approximation, a form of censoring was applied to the 
uniaxial (0: 1) sample population by estimating the Weibull stresses for the two highest data 
points (specimens P9A and P2B.2) by a horizontal line extended to the right of the highest 
calculated Weibull stress (specimen P17A) as shown in Fig. 35(b). With this approxima- 
tion, the iterations were carried out over a range of m-values with a converged solution ob- 
tained at m = 8.45 as presented in Figs. 35(c) and (d). The second approximation in- 
volved a linear extrapolation of the uniaxial (0:l) (T, vs J curve, using the final two cal- 
culated (Jc,ow) data points (specimens P19B and P17A) to estimate the slope of the linear 
extrapolation, as shown in Fig. 36(b). The G-R-D iterations resulted in a converged solu- 
tion of m = 7.45 as depicted in Figs. 36(c) and (d). The biaxial (1:l) (T,,, vs J curves 
shown in Figs. 35(a) and 36(a) demonstrate that although the biaxial (1 : 1) loading state is 
considered a high-constraint condition relative to uniaxial (0: 1) loading, biaxial (1 : 1) 
loading of the cruciform specimen still results in a significant loss of constraint relative to 
the idealized high-constraint condition of the SSY MBL solution. As a result, the impor- 
tance of mapping both sets of toughness data back to a common SSY Weibull stress space 
should be emphasized. In Ref. (31), the option of replacing the SSY solution with a deep 
flaw, high-constraint model is discussed as a possible alternative calibration procedure. As 
applied to the cruciform data where both loading states involve shallow flaw geometries, 
however, this option did not prove to be feasible. 
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The m = 8.45 and m = 7.45 solutions for the cumulative probability of cleavage 
fracture as a function of the J-integral are presented for the two sample populations parti- 
tioned by loading state (uniaxial (0:l) in Figs. 37(a) and 38(a) and biaxial (1:l) in 
Figs. 37(b) and 38 (b) , respectively) and the combined populations expressed in terms of 
the SSY constraint-corrected toughness data (in Figs. 37(c) and 38(c) , respectively). Both 
the two- and three-parameter Weibull model results are plotted. The probability of cleav- 
age fracture for the experimental toughness dita is calculated from the rank ordering rela- 
tionship 

i - 0.3 pi) = -- 
Nexp i- 0.4 (24) 

where the experimental toughness data are ordered in ascending rank by 1 I i 5 Nexp. As 
shown in these figures, the three-parameter 'Weibull model discussed in Sect. 6.4.2 more 
closely fits the experimental data, relative to the two-parameter model, for all cases. 

Figure 39 presents a comparison of the probability density distributions of the par- 
titioned data sets (see Fig. 33) to the converged SSY Weibull stress space distribution cor- 
responding to an rn-value of 8.45. Scaling toughness models are shown in Fig. 40 for 
rn = 8.45 and 7.45. The biaxial (1: 1) and uniaxial (0: 1) toughness data are plotted along 
the ordinate and abscissa, respectively, in Figs. 40(b) and (d) within their partitioned 
probability density distributions. The curves in Fig. 40 demonstrate that the Weibull cor- 
relative approach produces a scaling model that captures the significant effect of biaxial 
loading on shallow flaw fracture toughness. 

7. Cleavage Initiation Sites 
Fractographic studies were conducted on a subset of the Plate 14 cruciform beam 

specimens listed in Table 2 to identify locations of cleavage initiation sites (CISs). Results 
from these measurements are depicted in a plot of ha vs test temperature [Fig 41(a)], 
where Aa is defined as the measured perpendicular distance from the CIS to the fatigue pre- 
crack front [Fig. 41(b)]. The CIS values for specimens tested at -30°C under three differ- 
ent biaxiality ratios are tightly clustered, while those data for specimens tested at higher 
temperatures exhibit substantially greater scatter. In Fig. 42, measured cleavage fracture 
toughness is plotted as a function of measured distance to the CIS for the same set of 
specimens. These data imply that increasing fracture toughness correlates with increasing 
distance of the CIS from the fatigue precrack front. Anderson et al. [29], in their discussion 
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of the micromechanics of cleavage fracture, observed that lower toughness is associated 
with cleavage triggering particles located near the crack tip, whereas substantially higher 
toughness is measured when the cleavage triggers are farther away. Similar trends were 
observed in measured CIS data obtained by Herrens et al. [30] from CT specimens of a 
pressure vessel steel. 

In Fig. 43, fracture toughness and CIS distribution are plotted vs normalized dis- 
tance Aa/(J/oo) to the CIS. The majority of data points are grouped in the interval 0.4 c 
Aa/(J/o,) < 1.2 [see Fig. 43(a)]. The latter observation is further emphasized in the plot 
of Fig. 43(b), which depicts the distribution of CIS vs normalized distance to the CIS. 
Also included as an inset in Fig. 43(b) is a plot of normalized hydrostatic stress vs nor- 
malized distance in front of the crack tip, with applied J a parameter, for the uniaxially 
loaded cruciform beam [taken from Fig. 18(b)]. In a previous section, peak values of the 
normalized hydrostatic stress were shown to be insensitive to biaxial loading ratio [see 
Fig. 19(b)]. The normalized distance to the peak CIS distribution is approximately the 
same as that to the interval of peak normalized hydrostatic stress shown in the inset of 
Fig. 43(b). Thus, for this limited data set, the CIS distribution falls predominately in a re- 
gion where normalized hydrostatic stress is not significantly influenced by biaxial loading 
ratio. 

The CIS distribution in Fig. 43 provides an interesting correlation with results of 
an unpublished study recently conducted at ORNL. In that study, a penny-shaped mi- 
crocrack ( ro = 10pm) embedded in a unit-cell model was used to estimate the recoverable 
elastic strain energy available to grow a microcrack in the cruciform specimen. Analysis re- 
sults indicated that, for a normalized distance ahead of the cruciform macrocrack of 0.7 
I r / ( J / o 0 )  I 1.4 and at a fixed biaxial J,  of 121.5 kJ/m2 (corresponding to specimen 
P15A in Table 2), biaxial loading produces a higher elastic strain energy release rate than 
the uniaxial loading state. Farther into the blunting region ( r / ( J / o , )  10.5) this biaxial ef- 
fect disappears. These preliminary results provide some indication that, at the mesoscale 
level, biaxial loading offers a more favorable stresdstrain state (relative to uniaxial loading) 
for continued growth of an initiated microcrack. 

The three-parameter Weibull methodology represented by the results in Figs. 35-40 
provides a correlative model of biaxial loading effects on cleavage fracture toughness for 
the Plate 14 material (at -5°C). Further study is required to reconcile the cruciform CIS dis- 
tribution in Fig. 43 with this Weibull model based on hydrostatic stress. Conclusions in- 
ferred from the data set given in Figs. 41-43 may be premature, since a limited number of 
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the Plate 14 cruciform specimens listed in Tiible 2 have been subjected to CIS measure- 
ments. Currently, fractographic studies are under way at O W  to compile a CIS data base 
that includes all of the specimens in Table 2. 'The various elements of the current CIS data 
base summarized in Figs. 41-43 will be updated as soon as these additional measurements 
become available. 

8. Conclusions 
For Plate 14 cruciform beam tests performed at -5 "C, the test data demonstrate 

a significant effect of biaxial loading on shalllow-flaw fracture toughness. The mean value 
of the biaxial (1 : 1) toughness resulted in approximately a 42 percent decrease from the 
mean uniaxial toughness (KJc = 0.58). Essentially no biaxial loading effect on 
fracture toughness was observed in tests perfcirmed at -30°C. 

The e,-stress parameter, based on hydrostatic stress, implies that a higher level 
of crack-tip constraint is maintained under increasing load as the biaxiality ratio is varied 
from uniaxial (0: 1) to equibiaxial(1: 1) condilions. 

The D-A toughness scaling model was shown to provide an approximate corre- 
lation of the effects of biaxial loading on cleavage fracture toughness for a limited data set, 
based on a critical contour c r H /  6, = 2.35. 

A three-parameter Weibull model based on the hydrostatic stress criterion is 
shown to capture the experimentally observed biaxial effect by providing a scaling mecha- 
nism between uniaxial and biaxial loading states. Other fracture criteria employed in the 
Weibull model, including that of maximum principal stress, indicated essentially no effect 
of biaxial loading on fracture toughness. 

/ KJc 

Experimental and analytical results presented herein provide the motivation to 
reconsider micromechanical models of cleavage fracture initiation and to develop a metal- 
lurgically-based argument for 0, as a driver of cleavage fracture under multiaxial loading 
conditions. 

Tests scheduled in 1998 of large-scale Plate 14 cruciform beam specimens, fab- 
ricated with a 140 mrn test section and crack depth ratio of a/W = 0.1, will provide addi- 
tional fracture toughness data for calibration of parameters in the biaxial Weibull model cur- 
rently under development within the HSST Program. 

0 
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(a) Chemical composition of ASTM A 533 B 

Carbon, max 
Manganese: 

Heat Analysis 
Product Analysis 

Phosphorous, max 
Sulfur, max 
Silicon: 

Heat Analysis 
Product Analysis 

Heat Analysis 
Product Analysis 

Molybdenum: 

Composition (%) 
Requirement HSST Plate 14 

Nickel: 

-30 "C (-22 "F) 
182,720 (26,500) 

0.25 
534 (77.5) 
669 (97.0) 
848 (123) 

Heat Analysis 
Product Analysis 

(b) Tensile Properties 
-5 "C (23 O F )  

182,720 (26,500) 
0.25 

511 (74.2) 
653 (94.7) 
828 (120.2) 

Young's Modulus m a  (ksi)] 
Poisson's Ratio 
Proportional Limit [ m a  (ksi)] 
0.2% offset yield strength [MPa(ksi)] 
Ultimate Strength [MPa (ksi)] 

0.25 

1.15-1 S O  
1.07-1.62 

0.035 
0.035 

0.15-0.40 
0.13-0.45 

0.45-0.60 
0.41-0.64 

0.40-0.70 

0.22 

NA 
1.44 

0.005 
0.003 

NA 
0.20 

NA 
0.36 

NA 
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Table 2.  Summary of Heat-Treated Plate 14 Cruciform Specimen Test Results 

Spec. Test Biaxiality Failure Failure Failure Kj  from KI from 

"C (OF) m mm mm m a d m  m a d m  
(kips) (in.) (in.) (ksidin) (ksidin) 

Temp. Ratio b a d  LLD CMOD P-LLD P-CMOD 

P2A' 

P12B 

P3A 

P14B 

WB 

P13B 

P4A 

P9A 

P2B. 1 

P2B.2 

P3B 

P12A 

P15A 

P6B 

P4B 

P6A 

PlOA 

P7A 

38 (100) 

-30 (-22) 

-31 (-24) 

-31 (-24) 

-30 (-22) 

-28 (-18) 

-29 (-21) 

-3 (26) 

-4 (24) 

-3 (26) 

-4 (24) 

-6 (21) 

-4 (25) 

-4 (24) 

6 (42) 

4 (40) 

8 (46) 

15 (60) 

0: 1 

0: 1 

0: 1 

0.6: 1 

0.6: 1 

1:l 

1:l 

0: 1 

0: 1 

0: 1 

0.6: 1 

0.6: 1 

1:l 

1:l 

1:l 

0.6: 1 

0.6: 1 

1:l 

1785.2 
(401.3) 
638.4 

(143.5) 
736.1 

(165.5) 
508.2 
(134.6) 
965.8 

(217.1) 
840.4 

(1 88.9) 
1026.7 
(230.8) 
1529.0 
(343.7) 
1351.0 
(303.7) 
1504.4 
(338.2) 
1449.6 
(325.9) 
1349.4 
(303.4) 
1072.6 
(241.1) 
1096.0 
(246.4) 
11 18.5 
(25 1.5) 
1255.1' 
(282.2) 
1570.8' 
(353.2) 
1303.7* 

29.561 
( 1.1638) 

1.938 
(.0763) 
2.276 
(.0896) 
1 SO4 

(.0592) 
2.802 

(.1103) 
2.398 
(.0944) 
2.936 

(.1156) 
14.575 
(.5738) 
7.330 

(.2886) 
13.774 
(S423) 
8.440 

(.3323) 
5.923 

(.2332) 
3.424 
(. 1348) 
3.637 
(.1432) 
4.65 1 
(.1831) 
5.210 
(.2051) 
10.714 
(.42 1 8) 
6.012 

2.0269 
(.0798) 
.1372 

(.0054) 
.1753 

(.0069) 
.1118 

( . O O w  
.2362 

(.0093) 
.2032 

(.OO80) 
.2946 

(.0116) 
1.6916 

(.0666) 
.7036 

(.0277) 
1.4173 

(.0558) 
.7645 

(.0301) 
.5715 

(.0225) 
.3150 

(.0124) 
.3505 

(.0138) 
.3430 

(.0132) 
.3384 

(.0161) 
0.9042 
(.0356) 
.6121 

NA' 

76.3 
(69.5) 
97.2 

(88.4) 
99.6 

(90.7) 
129.2 

(1 17.6) 
97.9 

(89.1) 
139.7 

(127.1) 
362.7 

(330.1) 
245.3 

(223.2) 
351.3 

(319.7) 
273.0 

(248.5) 
214.0 

(194.8) 
155.9 

(14 1.9) 
166.9 

(15 1.9) 
183.2 

(1 66.7) 
204.3 
(186.0) 
308.1 

(280.4) 
248.3 

NA' 

88.0 
(80.1) 
103.0 

70.3 
(64.0) 
136.3 

(124.0) 
112.1 

(102.0) 
141.2 

(128.5) 
399.8 

(363.8) 
261.5 

(238.0) 
379.7 

269.8 
(245.5) 
225.8 

(225.8) 
154.6 

(140.7) 
162.3 

(147.8) 
167.5 

(152.5) 
195.2 

(177.6) 
297.4 

(270.6) 
229.3 

(93.7) 

(345.5) 

(293.1) (.2367) (.0241) (226.0) (208.7) 
'Test discontinued, no cleavage. 
*Failure load based on equivalent 254 mm (10 in) beam arm length. 
3Reduced thickness specimens. 
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Table 2. Summary of Heat-Treated Plate 14 Cruciform Specimen Test Results 
(continued) 

Spec. Test Biaxiality Failure Failure Failure K,  from KJ from 

“C (“F) kN mm mm MPadm m a d m  
(kips) (in.) (in.) (hidin) (hidin) 

Temp. Ratio Load LLD CMOD P-LLD P-CMOD 

P9B 

P11B 

PlOB 

P15B 

P13A 

P17B 

P5A 

P5B 

P18A3 

P 1 7A3 

P19B3 

15 (60) 

17 (62) 

-6 (22) 

-4 (25) 

-6 (21) 

-5 (24) 

-3 (26) 

-4 (26) 

-3 (27) 

-2 (28) 

-2 (28) 

0.6: 1 

1:l 

1:l 

0.6: 1 

0: 1 

1:l 

1:l 

1:l 

0: 1 

0: 1 

0: 1 

1500.9’ 
(337.4) 
1456S2 
(327.5) 
1 246.22 
(280.2) 
1431.12 
(321.7) 
1035.72 
(232.8) 
829.0’ 
(186.4) 
1269.4’ 
(285.4) 
1469.9’ 
(330.5) 
1329.9* 
(299.0) 
1421.0’ 
(3 19.5) 
1342.2* 

9.766 
(.3 845) 
9.934 
(.3911) 
5.260 
(.207 1 ) 
7.537 
(.2967) 
5.251 
(.2067) 
4.170 
(.1642) 
5.479 
(.2 157) 
10.251 
(.4036) 
10.630 
(.4 185) 
13.904 

1 1.984 
(.5474) 

.8204 
(.0323) 
.lo90 

(.O429) 
.4801 

(.0189) 
S803 

(.0228) 
.39 10 

(.0154) 
0.2455 

0.4597 
(.0181) 
1.0719 
(.O422) 
0.8560 
(.0337) 
1.1684 

0.9982 

(.0097) 

(.0460) 

294.7 
(268.2) 
352.8 

(321.0) 
230.2 

(209.5) 
248.1 
(225.8) 
217.3 

(197.8) 
202.0 

(183.8) 
228.3 

(207.8) 
351.7 

(320.1) 
302.6 

(275.4) 
348.8 

(317.4) 
319.6 

281.9 
(256.5) 
325.5 

(296.2) 
204.6 

(186.2) 
232.4 
(21 1.5) 
184.2 

(167.6) 
129.5 

(117.8) 
210.0 
(191.1) 
316.1 

(287.7) 
280.5 

(255.3) 
321.7 

(292.8) 
302.3 

(301.7) (.47 18) (.0393) (290.9) (275.1) 

‘Test discontinued, no cleavage. 
2Failure load based on equivalent 254 mm (10 in) beam arm length. 
3Reduced thickness specimens. 
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Table 3. Cruciform Toughness Data from FEM Model and Experimental Data 

Test Biaxiality Failure 

"C kN 
Specimen Temp. Ratio' Load, P, 

P2B.2 DT' -3 0: 1 1.504.4 
P9A DT -3 0: 1 1 5 29 .O 
P13A2 -6 0: 1 1165.1 
P17A2*5 -2 0: 1 1421.0 
P1 8A2" -3 0: 1 1329.9 
P 1 9BZr5 -2 0: 1 1342.2 

P3B -4 0.6: 1 1 mG7 
P12A -6 0.6:l 1349.4 
P15B2 -4 0.6: 1 1 43 1 . I  
P15A -4 1:l 1 072.6 
P6B -4 1:l 1096.0 

P1 7B2 -5 1:l 932.6 
P5A2 -3 1:l 1 :!69.4 
P5B2 -4 1:l 1469.9 

Toughness, J ,  
FEM3 CMOD4 
kJIm2 kJIm2 
433.8 638.65 
469.8 747.84 
177.5 156.71 
539.9 530.94 
370.9 403.72 
388.6 468.84 
272.7 363.53 
212.2 256.57 
260.3 277.04 
118.5 121 -50 
125.2 135.22 
80.5 85.98 

208.9 226.30 
404.2 512.64 

P10B2 -6 1:l 1:!46.2 193.9 214.72 
'Biaxiality ratio is the ratio of the transverse to longitudinal beam arm loads: 
Failure load based on eauivalent 254 mm (10 in.) beam arm lenHh. 2 

Toughness, KJ 
FEM3 CMOD4 

M P d m  MPadm 
290.8 352.8 
302.6 381.8 

174.8 186.0 
324.4 321.7 
268.9 280.5 
275.2 302.3 
230.5 266.2 
203.4 223.6 
225.2 232.4 
152.0 153.9 
156.2 162.3 
125.2 129.4 
201.8 210.0 
280.7 316.1 
194.4 204.6 

'TJPL 

3Calculated using finite-ilement sharp-crack model of crucifom"specimen with 254 mm ( 10 in.) 
beam arms 
4Experimental values calculated from CMOD data 
5Reduced specimen test section a/W=O.l; a = 9.65 mm (0.38 in.); W = 96.0 mm (3.78 in.) 
6DT indicates precleavage ductile tearing 

Table 4. Parameter Estimates for the Weibull Modulus using 
Statistical Inference and Two-Parameter Model 

WeibullParameters 
Case Criterion mCOrr OU WPa) 

1 Maximum Principal Stress (MP,S) 
2 Principal of Independent Action IPIA) 
3 Noncoplanar Energy Release (NCER) 
4 Coplanar Energy Release (CER) 
5 Normal Stress Averaging 
6 Hydrostatic Stress (HYDRO) 

12.65 11.48 2851 
12.31 11.18 2903 
12.12 11.09 2546 
12.04 10.93 2521 
11.89 10.80 2500 
10.27 9.33 2304 
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Table 5. Comparison of Weibull Parameter Estimates Between Three Sample 
Population Sizes using Statistical Inference and a Two-Parameter Model 

Case 
la 
lb 
IC 
2a 
2b 
2c 
3a 
3b 
3c 
4a 
4b 
4c 
5a 
5b 
5c 
6a 
6b 
6c 

Experimental Weibull Parameters 
Equivalent Stress Criterion NexplLoading mcorr C T ~ ,  (MPa) 

Maximum Rincipal Stress ( M P S )  6/(1:1) 15.41 2321 
6/(0: 1) 10.21 3216 

1 5/( mix) 11.48 2851 
Principal of Independent Action (PIA) 6/(1:1) 15.36 2326 

6/(0: 1) 10.17 3224 
1 5/( mix) 11.18 2903 

Noncoplanar Energy Release Rate (NCER) 6/(1:1) 15.25 2110 
6/(0: 1) 9.90 2848 

15/(mix) 11.09 2546 
Coplanar Energy Release Rate (CER) 6/( 1: 1) 15.08 2090 I 6/(0:1) 1 9.75 2821 

IS/(&) 10.93 2521 
Normal Stress Averaging (NSAI 6/(1:1) 14.94 2074 

1 _ I  

6/(0: 1 j 9.63 2799 
15/(mix) 10.80 2500 

Hydrostatic Stress (HYDRO) 6/(1:1) 12.98 1888 
6/(0: 1) 8.29 2646 

9.33 2304 

Table 6. Comparison of Weibull Parameter Estimates Between the Two- and 
Three-Parameter Models using Statistical Inference with the Hydrostatic Stress Criterion 

Loading Data mcorr (TU ow-min 
Nexp ( M W  (MPa) 

(1:l) 6 12.98 1888 0 
(1:l) 6 10.17 2126 75 1 
(0: 1) 6 8.29 2646 0 
(0: 1) 6 7.60 2825 700 
(0: 1) 15 9.33 2304 0 
(0: 1) 15 8.42 2427 692 
(1:l) 15 8.42 2427 712 
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Table 7. Comparison of Weibull Parameter 13stimates Between the Two- and Three-Parameter 
Models using Statistical Inference with the Hydrostatic Stress Criterion and a 

Stochastically Simulated Sample Population Size of 10,OOO 

m GU ow-min 
(MP4 ( M W  

Y a P Loading Data 
N a p  (kJ/m2) (kJ/m2) 

(1:l) 6 2.04 225 0 18.08 1757 0 
(1:l) 6 2.04 225 2.05 13.90 1839 754 
(i:ij  6 2.0 225 2.05 13.69 1848 752 
(0: 1) 6 2.97 5 50 0 11.14 2296 0 
(0: 1 j 6 2.97 550 2.05 10.16 2309 70 1 
(0: 1) 6 2.0 550 2.05 9.75 2260 697 
(0: 1) 15 1.86 388 0 10.75 2145 0 
(0: 1) 15 1.86 388 2.05 9.64 2199 696 
(0: 1) 15 2.0 388 2.05 9.77 2198 697 
(1:l) 15 1.86 388 0 10.75 2145 0 
(1:l) 15 1.86 388 2.05 9.64 2199 723 

15 2.0 388 2.05 9.77 2198 724 
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-Shallow Flaw 

05/27/98.vul a ptw 

Fig. 1 (a) PTS loading produces nonlinear biaxial stress in an W V  wall with one of the 
principal stresses aligned parallel with the tip of the constant-depth shallow 
surface flaw; (b) &point bending in the cruciform specimen produces a linear 
approximation of the PTS biaxial stress field. 
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Control Slots 

r Beam Arrn - 

=,,/ (all dimensions in mm) 

Fig. 2 Geometry of the cruciform shallow-flaw biaxial fracture toughness test 
specimen: (a) test section thickness - 104 mm; (b) test section thickness - 
96 mm. 
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Fig. 3 Comparison of Charpy curves fi-om heat-treated Plate 14 material with that from 
irradiated 73W material. 
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Fig. 4 Stress-strain behavior for plate 14 material measured at -30°C and -5°C. 
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Comparison of CMOD responses for cruciform specimens tested at -30 "C 
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Comparison of CMOD responses for cruciform specimens at nominal test 
temperature of -5 "C (23 O F )  for bimial load ratios of (0: l), (0.6: l), and (1: 1). 
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Fig. 7 

Fig. 8 
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Comparison of predicted and measured CMOD for biaxially (1: 1) loaded 
cruciform test at -30 "C (-22 OF). 
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Comparison of predicted and measured CMOD for uniaxially (0: 1) loaded 
cruciform test at -5°C (23°F). 
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Fig. 9 Data determined for heat-treated Plate 14 tested at -30" C (-22 OF) indicating no 
effect of biaxial load ratio on fracture toughness at the lower-shelf temperature. 
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The effect of biaxial load ratio on fracture toughness determined for heat- 
treated Plate 14 tested at -5 "C (23 OF). 
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Fig. 1 1 A summary of all heat-treated Plate 14 cruciform data presented as a function of 
normalized (T-7'') test temperature. Trend curves fitted to data provide a visual 
interpretation of relationship between biaxial loading and temperature. 
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Longitudinal 
Beam Arm 

Y 
(all dimensions in mm) 

Transverse 
Beam Arm 

Fig. 12 Finite element model of original cruciform beam specimen: (a) detailed view of 
specimen containing shallow flaw (c;r/W=O.lO, a = 10 mm, W =  102 m); 
(b) complete mesh layout. 

44 



Longitudinal 
Beam Arm (dimensions in mm) 

Transverse 
Beam Arm 

Fig. 13 Finite element model of cruciform beam specimen with reduced test section 
thickness: (a) detailed view of specimen containing shallow flaw (a/w =O. 10, 
a = 9.65 mm, W = 96 mm); (b) complete mesh layout. 
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V 

I symmetry plane 

Fig. 14 Detail view of the finite-root-radius crack tip, with root-tip radius 
po = 0.0254 mm (0.001 in.). 
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Fig. 15 Comparison of finite element model results for original and reduced crucifom 
test section: PL vs J-integral for uniaxial (0: 1) loading. 
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Fig. 16 Comparison of finite element model results for original and reduced cruciform 
test section: PL versus CMOD for unUaxial(0: 1) loading. 
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Fig. 17 Profiles of (a) effective stress, oef, and (b) total effective plastic strain, cP,  for 
uniaxial (0: 1) and biaxial (x: 1) loading cases at J = 13 1 kJ/m2 (0.75 in.- 
kip/in2). 
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0.5 1 
(0:l) i 

Fig. 18 Comparison of uniaxial (0: 1) to S S Y  solution profiles of (a) opening mode , 
ozz, and (b) hydrostatic, o, , stresses near the crack tip for J = (66, 147, 272, 
470 kJ/m2). 
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Fig. 19 Sensitivity to biaxiality for Q-stress based on (a) opening mode , on, and 

(b) hydrostatic, oH , stress at J = 131 kJ/m2. 
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Fig. 20 Evolution of @stress at r/(J/oo) = 2 based on (a) opening mode , 0, , and 
(b) hydrostatic, oH , stress. 
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Fig. 21 Ratios of J0,.] / Jsv for equivalent areas contained within 0, / o,, contours. 
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Fig. 22 Areas with equivalent hydrostatic stress: JsV versus J,] for 6, / 6; > 2.35. 
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Fig. 23 Equal-stressed volumes with initiation loads for uniaxial (0: 1) and biaxial (x: 1) 

cruciform test specimens: (a) J vs vcilume for 6, / 6, 2 2.35, (b) J1:] vs Jell 
for o, / o,, 2 2.35, (c )  J vs volume for 0, / B, 2 2.8, and (d) J,, vs Jotl for 
B, / cr, 2 2.8 ,  
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Fig. 24 Contours of (a) maximum principal stress: 0, / a, = 2.8, and (b) hydrostatic 
stress: CT, / CT, = 2.35, near the crack tip. 
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Fig. 26 Sensitivity of .I,, / J,] ratios with equivalent areas to selection of critical 
G, / G, for (a) (0.6:l) and (b) (1:l) loading cases. 
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Fig. 28 Fracture toughness data vs load for uniaxial (0: 1) loading of cruciform: Plate 14 
material tested at -5°C. 
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Fig. 29 Fracture toughness data vs load for biaxial( 1: 1) loading of cruciform: Plate 14 
material tested at -5°C. 
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Weibull probability plot for six fracture criteria with normalized Weibull stress 
using two-parameter model. Parameter estimation by statistical inference. 
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Fig. 3 1 Weibull stress vs J-integral for six fracture criteria using two-parameter model. 
Parameter estimation by statistical inference. 
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Fig. 32 
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Normalized Weibull stress versus J-integral comparing uniaxia (0: 1) to 
biaxial (1: 1) loading cases for: (a) maximum principal stress and (b) hydrostatic 
stress criteria using two-parameter model. 

61 



Fig. 33 
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Monte-Carlo generated Weibull probability density distributions for three sample 
populations of cruciform fracture toiighness data (Ngen = 10,000). Parameter 
estimation by statistical inference. 
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Fig. 34 Small-scale-yielding (SSY) plane-strain modified boundary layer (MBL) finite- 
element model: (a) global mesh layout with 16 fans, 2671 elements, and 
5708 nodes; (b) close up of finite root tip with po = 2.54 pm; po / R = lo-’. 



100 200 300 400 500 600 700 800 
J (kJJm2) OMWB8.Klptw 

95 

90 

n 

NE 85 
\ 
7 

- -  80: 

7 -  .. 
E75 a :  

- 

7 0 -  

65 

I . . , l . . . . , . . . , , , , , , , . . , , , . , . , I . . I .  , , , ,  0.4 r , . . . I , . . . I . . . , , . . . , I . . . . I . . , . , . . . . , . , . .  

0 -  

0.3 - 
- - 

(0:l):' m=8.45 - 
p=73.m w/m' 

(1:l)  

, - 0.2 - E -  - z :  , - 

d' 
0.1 - - 

*..* ' - _  , '"* o - - - - - - - - -  --. Kr - -  e--- 
- 

_ _ - - -  .a .. ' H<m=8.45 

a //b'.i 
- - -  - _  . .--- - 

- -0' 
o------- 

" " ' " " ' " " ' " " ' " " 1 " " " " " " " 1  - 0 . 1 ' " ' ~ " " " ~ ~ ' ' ~ ~ ~ " ' ~ ~ ' ~ ' ~ ~ ' ~ ' ~ ~ ' ~ " ' ~  

64 



- 

0 100 200 300 400 500 600 700 800 
W12/98.K5 ptw (a) J (kJ/m2) 06112&B.K4 ptw J (kJ/m2) 

0.5~. - ' I * 8 ' I - 8 * I . .  ' ,  I r .  ' .  I ' ,  ' I 1 1 0 - . .  , . I . ,  , . , . ' ' . I -  - . ' I -  8 * ' I " . .  I " .  . _  
(0:1),? I ? 

, I 

0.4 - 
105: 

n :  

\ - 0.3- 
I - 

NE 100: 2 I 

& : rn=7.45; € 1  * e  

&-- 85. 

- , - 
I 7 l  95- 

90 fi =75.9 kd/rn2 ; iE 02: 6 - 
h 

7 -  

I 

4 0': m=7.45 0' 
- 

o - - - - - - - - - - -  \ .. *" 
--e 

0' 
(1: l )  1 

\ ,,d#**.l 

,. . 
x :  

80 : 

75 1 
0-  -:.e: _ _ _ _  
0*- *---*---- -0 

706' '9.5 -0&' 
, , , ; . , , '7'5' ' , c , , '815' c * A * , ' ' ,615' " ' i '  ' ''715 ' ' ' i  I '  ' E's' ' '  ' h '  " 

9 5  
08112198 K2 ptw Weibull Modulus, m 0811898 K3 ptw 

0611 5198.2 ptw 
(d) Weibull Modulus, m (c> 

Fig. 36 Weibull parameter estimation by mapping to SSY Weibull stress space: (a) (1:l) 
and (b) (0: 1) mappings for m = 7.45; (c) estimated P(x..l) values as a function 
of trial m; and (d) relative error R(m) as a function of trial m. Linear 
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Fig. 37 Weibull parameter estimation by mapping to SSY Weibull stress space: (a) (0: 1) 
and (b) (1: 1) failure probabilities for m = 8.45; (c) failure probabilites with 
toughness data mapped to SSY Weibull stress space. Censoring applied to 
uniaxial (0: 1) toughness data. 
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Fig. 38 Weibull parameter estimation by mapping to SSY Weibull stress space: (a) (0: 1) 
and (b) (1: 1) failure probabilities for m = 7.45; (c) failure probabilites with 
toughness data mapped to SSY Weibull stress space. Linear extrapolation 
applied to uniaxial (0: 1) toughness data. 
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for m = 8.45. 
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Fig. 41 Fractographic data describing measureid distance to CIS for Plate 14 cruciform 
beam specimens: (a) measured distance, Aa, to CIS versus test temperature; and 
(b) definition of measured distance, h z ,  to CIS. 
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Fig. 42 Measured cleavage fracture toughness versus measured distance to CIS for Plate 
14 cruciform beam specimens. 
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Appendix A: Computational Aspects of Dodds-Anderson Cleavage 
Toughness Scaling Model 

The Dodds-Anderson cleavage toughness scaling model requires the calculation of 
selected material areas or volumes within a predefined fixed fracture process zone ahead of 
the crack tip. These aredvolume calculations are carried out computationally at the Gauss- 
point level with stress and strain data extracted from ABAQUS results files (*.fil) as a post- 
processing operation. For each loading increment being tested, the post-processing code 
loops over all the elements in the model and samples the Gauss points within each finite 
element. M e r  determining that the Gauss point is located within the process zone, the 
stress andor strain data from the ABAQUS run are compared to the selection criteria. If the 
stress/strain data satisfy the criteria, then the aredvolume associated with the Gauss point 
being sampled is calculated from the determinant of the transformation Jacobian (det J) and 
added to the aredvolume sum. Typical test criteria involve the level of Illilximum principal 
stress, hydrostatic stress, and/or equivalent plastic strain. 

A.l Calculation of Equal-Stressed Areas in 2-D Plane-Strain Analyses 
For 2-dimensional (2-D) plane-strain problems, the finite element used to construct 

the model is an 8-node isoparametric element. The node and Gauss numbering conventions 
applied by the ABAQUS code are shown in Fig. Al. The area of the element, A"', is 
calculated in parametric space by the relation 

+I +I 
A'"= jdQ=j  detJ(c,q)ce)dqdc , 

Q'C' -1 -1 

where the transformation Jacobian, J, defined by 

maps the physical data from %* Euclidean space to parametric space. This mapping is one- 
to-one and onto its range if the Jacobian is nonsingular, Le., the determinant of J is not 
equal to zero. In Eq. (AZ), { N i }  is a column vector of polynomial interpolation functions; 
{xi} and { y , }  are column vectors containing the x and y locations of the nodes; and (6,q) 
are coordinates in parametric space. The determinant of J is easily determined by 
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For an 8-node incomplete quadratic finite-elemcnt, the interpolation functions { N }  are 

9 

, 

and their derivatives with respect to the parametric coordinates are 

In Eqs. (A4) and (A5), the ABAQUS node numbering convention of Fig. A1 has been 
followed. As evident by the definitions of {[Ni>."wge, anddiN'xq , the interpolation 
functions and their derivatives are functions of the parametric coordinates (5,q). Due to 
their complexity, however, the area integration of Eq. (Al) is carried out by numerical 
quadrature, typically Gaussian integration. Equaltion (A 1) is approximated by 

n n  

A(") = y,y, w, w p  det J ( 6  q,q , 
p=l q = l  

where n represents the order of the quadrature rule, wq and w, are the Gauss weights, and 
6 d P )  are the Gauss sampling points. In ABAQUS, a reduced integration rule of (2x2) 
is recommended as optimal for solution stability where the Gauss weights are w I  = w 2  = 1 
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and 6 = q = -y' 6 = q = +yo. At each Gauss point (6 q, 11 p ) ,  therefore, a 

subelement area can be calculated by 
3 '  

The position of the Gauss point (6 q,q p )  relative to the global coordinate system can be 
calculated by taking the inner products of the interpolation functions with the nodal (x,y) 
coordinates: 

The Gauss-point position is then tested to determine if it is located within the process zone. 
The stress/strain data at the Gauss point (t ,,q p )  are then checked to see if they meet the 
criteria for the Dodds-Anderson analysis. Upon passing these tests, the subarea 
6 A ( t  ,,qpYe) is calculated and added to the running total of the critical area. 

A.2 Calculation of Equal-Stressed Volumes in 3-D Analyses 
Extension of the Dodds-Anderson toughness scaling model to three dimensions 

follows easily upon definition of a suitable 3-D finite element. The 3-D transformation 
Jacobian is defined as 

with its determinant equal to 

det = '1 1 ( '22 '33 - '32 '23) - "12 ( J21 J33 - J31 J23) + J13 ( J21 J32 - J3 1 J22 ) . (A' O )  

The 3-D element employed is the 20-node hexahedron (see Fig. A2) with its incomplete 
quadratic interpolation functions and their corresponding derivatives presented in 
Eqs. (Al l )  and (A12): 
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Extending Eq. (Al) to three dimensions, the volume of the element is 

Sl +1 Cl 

which can be approximated by 

m=l p=l q=l 

where a reduced (2x2~2) quadrature rule is recommended for solution convergence and 
stability. A subvolume 6 V(c  ,, q p ,  4 ,) ( e )  can be calculated from 

(A15) 
( e )  

6 V(C p q p , c m )  =WqWpWmdetJ(Cq, llp,Cm>(e) 

The position of the Gauss point (eq, qp , Jm)  relative to the global coordinate system can be 
calculated by taking the inner products of the interpolation functions with the nodal (x, y,z) 
coordinates: 

The Gauss-point position (e,, q, ,cm) is then tested to determine if it is located within the 
process zone. The stress/strain data at the Gauss point are then checked to see if they meet 
the criteria for the Dodds-Anderson analysis. Upon passing these tests, the subvolume 
6 V( 5 ,, q p, 6 ye’ is calculated and added to the running total of the critical volume. An 
effective cross-sectional area results by dividing the critical volume by the thickness of the 
process zone. 
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5 

Fig. A 1. Ordering of node numbers and Gauss points for an 8-node isoparametric 
quadrilateral finite-element. 

2 

Fig. A2. Node number ordering for a 20-node isoparametric hexahedral finite element. 
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Appendix B: Theoretical Formulation of the Weibull Stress 

This appendix presents a formal discussion of the assumptions that are applied in 
the development of the Weibull stress based on the treatment given in Ref. B 1. See 
Table B 1 for a summary of the nomenclature used in this appendix. 

Propositions. Definitions. and AssumDtions 

(Bl) Let the fracture process zone SZ (see Fig. B.l) be defined as the volume of 
material ahead of the macrocrack tip contained within a maximum principal stress 
contour (isosurface in 3D) set equal to some arbitrarily defined cutoff point 
o3 = ho,, typically A = 2.  The location and size of this fracture process zone 
changes with loading state. The process zone is assumed to consist of the union of 
N nonoverlapping unit volumes ~ ( 1 )  , i.e., 

N 

Q=UV(’)  where V ( i ) n V ( k )  =0 V j # k  (B1) 
J= 1 

(B2) For the unit volume V t n ,  the state of stress is defined by the principal stresses 
(o,, o2 ,q) which are assumed uniform (in magnitude and direction) within the 
volume. In the presence of steep stress gradients, this assumption may be 
somewhat weak, since Vtn is finite. 

(B3) Each of the unit volumes Vcn is assumed to consist of the union of n 
nonoverlapping elemental volumes SV, such that 

(B4) Failures occurring in these elemental volumes Sq are assumed to be statistically 
independent events. The strength of this assumption has also been questioned in the 
literature. 

(B5) The probability of failure for the elemental volume 65 is assumed proportional to 
its volume such that 

033) 
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m 

where the proportionality constant Jgl(a)du is the average number of microflaws 

with a > a, per unit volume; g(a)da is the number density of microflaws with size 

a, 

a <a* <a  + da ; and a, is a critical microflaw size. It follows that the probability 

of no failure is 

From a Taylor series expansion of the exponential function, it can be shown that 
e-’ = 1 - x for small x;  therefore, Eq. 1@4) becomes 

(B6) Weakest Link Assumption No. I :  Let the failure of unit volume Vcn consist 
of a chain of statistically independent events, namely, the failure of the elemental 
volumes SK, where the failure of any elemental volume produces a failure of the 
whole chain; therefore, 

Equation (B6) relies on the assumption of statistical independence of 8pi 
(Assumption B4) in order to apply the Product Law for Independent Events to 

n 

calculate the probability of the joint event n ( l - S @ , ) .  Noting that 
i=l 

e‘e” . . .exn = , Eq. (B6) becoimes 

(B 7) The number density distribution of the largest-sized microflaws is assumed to have 
the following asymptotic form [B2,B3] 

80 



where V, is a reference volume, and p and k ,  are the parameters of the 

distribution. Specifically, p is the dimensionless shape parameter, and k ,  is a 

scaling parameter with the dimensions of [L (B-1)P 1. 
Substituting Eq. (B8) into Eq. (B3) and carrying out the integration results in 

for the elemental probability of failure of the elemental volume. 

(BS) An explicit relationship between the critical flaw size and corresponding fracture 
stress is assumed by employing the linear elastic fracture mechanics relation 

K 2  1 K2 1 
a, =-- 2 * 0; =ya, 

O4 

where K is a stress intensity factor, oq is an equivalent tensile (opening mode) 
stress acting on the microcrack plane, and Y is a geometry factor. (N.B. This 
assumption is fundamental to the analysis in that it assumes that all microcracks are 
Griffith cracks which fail in a linear elastic manner even in the presence of 
significant plastic deformation and nonlinear material behavior.) 

Substituting Eq. (B 10) in Eq. (B9) and collecting terms, one obtains the following 
relation for the probability of failure of the elemental volume 

where 

or 
76 
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The relations in Eqs. (B 12) give us some insight into the nature of the eventual 
Weibull modulus rn and the scaling stress o,, . One observes that m is directly 
related to the shape parameter of the microflaw size distribution and should, 
therefore, only be a function of those variables that affect that distribution 
(Eq. (B8)), e.g., material conditions, temperature, loading history, and possibly 
loading rate (but not the quasi-static Ear-field state of stress). The scaling stress, 
0, , in addition to the microflaw distribution, is also related to the assumed mode of 
fracture at the microcrack level (linear elastic Mode I) and the assumed geometry of 
the microflaw (Y geometry factor). 

(B9) Returning to Eq. (B7), insert Eq. (B 11) and take the limit as n + to obtain 

The integration over the unit volume Vcn  is carried out by assuming the volume is a 
sphere such that 

K 4 3  
3 

det J = r2 sin<p;for V =  I. = -.nr 3 r = (2) 

where "det J " is the determinant of the Jacobian J (not the J-integral) of the 
coordinate transformation. This last step assumes that o4 # f(r) (see 
Assumption (B2)) but may be a function of o4 = f(cp,e), thus allowing the 
sensitivity of the orientation of the microcrack (since the integration is carried out 
over all possible solid angles within the sphere) and the directional dependence of 
the equivalent tensile stress acting on tlhe microcrack plane to be incorporated into 
the fmal implementation. We now have the following form for the failure 
probability of the unit volume Vtn 
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(B10) Weakest Link Assumption No. 2: To extend the analysis to the complete 
Eracture process zone Q, the Weakest Link Assumption is applied for the second 
time. Applying Assumption (B 1) and assuming that the failures of the unit volumes 
V(') are also statistically independent, then the probability of failure for the process 
zone is 

N 
P n  = 1 - n(1- Pa')6s2 

j=1 

Recognizing that the scaling stress ou is a constant, the Weibull stress, ow, as 
introduced by the Beremin group [B4], can now be defined by 

and the probability of failure for the process zone can be rewritten in the two- 
parameter form as 
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summary 

Equation (B 17) is the final form for a two-parameter Weibull distribution. Among 
the key assumptions in its formulation are: 

(B4& B 10) The elemental and unit volume failure events are assumed to be statistically 
independent. 

(B6 & BlO) The Weakest Link assumption is applied twice, at both the micro- and 
mesoscale levels. 

(B5) The probability of failure for the elemental volume is assumed proportional to its 
volume. 

(B7) A specific form (Eq. (B8)) is assumled for the number density distribution of 
microflaw sizes. The Weibull modulus rn is directly related to the shape parameter 
of this distribution. 

(B8) An explicit relationship (Eq. (B 10)) is a.ssumed between the microflaw size and the 
applied tensile stress at fracture. The microflaws are treated as sharp cracks that fail 
under the assumptions of linear elastic fracture mechanics. The Weibull modulus rn 
is not dependent on this assumption directly, but the scaling stress (T, is derived in 
part from this Griffith crack assumptioni. 

The two-parameter Weibull distribution for the probability of failure by cleavage fracture 
has the form 

where the Weibull stress, ow, emerges as a critical parameter 
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Fig. B. 1. Description of the fracture process zone, &2 , unit volume, Vtn , 
and elemental volume, SV, (adapted from Ref. Bl).  
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Table B. 1 Nomenclature employed in theoretical development of the Weibull stress 

size of microcrack [L] 
critical flaw size resulting in fracture under applied tensile stress oq K] 
number density of flaws with size a < a* < a + da [L-,] 

stress intensity factor in relation between a4 and ac [F L-, L”,] 
Weibull modulus = 2 p  - 2 [a] 

probability of failure by cleavage fracture for material within elemental volume 

probability of failure by cleavage fracture for material per unit volume YCi) 

probability of failure by cleavage fracture for material within i2 [a] 

elemental volume within unit volume 
unit vohme within SZ b3] 
reference volume containing uniform number of microcracks with varying 
distribution of flaw sizes [L3] 
geometry factor in relation between oq and ac [a] 

scaling parameter for flaw size number density distribution [L @-I )P  ] 

66 1.1 

[L~] 

shape parameter for flaw size number density distribution [a] 

cutting parameter used in defining fracture process zone [a] 
equivalent tensile (opening mode) stress acting on microcrack plane [F L-2] 
principal stresses where o, I 0, I 0, ; assumed uniform within VCi) [F L-’1 
yield stress of material [F L-’] 
Weibull scaling stress [F L-’1 
Weibull stress [F L-’1 
volume of fracture process zone ahead of crack tip [L3] 
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