The Sort on Radioactive Waste Type Model: A Method to Sort Single-Shell Tanks into Characteristic Groups

J. G. Hill G. S. Anderson B. C. Simpson

March 1995

Prepared for the U.S. Department of Energy under Contract DE-AC06-76RLO 1830

Pacific Northwest Laboratory Operated for the U.S. Department of Energy by Battelle Memorial Institute

Battelle

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST LABORATORY operated by **BATTELLE MEMORIAL INSTITUTE** for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC06-76RLO 1830

Printed in the United States of America

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576-8401. FTS 626-8401.

Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.

PNL-9814 Rev. 2 UC-721

The Sort on Radioactive Waste Type Model: A Method to Sort Single-Shell Tanks into Characteristic Groups

J. G. Hill G. S. Anderson B. C. Simpson^(a)

March 1995

Prepared for the U.S. Department of Energy under Contract DE-AC06-76RLO 1830

Pacific Northwest Laboratory Richland, Washington 99352

(a) Westinghouse Hanford Company.

- • ,

Summary

The Sort on Radioactive Waste Type (SORWT) model presents a method to categorize Hanford Site single-shell tanks (SSTs) into groups expected to exhibit similar chemical and physical characteristics based on their major waste types and processing histories. This report contains the assumptions and methodologies used to develop the SORWT model and presents the grouping results, along with a detailed statistical verification study that integrated analysis of variance (ANOVA) and core sample analysis data collected since 1989 for five SORWT groups. Nominal compositions and inventories are given for these five SORWT groups.

The SORWT model has identified 24 different waste-type groups encompassing 133 of the 149 SSTs and 93% of the total waste volume in SSTs. The first 14 groups (those that contain four tanks per group or more) represent 109 tanks and over 83% of the total waste volume. Sixteen SSTs and associated wastes could not be grouped according to the established criteria and were placed in an ungrouped category.

The verification study showed that the SST groups predicted by the SORWT model are highly statistically significant and that grouping the tanks reduces the variability in the concentrations for all analytes examined. A high degree of agreement was found between the observed characteristics determined by laboratory analyses for the five SORWT groups and the expected characteristics based solely on the waste type. These similarities provide further evidence that the SORWT grouping methodology is accurately and effectively predicting real distinctions between groups of tanks.

The SORWT model organizes a large amount of information and presents options, depending on the criteria applied, for selecting the most desirable SSTs for sampling and for determining core sampling schedules. A list of tanks recommended for sampling based on the SORWT model results is included in this report. The list takes advantage of the SORWT model groups to establish a substantial amount of characterization information from a relatively small number of core and auger samples.

Thirty-two core samples from 16 tanks and 18 auger samples from six tanks are recommended. If this new sampling and analysis information is combined with the existing data, nominal compositions of 104 tanks (70%) could be established, which would represent approximately 79% of the total waste volume, 63% of the total sludge volume, and 88% of the salt cake volume. The information gained from this effort could greatly contribute to the base of knowledge concerning the characteristics of tank waste.

•

Contents

Surr	mary	•••••••••••••••••••••••••••••••••••••••	iii
Abb	reviat	ions	xi
1.0	Intro	oduction	1.1
	1.1	Scope	1.1
	1.2	History of the SORWT Model Development	1.1
	1.3	Tank Waste Background	1.2
2.0	Ove	rview of the SORWT Model	2.1
	2.1	Data Sources for the SORWT Model	2.1
	2.2	SORWT Model Assumptions	2.2
	2.3	SORWT Model Input Data Sheets	2.3
3.0	Pres	entation of SORWT Model Results	3.1
	3.1	SORWT Model Report Format	3.1
	3.2	Summary of SORWT Model Waste-Type Groups	3.1
	3.3	Description of SORWT Waste-Type Groups	3.4
		3.3.1 Group I - R, EB	3.4
		3.3.2 Group II - EB, 1C	3.4
		3.3.3 Group III - TBP-F, EB-ITS	3.5
		3.3.4 Group IV - R	3.5
		3.3.5 Group V - TBP, CW	3.5
		3.3.6 Group VI - EB, CW	3.6
		3.3.7 Group VII - 224	3.6
		3.3.8 Group VIII - 1C, EB	3.6

PNL-9814 Rev. 2

v

2

	3.3.9	Group IX - EB, R	3.6
	3.3.10	Group X - 1C, CW	3.7
	3.3.11	Group XI - DSSF, NCPLX	3.7
	3.3.12	Group XII - 1C, TBP	3.7
	3.3.13	Group XIII - TBP-F, 1C	3.8
	3.3.14	Group XIV - HS	3.8
	3.3.15	Group XV - 2C, 224	3.8
	3.3.16	Group XVI - 2C, 5-6	3.8
	3.3.17	Group XVII - CW, MIX	3.9
	3.3.18	Group XVIII - CW	3.9
	3.3.19	Group XIX - TBP, EB-ITS	3.9
	3.3.20	Group XX - SRS, SR-WASH	3.10
	3.3.21	Group XXI - TBP, EB	3.10
	3.3.22	Group XXII - TBP, 1C-F	3.10
	3.3.23	Group XXIII - CCPLX, DSSF	3.10
	3.3.24	Group XXIV - R, DIA	3 .11
	3.3.25	Group XXV - Solitary Tanks (Ungrouped)	3 .11
Stati	stical V	erification of the SORWT Model	4.1
4.1	Approa	the to Verification of the SORWT Model	4.1
	4.1.1	Analytical Data Sources for the Verification Study	4.2
	4 .1. 2	Graphical Description of the Verification Data Set	4.7
	4.1.3	Characteristics of Waste Types Included in SORWT Verification Study	4.8

÷.

4.2	Analysis of Variance Results	4.11
4.3	Descriptive Statistics of SORWT Group Data	4.14
4.4	Pairwise Comparisons	4.15
	4.4.1 Expected Compositional Differences Between SORWT Groups	4.15
	4.4.2 Comparison of Observed and Expected Difference Between Different SORWT Groups	4.18
5.0 Nom	inal Compositions and Inventory of Five SORWT Groups	5.1
5.1	Nominal Composition of Group VII	5.7
5.2	Nominal Composition of Group IV	5.7
5.3	Nominal Composition of Group XII	5.7
5.4	Nominal Composition of Group XV	5.7
5.5	Nominal Composition of Group XVI	5.8
6.0 Con	clusions and Recommendations	6.1
6.1	Recommended Tank Waste Sampling	6.1
6.2	Recommended Suite of Analyses	6.3
7.0 Ref	erences	7.1
Appendix	A - Sort on Radioactive Waste Type Model Results	A .1
Appendix	B - Waste Types in Hanford Site Single-Shell Tanks	B .1
Appendix	C - Core Sample Analytical Data Tables Used in the SORWT Model Verification Study	C .1
Appendix	D - Box Plots of Core Sample Analytical Data Used in the SORWT Model Verification Study	D .1
Appendix	E - ANOVA Results of Core Sample Analytical Data Used in the SORWT Model Verification Study	E .1
Appendix	F - Descriptive Statistics of Core Sample Analytical Data Used in the SORWT Model Verification Study	F.1

•

•

чø

441

• 1

.

ł

Figure

4.1 H	Box Plot of Sodium Concentration by SORWT Group		4.8
-------	---	--	-----

Tables

3.1	Waste-Type Abbreviations	3.2
3.2	Summary of SORWT Model Results	3.3
4.1	SORWT Groups and Tanks Included in Verification Study	4.2
4.2	Core Sample Analytical Data Sources	4.3
4.3	Analytes, Sample Preparation, and Analytical Method Used in the SORWT Model Verification Study	4.6
4.4	Summary of ANOVA for SORWT Verification Study	4.12
4.5	Number of Analytes Showing Significant Difference Between Groups	4.13
4.6	Analytes Showing Significant Concentration Difference Between Groups	4.13
4.7	Nominal Compositions of Five SORWT Groups	4.14
4.8	Concentration Categories for Expected Characteristics	4.16
4.9	Pairwise Comparison of Expected Characteristics	4.16
4.10	Pairwise Comparison of Observed Characteristics	4.19
4.11	Comparison of Observed to Expected Characteristics	4.20
5.1	Nominal Composition and Inventory of Group VII	5.2
5.2	Nominal Composition and Inventory of Group IV	5.3
5.3	Nominal Composition and Inventory of Group XII	5.4
5.4	Nominal Composition and Inventory of Group XV	5.5
5.5	Nominal Composition and Inventory of Group XVI	5.6

6.1	List of Recommended Core Samples	6.2
6.2	List of Recommended Auger Samples	6.2
6.3	Recommended Suite of Analyses	6.3

• · _ • ****** . • • • --

Abbreviations

10	man and a second se
1C	first decontamination cycle waste
224	lanthanum fluoride decontamination waste
2C	second decontamination cycle waste
5-6	high-level B Plant waste from the bottom of Section 5
AES	atomic emission spectroscopy
ANN	aluminum nitrate nono hydrate
ANOVA	analysis of variance
BiPO₄	bismuth phosphate
В	high-level B Plant waste from waste fractionization process
BL	B Plant low-level waste
CV	coefficient of variance
CCPLX	complex concentrate
CW	cladding waste
DIA	diatomaceous earth
DOE	U.S. Department of Energy
DSSF	double-shell slurry feed
DSC/TGA	differential scanning calorimetry/thermal gravimetric analysis
DW	decontamination waste
EB	evaporator bottoms
EVAP	post-1976 evaporator feed
F	ferrocyanide-scavenged waste
GEA	gamma energy analysis
HDRL	Hanford defense residual liquor
HS	hot semiworks waste
ICP	inductively coupled plasma
ITS	in-tank solidification
IX	ion exchange waste
MIX	mixture of several miscellaneous wastes
MW	metal waste
NCPLX	noncomplexed waste
NWL	non-watch list
Р	neutralized acid waste
PNL	Pacific Northwest Laboratory
PUREX	plutonium-uranium extraction
R	high-level REDOX waste
	▼

à.

7

-

. AntiPNL-9814 Rev. 2

•

REDOX	reduction/oxidation
RESD	residual liquor
SEIS	Supplemental Environmental Impact Statement
SORWT	Sort on Radioactive Waste Type
SRS	strontium leached sludge
SR-WASH	particulates from Sr wash of PUREX wastes in the AR vault
SST	single-shell tank
TBP	tributyl phosphate
TL	terminal liquor
TOC	total organic carbon
TRAC	Track Radioactive Components
TWRS	Tank Waste Remediation System
WHC	Westinghouse Hanford Company

1.0 Introduction

This report discusses the Sort on Radioactive Waste Type (SORWT) model, which was developed to qualitatively categorize the Hanford single-shell tanks (SSTs) into characteristic groups. The results provided by this grouping model will contribute to a better understanding of the contents of the tanks and help predict the nominal physical and chemical characteristics of an entire group of tanks based on limited sampling and analysis. This model also provides a basis for guiding and prioritizing sampling and analytical efforts.

1.1 Scope

The SORWT model provides a qualitative grouping methodology for SSTs according to their significant waste types and processing history, and a best engineering judgment based on the available information. Tanks that received similar wastes and underwent similar process histories should have a high degree of similarity in chemical content and physical characteristics. This premise forms the basis of the grouping scheme. A limited number of tanks can provide sufficient information on which to base final processing and disposal decisions, if the tanks selected provide a representative sample of the waste types and conditions in the SSTs.

This report contains an overview of the model, the waste-type groups predicted, and the characteristics of the waste types included in a verification study, as well as the verification study itself. The verification study quantitatively supports the model using a detailed analysis of variance (ANOVA) of the relevant and available characterization data obtained from recent (post-1989) core sampling and analysis activities. The results from the ANOVA study demonstrated the SST groups predicted by the model to be highly statistically significant. In addition, the SORWT model has been used to predict the nominal waste characteristics of entire waste-type groups that have some recent characterization data available.

Several appendices have been included: Appendix A contains the detailed SORWT results; Appendix B lists the waste types determined for Hanford SSTs; Appendices C through F provide the core sample analytical data tables, box plots, ANOVA results, and descriptive statistics resulting from the verification study.

1.2 History of the SORWT Model Development

The SORWT model was first proposed by Westinghouse Hanford Company (WHC) in 1991 as a means to guide the waste tank characterization effort at Hanford and to help accelerate the acquisition of characterization data on the SST wastes in support of a Supplemental Environmental Impact Statement (SEIS). The model results provided a key to the selection of tanks to be core sampled in FY 1992, as discussed in the *Waste Characterization Plan for the Hanford Site Single-Shell Tanks* (Hill et al. 1991).

Eighteen core samples were collected and analyzed from seven SSTs in accordance with this plan. One of the selection criteria for these tanks was to provide data from pairs of tanks in the same group as well as from different SORWT groups for comparison with the predictions made by the SORWT model. These data would then be used to conduct a statistical verification study to assess the effectiveness of the grouping methodology. A draft document was prepared in August 1991 presenting the methodology, results, and statistical discussion of the SORWT model. However, because of shifts in U.S. Department of Energy (DOE) programmatic directions, formal documentation was postponed.

In the spring of 1994, the methodology and results portion of the original model was published for the Tank Waste Remediation System (TWRS), which is managed for DOE by WHC. The report, *The Sort on Radioactive Waste Type Model: A Method to Sort Single-Shell Tanks into Characteristic Groups* (Hill and Simpson 1994a), was revised in August 1994 (Hill and Simpson 1994b) to include additional descriptive information on waste types present in SSTs.

During the last quarter of FY 1994, further studies were conducted for the TWRS Tank Waste Treatment Science Task, which is being led by Pacific Northwest Laboratory (PNL)^(a). These studies were aimed at verifying the results of the SORWT model to provide a better technical basis for using the model results in overall tank waste pretreatment strategies. The laboratory data from the cores taken in 1992 were available, and the detailed statistical verification study using analysis of variance was conducted. In addition, the tank waste volumes used in the model were updated using the March 1994 *Tank Farm Surveillance and Waste Status Summary Report* (Hanlon 1994). The initial report used waste volume data from the July 1990 report (Hanlon 1990).

1.3 Tank Waste Background

Between 1943 and 1964, 149 SSTs were built for the storage of liquid and solid radioactive wastes at the Hanford Site. These tasks, which are located in 12 tank farms of four to 18 tanks each in the 200 East and 200 West Areas, have been removed from active service and have not received any additional wastes since November 1980. Before the tanks were removed from active service, various waste volume reduction programs were undertaken to minimize the amount of occupied tank volume. These programs involved inter-tank transfers, evaporation, and chemical alterations of the waste. These actions, combined with the ongoing chemical and radiolytic in-tank processes, have changed the character of the waste in the SSTs over time, and now the actual composition of the wastes in the SSTs needs to be determined to make further technical and regulatory disposal decisions.

The wastes in the SSTs originated from a limited number of chemical processes and waste solidification schemes. The primary chemical processes at Hanford were the bismuth phosphate (BiPO₄) plutonium recovery and purification process, the uranium recovery tributyl phosphate (TBP) process, the REDOX (reduction/oxidation with solvent extraction) process, and the PUREX (plutonium-uranium extraction) processes. Each of these major processes also had several affiliated operations, such as the

.-

⁽a) Operated for the U.S. Department of Energy by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830.

first and second decontamination cycle processes, the lanthanum fluoride process, fuel element decladding, ferrocyanide scavenging, fission product recovery, and several minor associated processes. The waste solidification schemes generally involved processes that treated waste outside of the tanks, such as the 242-B and 242-T Concentrators and the 242-A and 242-S Evaporator/Crystallizers. These units took the dilute waste from the tank, evaporated the excess water, and returned the concentrated waste to the tank. However, there were in-tank solidification (ITS) processes that removed the excess water directly from tank wastes using a hot-air sparge (ITS-1) or from a series of tanks using an in-tank electric heater (ITS-2). Excess water was also removed simply from self concentration as a result of dissipating excess radioactive decay heat.

There have been several previous attempts to group the tanks; however, there is no currently accepted method. The previous methods were unacceptable because of their reliance on the TRAC (Track Radioactive Components) model as a basis (Jungfleisch 1984); the TRAC model can be shown to be internally inconsistent and inconsistent with other sources of reliable information regarding waste in the tanks (Adams et al. 1986; Morgan et al. 1988). The proposed method does not use the TRAC document's quantitative estimates regarding waste composition in the tanks for grouping. The grouping method is instead a qualitative judgment about the tanks that are similar in content and character based on the transaction information in *A History of the 200 Area Tank Farms* (Anderson 1990) and several generic assumptions about the physical and chemical makeup of the wastes in the tanks. This grouping method then uses a database to sort the tanks on the basis of similarity in overall waste types and processing history.

. . -

2.0 Overview of the SORWT Model

The SORWT model categorizes tanks into groups expected to have similar physical characteristics and chemical compositions. Because of the complex physical and chemical history of the SSTs, especially when several different waste types were mixed or processed together, the model does not attempt to predict the precise composition of a waste tank. Instead, the sorting method concentrates on the different types of waste introduced into each SST, each waste's distinct contribution to the known properties, the individual significance of each waste type, and the process history of each of the tanks. Although the actual chemical reactions and phase equilibria may be unknown when two waste types are combined in an SST, it can be assumed that similar reactions and equilibria occur in other SSTs when ⁴, the same two waste types are mixed.

The fundamental premise of the SORWT model is that there are identifiable patterns with regard to the production and waste management practices that were conducted in the tank farms. Thus, tanks that received the same waste types in the same approximate proportion and had a similar processing history will be more similar to one another than SSTs that received several different waste types in varying amounts and had a relatively unique process history. In addition, largely supernatant waste types are presumed not to have as significant an effect on the character of the waste in the tank as solidforming waste types. Therefore, if the primary and secondary solid-forming waste types can be identified for each SST, the tanks can be grouped based on these criteria. Thus, information about the character of the waste in the rest of the members in the group can be deduced from the information obtained by the analysis of the samples from the representative tank, or from a selected number of representative tanks.

2.1 Data Sources for the SORWT Model

3

The principal source of SST waste-type information used by this model has been A History of the 200 Area Tank Farms (Anderson 1990). This document contains much of the available processing history for each of the 149 SSTs from 1944 until 1980. However, the historical records used to generate Anderson (1990) were often inaccurate and/or incomplete. The methods utilized to measure accumulated solid and liquid volumes during the early history of the Hanford Site produced inconsistent inventories. Indeed, solids inventories were not routinely taken until the mid-1950s. Often, tank transfer information was missing. Despite these inconsistencies, Anderson (1990) is still one of the best sources of SST historical information, and it is believed a qualitative assessment of the principal solids-forming waste types contained in each SST can be accurately determined from this information.

Often in the course of the process histories of the SSTs, the wastes in the tanks were given new names to reflect their suitability for further processing or the presence of complexing agents. Occasionally, the same waste types were assigned different names at different times. For example, terminal liquor (TL), Hanford defense residual liquor (HDRL), and residual liquor (RESD) all identify the same waste. Whenever possible these broad, nonspecific waste category names were avoided, and

PNL-9814 Rev. 2

the actual waste type from one of the process operations was used for the sorting criteria. In addition, the suffix F was added to some of the waste types to identify ferrocyanide-scavenged waste, and ITS was added to designate tanks that were in the In-Tank Solidification program.

The volumes of waste contained in each SST were obtained from the *Tank Farm Surveillance and Waste Status Summary Report* (Hanlon 1994). These values include, on a per-tank-basis, total waste volume, volume of salt cake, volume of sludge, and volume of supernatant liquid. It can be assumed that these values are more accurate than those final values found in Anderson (1990) because they were obtained more recently; however, it is understood that these values have deficiencies because of the limited access to the tanks.

2.2 SORWT Model Assumptions

The underlying assumptions utilized by the SORWT model are as follows:

- The information contained within Anderson (1990) is sufficient to qualitatively identify and rank relative to one another the waste types that contributed to the accumulated solids in each SST.
- The Hanlon (1994) inventory values and phase partition information regarding sludge and salt cake amounts are reasonably accurate.
- The SST process history, primary solids-forming, and secondary solids-forming waste types were responsible for the majority of the physical characteristics and chemical compositions of the waste remaining in each SST.
- Supernatant wastes that were not allowed to remain in a tank for a long period of time and were later pumped out of the SST had less influence on the physical and chemical character of the waste than did the insoluble solid waste types.
- SSTs were often sluiced at some time during their processing history. Sluicing involves removing solids from waste tanks using high-pressure water jets. Waste types present in the tank prior to the most recent sluicing were not considered relevant by this model.
- Broad-ranging, less descriptive waste types, such as NCPLX (noncomplexed waste), CCPLX (complex concentrate), EVAP (post-1976 evaporator feed), and/or DSSF (double-shell slurry feed), were avoided whenever possible. The previous nomenclature for those waste types was preferred, if available; however, a broad category identifying the tank waste as either non-complexed, complexed, or ferrocyanide-scavenged waste has, in some instances, been included in the SORWT model to aid in evaluating the results of the model.

ŝ.

2.3 SORWT Model Input Data Sheets

SORWT model input sheets were generated for each tank by thorough evaluation of the processing histories found in Anderson (1990) and Hanlon (1994). The waste type judged to be the most significant contributor to the solids volume in any specific SST was identified as the Primary Waste Type. This evaluation was made on the basis of waste volume introduced into each tank and the solids accumulation during the regime of that particular waste. The second most significant solids-forming waste type was identified as the Secondary Waste Type. When appropriate, a Tertiary and an Other Waste Type were also identified.

Because waste prior to sluicing has been disregarded by the SORWT model, the date of the most recent sluicing event for each tank has been included on the input sheets. The volume of waste remaining in the tank after sluicing has also been included to aid in the sorting and analysis. The data were obtained from Anderson (1990).

The waste volumes remaining in each SST, segregated into salt cake, sludge, supernatant liquid, and total, were collected from Hanlon (1994). Although the waste volume information was not used as a sorting criterion, it can be used as an indication of grouping feasibility. A realistic group, as predicted by the SORWT model, exhibiting similar physical and chemical characteristics, should not include tanks that have widely varying ratios between sludge and salt cake. If the majority of tanks in a group contain all sludge and one tank contains all salt cake, the membership of that tank in the group would be in question. The tank waste volume information also provides valuable insight into those tanks in a group that have greater significance due to their higher volume.

3.0 Presentation of SORWT Model Results

The SORWT model results were presented using a database software package to generate the report. Tanks possessing the same primary and secondary waste types were grouped together. Waste-type abbreviations are summarized in Table 3.1. From the database package, the report output was imported into a word processor for additional editing. The different groups were listed in descending order of importance with the most significant group first. Following each group was a subtotal providing the number of tanks and the volume of salt cake, sludge, and total waste represented by that particular waste group as collected from Hanlon (1994).

3.1 SORWT Model Report Format

A full printout of the SORWT model report is presented in Appendix A. The first column of the SORWT model report contains the group I.D. in Roman numerals. The lower the number, the more significant the group in terms of number of tanks and total waste volume. Column 2 contains the tank names of the individual tanks that make up each group. Columns 3 and 4 report the primary and secondary waste types, respectively. These are the waste types believed to have contributed most significantly to the solids volume in that particular tank relative to other waste types introduced into that same tank and are the criteria for tank grouping. Within any given group, the primary and secondary waste types. While the tertiary and other waste types are not actually used as grouping criteria, they are provided for further assistance in interpreting the results. Column 7 presents the safety watch list status of each tank. The codes used in this column are F, O, H, G, and N representing ferrocyanide, organic, high-heat, gas-generating, and non-public law tanks, respectively. The remaining columns list the volumes of waste in the corresponding phases and the total waste volume of each tank. The total waste volume does not include the interstitial liquid volume.

The second portion of Appendix A lists the volume percent of each phase and the percentage of the overall volume contained in each tank. In both the volume and the volume percentage portions of the appendix, the results have been subtotaled for each SORWT group.

3.2 Summary of SORWT Model Waste-Type Groups

The SORWT model has predicted the existence of 24 waste-type groups ranging from a high of 22 tanks per group to a low of two tanks per group. These 24 waste-type groups encompass 133 tanks and 93% of the total waste volume. An additional group contains the 16 solitary SSTs that did not fall into any waste-type groups. Table 3.2 presents a summary of the SST waste-type groups predicted by the SORWT model.

PNL-9814 Rev. 2

Abbreviation	Definition
5-6	High-level B Plant waste from bottom of Section 5
224	Lanthanum fluoride decontamination waste
1 C	First decontamination cycle waste
· 2C	Second decontamination cycle waste
В	High-level waste from waste fractionization process at B Plant
BL	B Plant low-level waste
CCPLX	Complex concentrate
[/] CW	Cladding waste
DIA	Diatomaceous earth
DSSF	Double-shell slurry feed
י DW	Decontamination waste
EB	Evaporator bottoms
EVAP	Evaporator feed (post-1976)
∖ F	Ferrocyanide-scavenged waste
HS	Hot semiworks waste
ITS	In-tank solidification
IX	Ion exchange waste
MIX	Mixture of several miscellaneous wastes
MW	Metal waste
NCPLX	Noncomplexed waste
Р	High-activity, neutralized acid waste
PUREX	Plutonium-uranium extraction
. R	High-level REDOX waste
SRS	Strontium leached sludge
SR-WASH	Particulates from Sr wash of PUREX wastes in the AR vault
∨ TBP	Tributyl phosphate waste

Table 3.1. Waste-Type Abbreviations

e². FP

fI

Fisin find 3.2 PNL-9814 Rev. 2

Group Number	and Se	mary condary ype Groups	Number of Tanks in Group	% of Total Salt Cake Volume	% of Total Sludge Volume	% of Total Supernatant Volume	% of Total Interstitial Liquid Volume	% of Total Waste Volume
I	R	EB	22	37%	12%	21%	42%	28%
п	EB	1 C	10	20%	0%	0%	3%	13%
ш	TBP-F	EB-ITS	10	14%	5%	0%	11%	11%
IV	R		10	0%	10%	1%	1%	3%
v	TBP	CW	9	0%	5%	5%	1%	2%
VI	EB	CW	8	8%	3%	20%	11%	6%
VЦ	224		8	0%	2%	1%	0%	1%
VШ	1C	EB	6	1%	6%	0%	1%	3%
IX	EB	R	5	8%	1%	8%	8%	6%
х	1 C	cw	5	0%	6%	2%	1%	2%
XI	DSSF	NCPLX	4	7%	3%	2%	12%	6%
хп	1C	TBP	4	0%	6%	0%	1%	2%
ХШ	TBP-F	1 C	4	0%	2%	1%	1%	1%
XIV	НS		4	0%	0%	0%	0%	0%
xv	2C	224	3	0%	7%	2%	1%	2%
XVI	2C	5-6	3	0%	4%	1%	1%	1%
xvII	CW	MIX	3	0%	1%	3%	0%	0%
xvш	CW		3	0%	0%	1%	0%	0%
XIX	TBP	EB-ITS	2	3%	1%	0%	2%	2%
xx	SRS	SR-WASH	2 [.]	0%	2%	29%	0%	1%
XXI	TBP	EB	2	0%	2%	0%	0%	1%
ххц	TBP	1 C- F	2	0%	2%	1%	0%	1%
ххш	CCPLX	DSSF	2	1%	0%	1%	1%	0%
XXIV	R	DIA	2	0%	1%	0%	0%	0%
	Total		133	99%	82%	98%	97%.	93%
XXV	Ungroup	oed Tanks	16	1%	18%	2%	3%	7%

Table 3.2. Summary of SORWT Model Results

A review of Table 3.2 will quickly reveal that Group I is by far the most significant group. This group includes 22 tanks, 37% of the total salt cake volume, and over one-quarter of the total waste in all 149 SSTs. The first three groups represent over one-half of the total waste volume in all 149 SSTs. This categorization demonstrates the potential usefulness of the SORWT model in making management decisions. Table 3.2 also identifies groups that have relatively no significance, such as Groups XIV

1

and XVIII, which contain almost no waste. This information can be used in allocating time and resources for characterization activities, pretreatment, and immobilization development.

Larger families of related tank groups may exist. An example of a potential family is Group I (R, EB) and Group IX (EB, R). These two groups have the same primary and secondary waste types. The relative differences between these two groups are due to their respective designation for primary and secondary waste types. The differences caused by prioritizing the same waste types in different orders may be small compared with the overall group variability. Identifying larger families of tanks will reduce the overall number of different groups being evaluated and potential sampling and analysis events. The existence of families could be tested and reported at a later time.

3.3 Description of SORWT Waste-Type Groups

This section gives brief descriptions of each of the waste-type groups predicted by the model.

3.3.1 Group I - R, EB

This waste-type group is the most significant group predicted by SORWT in terms of number of tanks and total waste volume. The 22 tanks within this group contain an estimated 10,082,000 gallons of total waste consisting of 8,522,000 gallons of salt cake and 1,438,000 gallons of sludge. All 22 Group I tanks can be found in three different 200 West Area Tank Farms, S, SX, and TX. These tanks typically received a large amount of high-level REDOX waste (R) during the 1950s. This waste is most likely responsible for the sludge accumulation in these tanks. These tanks also received large amounts of evaporator bottoms (EB), usually from the 242-S Evaporator in the early 1970s. This supersaturated, high-nitrate waste cooled in the SSTs and formed an extremely hard salt cake. Despite the slightly different processing history of these tanks between the addition of the R in the 1950s and the EB in the 1970s, it is believed that these two waste types predominantly dictate the physical and chemical characteristics of the waste. Some of the tanks in this group have no reported sludge accumulation, probably because poor measurements were taken before salt cake formation. Once the salt cake crystallized in a tank, it became impossible to measure the volume of sludge.

3.3.2 Group II - EB, 1C

This 10-tank group contains approximately 4,634,000 gallons of waste. The vast majority of this waste—4,594,000 gallons—is salt cake. All but two of these tanks are located in the TX Tank Farm; one is located in B Tank Farm and the other in TY Tank Farm. These tanks are characterized as having received large quantities of EB, mainly from the 242-T Evaporator. They also received modest quantities of first decontamination cycle (1C) waste. Tank B-105 received 1C before the EB, which probably explains the limited sludge accumulation in this tank that is not exhibited by the others.

3.3.3 Group III - TBP-F, EB-ITS

This group contains 10 tanks and is the third most significant in terms of number of tanks and total waste volume. The tanks in this group hold 3,980,00 gallons of waste. The majority of this waste—3,344,000 gallons—is presumed to be salt cake. However, these tanks also contain substantial amounts of sludge. All 10 of these tanks, which originally held wastes from the BiPO₄ process [mostly 1C with some metal waste (MW)], can be found in the BY Farm located in the 200 East Area. They were completely emptied in the early 1950s, and no significant amounts of BiPO₄ solids remain in the tanks, so the presence of that waste type is not considered by the SORWT model. After sluicing, these tanks received tributyl phosphate (TBP) ferrocyanide-scavenged (F) waste from U Plant, which is probably responsible for the sludge buildup. During the late 1960s and early 1970s, these tanks were connected to the in-tank solidification (ITS-2) loops. This process, in which one tank in the loop was used as an in-tank evaporator and the rest of the tanks as liquid holders, concentrated the waste and reduced the liquid volume, resulting in salt cake formation.

3.3.4 Group IV - R

Group IV is a 10-tank group containing high-level R waste. S-104 received R waste which still contained cladding waste (CW); all other tanks were filled with R waste only after the CW was removed. Tanks SX-111 and SX-114 received a small amount of EB waste from the REDOX waste evaporator but not in sufficient concentrations to support crystal formation.

Group IV tanks hold 1,232,000 gallons of waste. The majority of waste—1,228,000 gallons—is sludge; no salt cake formation has been observed. Eight of these tanks can be found in the SX Tank Farm, and all are located in the 200 West Area. There are no safety or technical sampling issues associated with the majority of this group; the exception is Tank SX-109, which is on the watch list as a gas-generating tank. It should also be mentioned that Hanlon (1994) currently lists the volume of SX-109 as salt cake but is in the process of being revised to indicate the volume is actually sludge as shown in Appendix A. Sampling and analysis of S-104 have been performed; assessment of the data has contributed greatly to the existing body of characterization knowledge. The analysis of this tank significantly aids in characterizing this particular 10-tank group and also several other groups containing large amounts of R-type waste.

3.3.5 Group V - TBP, CW

This nine-tank group, located almost entirely in BX Tank Farm, contains 708,000 gallons of waste. Nearly all of the contents of this group is sludge. Salt cake has only been observed in one tank, BX-105. The 3000 gallons of salt cake are due to a small transfer of EB into BX-105. These tanks were originally filled with MW or 1C in the 1940s. In the early 1950s MW tanks were sluiced and other tanks were pumped down to provide room for TBP waste. Additions of this waste type began in the mid-1950s. The addition of CW began in the mid-1960s. The various other transfers that occurred in these tanks should not significantly affect the characteristics of the waste relative to TBP and CW,

the primary and secondary wastes. Tanks BX-104 and BX-105 were core-sampled previously (1985), and the results provide some insight into their chemical composition; however no recent (post-1989) characterization data have been obtained from this group.

3.3.6 Group VI - EB, CW

These eight tanks contain 2,306,000 gallons of waste. Salt cake comprises 1,877,000 gallons of this waste, while sludge comprises only 314,000 gallons. All of these tanks except TX-118 were filled with MW in the late 1940s or early 1950s; in the mid- to late 1950s, the MW was sluiced from the tanks to recover the uranium. The order that the tanks then received EB and CW varies, but the current volumes indicate that EB and CW are the primary and secondary waste types, respectively.

3.3.7 Group VII - 224

This eight-tank group represents 280,000 gallons of waste. The majority of the waste is sludge, and although some of these tanks received high-level B Plant waste from the bottom of Section 5 (5-6), no salt cake formation has been observed. All eight tanks are 55,000-gallon, 200 Series tanks located in B and T Tank Farms. These tanks received lanthanum fluoride decontamination (224) waste exclusively. In light of the singularity of the waste type introduced into these tanks and the similarity of process history (i.e., the near absence of any inter-tank transfers), the composition among the tanks of this group should be very uniform. Two tanks, B-201 and B-202, were core-sampled and analyzed in 1992. The data from these tanks have been used as part of the statistical verification study.

3.3.8 Group VIII - 1C, EB

This six-tank group of B and BX Farm tanks contains 960,000 gallons of waste, a large percentage of which is sludge. These tanks all received 1C waste in the late 1940s and early 1950s. In the mid-1950s, the supernatant portion of the 1C waste was transferred from the tanks and they began receiving EB waste. All of these tanks also received appreciable amounts of CW in the 1960s.

Tank BX-111 is the only tank in the group which exhibits a greater amount of salt cake (143,000 gallons) than sludge (68,000 gallons). This may be a result of imprecise sludge measurements during the early history of the tank, or it may indicate real differences between BX-111 and the other tanks in Group VIII. This observation cannot be properly addressed until one or more of the tanks in the group have been core sampled.

3.3.9 Group IX - EB, R

Group IX consists of five 200 West Area tanks, mostly from U Farm. These tanks contain 2,037,000 gallons of waste, with the vast majority as salt cake. Initially, these tanks held substantial amounts of supernatant before receiving solid wastes. Some tanks were filled with MW in the 1940s, but these MW receivers were completely sluiced out in the early 1950s. Large quantities of high-level R were then introduced into these tanks and allowed to remain there for many years. In the

PNL-9814 Rev. 2

early 1970s, large volumes of R supernatant were transferred from the tanks and replaced with EB from the 242-S Evaporator, which caused a salt cake to form in the majority of the tanks. The small amount of sludge that accumulated in these tanks is probably due to the R present before the EB. Because of the hardness of the salt cake, these tanks present technical difficulties that must be solved before sampling. These tanks should be very similar to Group I tanks and differ from them mainly in the ratios of R to EB. These tanks might be so similar that they can be included with that group; however, these similarities can only be verified by core samples.

3.3.10 Group X - 1C, CW

This five-tank group contains 760,000 gallons of waste, the majority of which, 749,000 gallons, is sludge. No salt cake has been observed in these tanks. T-105, T-106, and U-110 initially received second decontamination cycle waste (2C) waste in 1947. The cascade was then filled with 1C waste from 1948 until 1955 when it began receiving CW in large quantities. C-107 and T-107 both initially received 1C waste but eventually began receiving CW waste in the 1960s. A large amount of solids accumulated from these waste types. In the 1970s, a number of different liquid wastes were transferred through these tanks but did not affect the solids content to the degree of the previous wastes.

3.3.11 Group XI - DSSF, NCPLX

This four-tank group contains a total of 2,113,000 gallons of waste. Salt cake comprises 1,717,000 gallons of this waste, while 387,000 gallons are sludge. These tanks initially received either plutonium-uranium extraction (PUREX); high-activity, neutralized acid waste (P); or B Plant high-level waste from waste fractionization process (B). However, all of these tanks were sluiced of their contents in 1976. The waste types added to these tanks after sluicing were double shell slurry feed (DSSF) and noncomplexed (NCPLX) waste, which are generic terms describing the potential for further processing of the waste instead of the original source of the waste. Because these terms are so general, little can be determined about the homogeneity of the waste in this group. Although the total volume of waste in this group is significant, the high degree of uncertainty regarding the waste types in these tanks makes this group questionable, and different affiliations for these tanks may be found. However, it is also possible that the volume of waste reported for Tank A-103 is actually salt cake since the waste did pass through the 242-A Evaporator/Crystallizer. This would increase the probability that Group XI is a legitimate group, but this can only be verified by sampling Tank A-103.

3.3.12 Group XII - 1C, TBP

t

This four-tank group contains 693,000 gallons of waste, the vast majority of which is sludge. Even though this group transcends four different tank farms in both the 200 East and West Areas, these tanks have very similar processing histories. They were filled with 1C waste in the 1940s. A portion of this volume was drained in the early 1950s, and the tanks began receiving TBP waste. The solids volume that was measured at this time did not accumulate further during the rest of the history of these tanks. The additional transfers were mostly liquid in nature and had little effect on the sludge volume. No salt

cake has been observed in these tanks, even though records indicate a small amount of EB was introduced into T-108. Two of these tanks, C-110 and BX-107, have been core sampled and are included in the statistical verification study.

3.3.13 Group XIII - TBP-F, 1C

This four-tank group contains 293,000 gallons of waste, and approximately 289,000 gallons are sludge. No salt cake has been observed in these tanks. The tanks were used as the primary settling tanks during the In-Farm Scavenging campaign during the 1950s, and they were originally filled with 1C waste in the 1940s. The supernatant was transferred out of the tanks to make room for the TBP-F waste that was allowed to settle. These two wastes formed the vast majority of the solids located in these tanks. All of these tanks are on the watch list because of their ferrocyanide content.

3.3.14 Group XIV - HS

This four-tank group of 55,000-gallon, 200-Series tanks is located in the C Tank Farm. These tanks received MW in the 1940s but were sluiced in the early 1950s. After sluicing, these tanks received waste only from the Hot Semiworks (HS). The majority of this waste was removed from these tanks in the late 1960s and early 1970s; the total waste remaining is only 11,000 gallons. This minor volume designates this tank group as being insignificant compared with other groups or even single tanks.

3.3.15 Group XV - 2C, 224

This three-tank group contains 904,000 gallons of total waste, the majority of which, 892,000 gallons, is sludge. These SSTs were connected in a three-tank cascade. The processing history of these tanks is very similar. They all received 2C waste in the 1940s and early 1950s until the cascade was full. In 1952, they began receiving 224 waste, and the excess supernatant was cascaded to a crib. The cascade also received 5-6 waste after 1951 and Tanks T-111 and T-112 received dilute decontamination waste (DW) and a mixture of liquid wastes (MIX) in the late 1960s. These transfers would not have significantly altered the characteristics of the waste relative to the first two waste types. Tank T-110 is on the watch list for gas generation. T-111 is on the organic watch list, but has been core sampled and is included in the statistical verification study.

3.3.16 Group XVI - 2C, 5-6

This three-tank group, located in the B Tank Farm of the 200 East Area, contains 516,000 gallons of waste. The majority of waste—511,000 gallons—is sludge. These three tanks also were connected in a three-tank cascade. The cascade was originally filled with 2C waste in the 1940s, cribbed in 1950, and refilled with 2C waste. The continuous overflow in B-112 was cribbed. The cascade began receiving 5-6 waste in 1952 as part of the shutdown and decontamination of B Plant. The tanks began receiving fission products in 1963. B Plant low-level waste (BL) and ion exchange waste (IX) were routed to the cascade in the late 1960s and early 1970s, but these were mostly liquid in nature and are

с,

not considered significant contributors to the physical and chemical characteristics of the solids remaining in the tank, relative to the previous three wastes. Tank B-112 received significant EB and recycle from the ITS loop. This EB-ITS waste did not cause the formation of salt cake typically exhibited by this waste form, or perhaps any salt cake that was formed was subsequently dissolved by waste transfers after the EB-ITS transfers. Seven cores from Tank B-110, obtained in 1989 and 1990, underwent extensive analytical testing and provide excellent data for physical and chemical characterization of this group. Tank B-111 has also been core sampled, and a comparison of the two tanks shows substantial agreement for the primary analytes (Remund et al. 1994).

3.3.17 Group XVII - CW, MIX

This three-tank cascade currently holds 161,000 gallons of waste, most of which (143,000 gallons) is sludge. No salt cake has been observed in these tanks. The cascade was initially filled with MW in the 1940s and emptied in 1951. Tank T-101 received a small amount of TBP-F waste from a pilot-plant test of the process; this waste was then pumped to a minimum level and flushed from the tank. The cascade was again filled with MW in 1955 but sluiced empty the following year. Tank T-101 is listed as a ferrocyanide tank, but this waste was removed, and the tank was sluiced empty later so it is unlikely that any appreciable amount of ferrocyanide remains. The early 1970s, when a mixture of several miscellaneous liquid wastes was routed to these tanks. The liquid wastes are considered to have had only a limited impact on the characteristics of the solid waste remaining in the tank.

3.3.18 Group XVIII - CW

These three 200-Series tanks from U Farm contain only 13,000 gallons of waste. The history of these tanks indicates that the predominant waste type is CW. The small amount of waste contained in these tanks makes this group a poor choice for sampling, if inventory volume is a selection criterion. However, because of the straightforward process history of these tanks, adequate representation of CW (that may be extended to other tanks) may be achieved.

3.3.19 Group XIX - TBP, EB-ITS

This pair of BY Farm tanks contains a combined total of 764,000 gallons of waste. The majority of this waste—681,000 gallons—is salt cake, while 83,000 gallons are sludge. Both tanks received MW supernatants before 1955, but the tanks were sluiced to recover any residual solids that may have been suspended and eventually settled. Beginning in 1955, both tanks received TBP waste. Both tanks received quantities of CW in the early 1960s and were connected to an ITS loop in the late 1960s; Tank BY-102 to ITS-1 and BY-109 to ITS-2. Despite being connected to different ITS loops (operated by different principles), the solids remaining in the two tanks, both salt cake and sludge, can be expected to be relatively similar.

3.3.20 Group XX - SRS, SR-WASH

Both of the tanks in this group are located in C Farm and contain 424,000 gallons of waste, the bulk of which—259,000 gallons—is sludge. This group received MW in the 1940s, which was removed in the early 1950s. The tanks were then filled with TBP waste that was scavenged in the CR vault in the mid-1950s. Also during the mid-1950s, these tanks received various quantities of P and CW. In the early 1970s, these tanks received large quantities of a variety of liquid waste, which was later transferred out. This liquid probably did not greatly affect the solids. In 1976 and 1977, these tanks received a large transfer of strontium leached sludge (SRS), which greatly added to the solids volume in the tank. These tanks also received a large quantity of high-level solids as suspended particulates from sludge washing in the AR vault (SR-WASH). These suspended solids settled in the tanks and are considered a significant contributor to the solids characteristics and high radioactivity. Both of the tanks were previously core sampled. Tank C-103 is on the watch list as a "high heat" tank.

3.3.21 Group XXI - TBP, EB

These two 200 West Area tanks hold a total of 215,000 gallons of waste, all of which is sludge. Although these tanks received an appreciable amount of EB, the characteristic salt cake did not form or was washed away.

3.3.22 Group XXII - TBP, 1C-F

This pair of ferrocyanide tanks is located in TY Farm and contains 208,000 gallons of waste; 205,000 gallons are sludge. No salt cake has been observed in these tanks. These tanks received TBP waste in the early 1950s, then, during the mid-1950s, the supernatant was transferred out and 1C-F waste placed on top of the TBP heel. These two waste types caused significant solids accumulation. During the 1960s and 1970s, a variety of waste was transferred into and out of these tanks. The solids accumulation did not substantially change during these transfers; therefore, these later transfers are not considered to have significantly affected the physical and chemical characteristics of the solids already present in the tank. Both of these tanks have been previously sampled.

3.3.23 Group XXIII - CCPLX, DSSF

This group of two AX Farm tanks contains 151,000 gallons of waste, consisting of 139,000 gallons of salt cake, 9000 gallons of sludge, and the remainder supernatant liquid. Both of these tanks were sluiced of their contents in 1977, leaving a 6000-gallon heel of P waste. The tanks then received wastes identified by unspecific waste names like complex concentrate (CCPLX), DSSF, and post-1976 evaporator feed (EVAP). Using such broad waste identifiers—based on suitability for further treatment, not waste source—precludes grouping by radioactive waste type.

3.3.24 Group XXIV - R, DIA

This pair of assumed leaker tanks contains 148,000 gallons of waste, all of which is sludge. Tank U-104 initially received MW in the 1940s, but this waste type was sluiced from the tank in the early 1950s. Tank SX-113 was not released to operation until the mid-1950s. Both tanks exclusively received R after 1958. Diatomaceous earth (DIA) was added to both tanks after they were declared leakers, in an attempt to prevent the escape of liquid waste.

3.3.25 Group XXV - Solitary Tanks (Ungrouped)

Of the 149 SSTs, only 16 did not fall into groups based on radioactive waste types. These 16 tanks transcend almost every waste type and every tank farm in the 200 East and West Areas. They contain mostly sludge. These ungrouped tanks represent 2,502,000 gallons of waste—203,000 gallons of salt cake and 2,287,000 gallons of sludge. Several of these tanks have significant quantities of waste in them, while others have relatively little waste. Many of these tanks are probably related to some of the groups previously described.

·

.

•

4.0 Statistical Verification of the SORWT Model

The validity of the SORWT grouping model was tested by performing a statistical analysis verification study on a limited amount of core sample data, which came from earlier studies (Winters et al. 1989, 1990; Hill et al. 1991). It is important to note that, at the time these core samples were collected, there existed only the capability to sample relatively soft sludge-like wastes. Therefore, the statistical verification study is based upon core sample and analysis data from only sludge wastes and does not, at this time, include data from salt cake wastes. Furthermore, the core data used in the verification study was the core composite data. Core composites are composed of homogenized aliquots of segment material from various depths.

Evaluation of the SORWT model was only one of the driving factors in tank selection. The full rationale and justification for the requested core samples can be found in Hill et al. (1991). Due to sampling difficulties and changes in programmatic priorities, not all of the tanks requested for sampling in Hill et al. (1991) were actually sampled.

This section outlines the approach used for evaluating the model, including the analytical data sources, a graphical description of the data set, a summary of the characteristics of the waste types, and the analysis of variance (ANOVA) results and descriptive statistics of the grouped data.

4.1 Approach to Verification of the SORWT Model

Once the analytical results were arranged into groups as predicted by the SORWT model (as discussed in Section 3), an ANOVA was performed on the grouped data for a selected number of analytes. An ANOVA is a quantitative method to test the significance of the effect a particular treatment has on the response or dependent variable. In the SORWT model verification study, the treatment being studied is SORWT groups, and the dependent variable is analyte concentration. The ANOVA method was used to test whether the mean concentration of a particular SORWT group is statistically significantly different from the mean concentration of other SORWT groups. The null hypothesis tested by this statistical model was as follows:

The deviations between the means of the different groups were due only to random variation within the entire data set.

If the null hypothesis was proved valid, then no group effects were present, and the SORWT model would be discredited. However, if the null hypothesis was proved incorrect, then the converse would be true (i.e., group effects are present and the SORWT model methodology is supported by the data). If significant group effects were observed, a Tukey pairwise comparison was conducted to investigate groups that differed significantly from the others.

In addition to the ANOVA, the magnitude of the individual analyte variances within the SORWT groups was investigated. These variances were compared to the variance results for the entire

PNL-9814 Rev. 2

ungrouped data set. A reduction in the individual analyte variances by grouping the data according to SORWT further suggests that the SORWT model accurately predicts tank groups that exhibit similar chemical concentrations.

4.1.1 Analytical Data Sources for the Verification Study

The analytical results data utilized in the SORWT model verification study were obtained from the official core sample data packages produced by the Hanford analytical laboratories in support of the WHC Tank Waste Characterization Program. The SSTs and SORWT groups that were used in the verification study can be found in Table 4.1. The associated source documents from which analytical results data were obtained are summarized in Table 4.2. Tanks C-112, C-109, U-110, and T-107 were also core sampled. Although C-112 and C-109 were predicted to belong to the same SORWT group, incomplete sampling recoveries, a more complex waste processing history, and in-tank aging resulted in analytical data exhibiting larger than normal variability for most analytes. These dissimilarities are discussed in the respective tank characterization reports for these tanks (Simpson et al. 1993 a,b). U-110 was not included in the verification study because of uncertainty in the accuracy of the data. The U-110 cores were the first samples to be analyzed and there were significant problems in extracting the cores from the tank. T-107 was excluded from the SORWT model evaluation because of difficulties in sample recovery and incompleteness of the data set.

When the C-112 and C-109 (Group XIII) data were included in the data set, the ANOVA study showed that only Group XIII was significantly different from the remaining groups. The differences among the remaining groups were masked by the substantially larger variability in the Group XIII data. When the Group XIII data were not included in the data set, the significance of the differences between the SORWT groups could be tested against a more reasonable residual variability. Because of the disparate nature of the data associated with these tanks and the masking effect on the ANOVA study, C-112 and C-109 were not included in the statistical verification study.

Group No.	Tank No.	Primary Waste Type	Secondary Waste Type
VII	B-201 B-202	224	
IV S-104		R	
XII	C-110 BX-107	1C	TBP .
XV	T-111	2C	224
XVI	B-110 B-111	2C	5-6

 Table 4.1.
 SORWT Groups and Tanks Included in Verification Study

Group No.	Tank No.	Core No.	Source
XII	C -11 0	37	Remund, K. M., L. Jensen. Statistical Characterization Report for Single- Shell Tank 241-C-110. Rev. 0. WHC-SD-WM-TI-585, Westinghouse Hanford Company, Richland, Washington.
XII	C-110	38	Remund, K. M., L. Jensen. Statistical Characterization Report for Single- Shell Tank 241-C-110. Rev. 0. WHC-SD-WM-TI-585, Westinghouse Hanford Company, Richland, Washington.
XII	C-110	39	Remund, K. M., L. Jensen. Statistical Characterization Report for Single- Shell Tank 241-C-110. Rev. 0. WHC-SD-WM-TI-585, Westinghouse Hanford Company, Richland, Washington.
XII	BX-107	40	WHC-EP-0739, Westinghouse Hanford Company, Richland, Washington.
XII	BX-107	40	WHC-SD-WM-TI-603, Rev. 0, Westinghouse Hanford Company, Richland, Washington.
XII	BX-107	41	WHC-EP-0739, Westinghouse Hanford Company, Richland, Washington.
XII	BX-107	41	WHC-SC-WM-TI-603, Rev. 0, Westinghouse Hanford Company, Richland, Washington.
VII	B-20 1	26	June 27, 1992. SST Waste Characterization Project: Core 26. Addendum 1A. Rev. 0. WHC-SD-WM-DP-037, Westinghouse Hanford Company, Richland, Washington.
VII	B-2 01	27	June 27, 1992. SST Waste Characterization Project: Core 27. Addendum 1A. Rev. 0. WHC-SD-WM-DP-037, Westinghouse Hanford Company, Richland, Washington.
VII	B-202	- 24	Ottmar, L., T. Frazier. January 23, 1992. 222-S Laboratory Analytical Batch: Core 24, Comp 1. Rev. 0. WHC-SD-WM-DP-034, Westinghouse Hanford Company, Richland, Washington.
VII	B-202	24	Ottmar, L., T. Frazier. January 23, 1992. 222-S Laboratory Analytical Batch: Core 24, Comp 2. Rev. 0. WHC-SD-WM-DP-034, Westinghouse Hanford Company, Richland, Washington.
VII	B-202	24	Wels, B., S. K. McFarland. June 11, 1992. 222-S Laboratory Analytical Batch: Core 24, Comp 1-Rework. Rev. 0. WHC-SD-WM-DP-034, Westinghouse Hanford Company, Richland, Washington.
VII	B-202	25	Ottmar, L., T. Frazier. January 23, 1992. 222-S Laboratory Analytical Batch: Core 25, Comp 1. Rev. 0. WHC-SD-WM-DP-034, Westinghouse Hanford Company, Richland, Washington.
VII	B-202	25	Ottmar, L., T. Frazier. January 23, 1992. 222-S Laboratory Analytical Batch: Core 25, Comp 2. Rev. 0. WHC-SD-WM-DP-034, Westinghouse Hanford Company, Richland, Washington.
VII	B-202	25	Wels, B., S. McFarland. June 11, 1992. 222-S Laboratory Analytical Batch Core 25, Comp 2-Rework. Rev. 0. WHC-SD-WM-DP-034, Westinghouse Hanford Company, Richland, Washington.
XVI	B- 110	1	Jones, T. E. May 14, 1990. SST Waste Characterization Project: Core 1 Data Report. Rev. 2. Pacific Northwest Laboratory, Richland, Washington

Table 4.2. Core Sample Analytical Data Source	Table 4.2.	Core Sample	Analytical	Data	Sources
---	-------------------	-------------	------------	------	---------

Table 4.2. (contd)

Group No.	Tank No.	Core No.	Source
XVI	B-110	2	Jones, T. E., S. G. McKinley, J. M. Tingey, T. M. Longaker, J. A. Gibson. October 2, 1990. SST Waste Characterization Project: Core 2 Data Report. Rev. 1. Pacific Northwest Laboratory, Richland, Washington.
XVI	B-110	3	Jones, T. E., S. G. McKinley, J. M. Tingey, T. M. Longaker. September 7, 1990. SST Waste Characterization Report: Core 3 Data Report. Rev. 1. Pacific Northwest Laboratory, Richland, Washington.
XVI	B- 110	4	Jones, T. E., S. G. McKinley, J. M. Tingey, T. M. Longaker, J. A. Gibson. October 19, 1990. SST Waste Characterization Report: Core 4 Data Report. Rev. 1. Pacific Northwest Laboratory, Richland, Washington.
XVI	B-110	9	Jones, T. E., S. G. McKinley, J. M. Tingey, T. M. Longaker, J. A. Gibson. December 5, 1990. SST Waste Characterization Report: Core 9 Data Report. Rev. 0. Pacific Northwest Laboratory, Richland, Washington.
XVI	B-110	10	Jones, T. E., S. G. McKinley, J. M. Tingey, T. M. Longaker, J. A. Gibson. January 7, 1990. SST Waste Characterization Report: Core 10 Data Report. Rev. 0. Pacific Northwest Laboratory, Richland, Washington.
XVI	B-110	16	Jones, T. E., S. G. McKinley, J. M. Tingey, T. M. Longaker, J. A. Gibson, B. M. Thornton. February 19, 1990. SST Waste Characterization Report: Core 16 Data Report. Rev. 0. Pacific Northwest Laboratory, Richland, Washington.
XVI	B-111	29	McKinley, S. G., L. R. Greenwood, E. W. Hoppe, R. T. Steele, J. M. Tingey, M. W. Urie. June 30, 1990. SST Waste Characterization Project: Cores 29 & 30 Data Report. Rev. 0. Pacific Northwest Laboratory, Richland, Washington.
XVI	B- 111	29	April 15, 1993. SST Waste Characterization Project: Core 29. Addendum 1A. Rev. 0. WHC-SD-WM-DP-041, Westinghouse Hanford Company, Richland, Washington.
XVI	B-111	30	McKinley, S. G., L. R. Greenwood, E. W. Hoppe, R. T. Steele, J. M. Tingey, M. W. Urie. June 30, 1990. SST Waste Characterization Project: Cores 29 & 30 Data Report. Rev. 0. Pacific Northwest Laboratory, Richland, Washington.
ΓV	S-104	42	WHC-SD-WM-DP-031, Rev. 0, Westinghouse Hanford Company, Richland, Washington.
ΓV	S-104	43	WHC-SD-WM-DP-031, Rev. 0, Westinghouse Hanford Company, Richland, Washington.
ΓV	S-104	44	WHC-SD-WM-DP-031, Rev. 0, Westinghouse Hanford Company, Richland, Washington.
XV	T- 111	3 1	WHC-SD-WM-DP-024, Westinghouse Hanford Company, Richland, Washington.
xv	T-111	33	WHC-SD-WM-DP-024, Westinghouse Hanford Company, Richland, Washington.

This situation may likely occur in the future due to the incomplete and sometime contradictory nature of some of the source data used in the sorting methodology, as well as deficiencies in the sampling and analytical procedures. However, it is expected that the majority of the tanks have been accurately grouped using the SORWT methodology. In the case of C-112 and C-109, it is uncertain what revisions to the tank groups should be made at this time. There are several possible outcomes. 1) This could be a poor group and all tanks should be shifted to the ungrouped category. 2) One of these tanks does not group with the others and only this tank should be shifted to the ungrouped category. It is impossible to know at this time which tank would not belong. 3) This is still a group, but the within group variability is large. The remaining tanks in this group have all been core sampled. When the analytical data on these samples are available, the appropriate response can be determined.

The core sample data packages contain a great deal of analytical data measured using several alternative digestion methods and analytical instrumentation. These measurements were often taken both on segment level aliquots and on core composites, which represent the nominal or average composition of an entire core. Since the SORWT model verification study is interested in comparing the differences between the mean nominal composition of one group versus the mean nominal composition of other groups, only core composite data for the analytes that significantly contribute to the overall character of the waste were considered. The analytes included in the verification study, along with the sample preparation method and analytical instrumentation, are presented in Table 4.3.

The analytical results data for the tanks and analytes included in the verification study were entered into a spreadsheet. The spreadsheet datafile used in the statistical analyses has been included in Appendix C. The first column identifies the SORWT group to which a tank belongs. Column 2 identifies the tank from which a particular core was sampled. Column 3 presents the core number of the analyzed sample. Core numbers have been assigned sequentially for each core sampled from Hanford Site waste tanks since 1989. Columns 4 and 5, respectively, identify the composite and sample from which analyses were obtained. Often, two separate but equivalent core composites were generated for a single core to investigate the ability to generate representative core composites. The analytical results for multiple core composites from a single core generally agree with one another. In addition, the analyses were conducted in duplicate for a particular sample. Occasionally, multiple samples for a single composite were analyzed. A complete set of Group No., Tank No., Core No., Composite No., and Sample No. represents a unique case of data. Columns 6 through 25 present the analytical results data for the analytes of interest. With the exception of ¹³⁷Cs, ⁹⁰Sr, and ^{239/240}Pu, which are reported in units of μ Ci/g, all results are presented in units of μ g/g. Column 26 presents the measured pH of the composite sample. The "." symbol represents missing data. If the data in the official core sample data packages were reported as below detection limit, then the detection limit was entered into the spreadsheet.

Bulk density was not reported for core composites in the data packages. Density was usually reported for each individual segment as it was extruded. Since the horizon for which density was measured is fundamentally different from the core composite analytical data, a separate spreadsheet was created for the density measurements. These data have also been presented in Appendix C.

PNL-9814 Rev. 2

4.5

Analyte	Sample Digestion Method	Analytical Method				
Al	Fusion Dissolution	Inductively Coupled Plasma/Atomic Emission Spectroscopy (ICP/AES)				
Bi	Fusion Dissolution	ICP/AES				
Cr	Fusion Dissolution	ICP/AES				
Fe	Fusion Dissolution	ICP/AES				
La	Fusion Dissolution	ICP/AES				
Mn	Fusion Dissolution	ICP/AES				
Na	Fusion Dissolution	ICP/AES				
Pb	Fusion Dissolution	ICP/AES				
Si	Fusion Dissolution	ICP/AES				
Zr	Fusion Dissolution	ICP/AES				
U	Fusion Dissolution	Laser Fluorimetry				
PO ₄ (aq)	Water Digestion	Ion Chromatography				
NO ₃	Water Digestion	Ion Chromatography				
NO ₂	Water Digestion	Ion Chromatography				
F	Water Digestion	Ion Chromatography				
Cl	Water Digestion	Ion Chromatography				
тос	Water Digestion	Furnace Combustion				
100	Direct Sample	Persulfate Oxidation				
¹³⁷ Cs	Fusion Dissolution	Gamma Energy Analysis (GEA)				
⁹⁰ Sr	Fusion Dissolution	Chemical Separations and Beta Counting				
^{239/240} Pu	Fusion Dissolution	Alpha Energy Analysis				

 Table 4.3.
 Analytes, Sample Preparation, and Analytical Method Used in the SORWT Model

 Verification Study

The first column reports the SORWT Group No. to which a particular tank is predicted to belong. The second column identifies the Tank No., and the final column reports the individual density measurements for each tank.

.

4.1.2 Graphical Description of the Verification Data Set

The data set utilized in the SORWT model verification study consists of 109 separate cases with 22 total measurements per case for a total of 2398 pieces of information to analyze. This is a rather large amount of information to assess and is only a small subset of the total data available. A useful tool for summarizing and understanding large data sets is a box plot, which is a graphical representation of the spread or variance in a given data set. Figure 4.1 is an example of a box plot for sodium (Na).

The example box plot shows the spread in the Na data for the five different SORWT groups included in the verification study. The vertical axis is Na concentration presented in units of $\mu g/g$. The horizontal axis represents the five different SORWT groups. The spread in the data is depicted by a box and whiskers plot. The median of a set of data is marked by a horizontal line in the box. The lower and upper hinges comprise the edges of the central box. The median splits the ordered set of data in half such that 50% of the values are above the median and 50% are below. The hinges split the remaining halves in half again such that the interior of the box represents 50% of the data. If we define the hinge-spread as the absolute value of the difference between the two values of the upper and lower hinges, the whiskers show the range in values that fall within 1.5 hinge-spreads of the hinges. Any data further than 1.5 hinge-spreads from the hinges are outliers and plotted as asterisks (*). Values that are more than three hinge-spreads away from the hinges are considered far outliers and plotted as open circles. Examples of both these types of outliers can be seen in Figure 4.1.

As can be clearly seen in the figure, the median value and range of values for analytes in some of the SORWT groups are substantially different from other SORWT groups. It is also clear that not all groups are different from one another for all analytes. It would appear that Groups XII and XVI show comparable Na concentrations and that Groups VII and XV are indistinguishable from one another. However, the spread of values from Groups XII and XVI do not approach the spread of values of Groups VII and XV. Group IV appears to be different from all the other groups presented.

Similar box plots were generated for each analyte included in the SORWT model verification study. These box plots have been presented as Appendix D. A review of these plots shows behavior similar to the example. The differences among groups for some of the analytes is quite striking. For aluminum, the concentration of Group IV is several times that of the other groups as would be expected for REDOX waste, since the REDOX solvent extraction process used aluminum nitrate as a salting agent. Lanthanum is another interesting plot. There is virtually no La in Groups XII, XVI, or IV, but there is a substantial concentration in Group VII and a lesser amount in Group XV. Again, this behavior is expected from process knowledge. A rare earth fraction (La) was used in a carrier precipitate in the Bismuth Phosphate 224 Building Plutonium Concentration Process, and Group VII is exclusively 224 waste, and 224 waste is the secondary waste in Group XV.

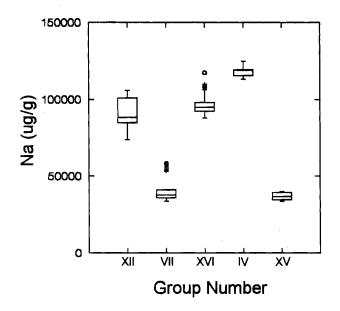


Figure 4.1. Box Plot of Sodium Concentration by SORWT Group

4.1.3 Characteristics of Waste Types Included in SORWT Verification Study

The five SORWT groups included in the verification study contain combinations of six different primary and secondary waste types (Table 4.1). These six different waste types are 224, 1C, 2C, TBP, 5-6, and R. The identifying characteristics of these six wastes are described below. These descriptions are based on Anderson (1990), Schneider (1951), discussions with senior technical staff, and information found in Appendix B of this document, which also provides a nominal composition for most major waste types.

4.1.3.1 Characteristics of 224 Waste

224 waste is from the final decontamination and concentration stage of the BiPO₄ process. Plutonium was decontaminated by oxidizing it with potassium permanganate and precipitating the byproducts with lanthanum fluoride. The decontaminated Pu-bearing solution was then reduced with ferrous ammonium sulfate, and the final product was precipitated with lanthanum fluoride. Lanthanum is the key indicator of 224 waste because this was the only stage at which La was introduced to the Hanford waste tanks. Manganese is a good analyte to differentiate from other BiPO₄ waste because permanganates were used as oxidizing agents only during the final decontamination and concentration stage.

224 waste will also contain appreciable amounts of Bi, Cr, Fe, and PO_4 from additions to the product stream in earlier BiPO₄ stages. These four analytes are characteristic of all BiPO₄ wastes.

Bismuth was added as both sodium bismuthate (strong oxidizer) and bismuth phosphate (precipitation agent). Iron was added in the form of ferrous ammonium sulfamate as a Pu reducing agent. Chromium was added in the form of sodium dichromate as a stabilizing oxidizer for the stronger sodium bismuthate. Although greater concentrations of fluoride ions in 224 waste would be expected relative to other BiPO₄ wastes because of the lanthanum fluoride precipitations, there are also appreciable amounts of fluoride ions in 1C and 2C wastes. Less U would be expected in 224 waste than earlier decontamination cycle wastes because the U is generally removed in the earlier stages of the process. According to the nominal compositions found in Appendix B, an order of magnitude lower concentration of PO₄ in 224 waste relative to other BiPO₄ wastes might be expected.

4.1.3.2 Characteristics of 1C Waste

1C waste is the aqueous solution remaining after the first product decontamination cycle of the BiPO₄ process. Nearly all of the U and 90% of the fission products were previously removed from the stream as metal waste. 1C wastes contained 10% of the fission products and 1% of the Pu (Anderson 1990). This waste type contains appreciable amounts of Bi, Cr, Fe, and PO₄ added as process chemicals for reasons detailed above. Cladding waste generated from the removal of aluminum cladding from the fuel slugs was added in many cases to the 1C waste and comprised approximately 24% of the waste stream. Thus, there may be instances where the model misclassifies a tank or number of tanks with 1C waste, depending on if CW was commingled and this fact was not well documented. The aluminum cladding was dissolved in a solution of sodium nitrate/sodium hydroxide. Therefore, much greater concentrations of Al, Na, and NO₃ relative to other BiPO₄ wastes would be expected in comparison with 1C/CW effluent streams. The CW was intended to contain few fission products; La and Mn would not be expected to be found in 1C waste.

4.1.3.3 Characteristics of 2C Waste

2C waste is the aqueous solution remaining after a second decontamination of the product cake from the first decontamination in the BiPO₄ process. 2C waste should have similar characteristics as 1C waste but with fewer fission products. This waste type contains appreciable amounts of Bi, Cr, Fe, and PO₄ added as process chemicals for reasons detailed for 224 waste. Anderson (1990) claims that 2C waste contains only 0.1% of the fission products and 1% of the Pu. This is consistent with the notion that most of the fission products would have been removed from the product stream in the previous decontamination cycle. 2C waste did NOT have CW added to the waste stream, so there should be a noticeable decrease in the Al, Na, and NO₃ concentrations relative to 1C wastes; La and Mn would not be expected to be found in 2C waste.

4.1.3.4 Characteristics of TBP Waste

Tributyl phosphate waste was generated as a result of the extraction process at U Plant to recover uranium metal from the metal waste produced in the $BiPO_4$ process. This waste was composed of

concentrated, neutralized aqueous effluents from the primary extraction column and from the solvent wash. TBP waste should contain very little Pu and a larger concentration of U relative to other $BiPO_4$ wastes; La and Mn would not be expected to be found in TBP waste.

4.1.3.5 Characteristics of 5-6 Waste

In Appendix B, 5-6 is described as a very hot waste that collected in the bottom of Section 5 at B Plant as a result of boilover during dissolving and neutralization during the BiPO₄ process. This is not a very detailed description; however, "a very hot waste" can be assumed to mean a relatively large concentration of fission products. Also, this waste would have a relatively large concentration of Na and NO₃ from the dissolution in HNO₃ and neutralization with NaOH.

Further research has revealed that this waste could also be dilute MW, dilute 1C waste, or water from canyon deck flushes or cooling/heating coil leakage. According to the Bismuth Phosphate manual, the 5-6 waste was to be sent to the concrete 361 tank and overflow to ground like the 224 waste if it was low in radioactivity; or sent to the 1C cascade if it was high in radioactivity, according to George Borsheim, WHC. The highly variable composition of 5-6 waste raises some doubt on whether 5-6 should be considered a characteristic waste.

4.1.3.6 Characteristics of R Waste

R waste is the high-level fraction of the process waste generated in the REDOX process. The REDOX process was a fundamentally different process from the BiPO₄ process and generated characteristically different wastes. REDOX was an organic solvent extraction based process. REDOX was more efficient than BiPO₄ and generated high-level wastes that were much more concentrated in fission products. In fact, the concentrations of fission products were so great that R waste often generated enough heat to self-boil. The reduction and oxidation of the product Pu was generally carried out in the smaller volume organic phase and required fewer process chemicals.

One characteristic expected in R waste would be high Al concentrations from a compound commonly known as ANN (aluminum nitrate nono hydrate) although likely not as high as CW. This compound was added to Pu and U bearing solutions as a salting agent, enabling Pu to be extracted into the organic phase (hexone). Other characteristics expected of R waste would be the presence of Cr and Fe added as oxidizing (dichromates) and reducing agents (ferrous ammonium sulfamate), respectively.

A significantly lower concentration of Fe relative to the $BiPO_4$ wastes would be expected because the reduction of Pu was conducted in a much smaller volume organic phase in the REDOX process and required smaller amounts of ferrous ammonium sulfamate. Another contrast with $BiPO_4$ wastes would be the absence of Bi and La and a drastically smaller concentration of PO_4 . A higher concentration of NO_3 , relative to most $BiPO_4$ wastes, would also be expected.

4.2 Analysis of Variance Results

The ANOVA performed for each analyte included in the SORWT model verification study used the general linear model of the SYSTAT for Windows^(a) statistical data analysis software package. If a significant grouping effect was observed, then a Tukey pairwise comparison was also conducted for each analyte to investigate which groups were significantly different from the others. The output reports generated by the statistical software for each analyte are presented in Appendix E. Each page of Appendix E represents the analysis of a different analyte; the top portion of each page displays the ANOVA table.

The ANOVA table provides two estimates for the variance, one between groups and one within groups. If the null hypothesis (i.e., no differences between SORWT groups) is accurate, then the estimate for the between-group variance should be similar in magnitude to the within-group estimate of the variance. Conversely, if the between-group estimate of the variance is significantly greater than the within-group estimate, then the null hypothesis would be untenable, and some of the between-group variation must be caused by real differences between treatment groups.

The F-Ratio is defined as the ratio of the between-treatment variance (mean sum of the squares) and the within-treatment variance. (This value is also reported in the ANOVA table.) This ratio should follow an F distribution for the appropriate numbers of degrees of freedom. The significance of the F-Ratio is called a P-value and can be determined from the relevant F distribution. The significance is the fractional probability of the F-Test ratio happening only by random chance. The benchmark probabilities typically used to test the significance of differences between means is 5% and 1%, which correspond to significances of 0.05 and 0.01. For the purposes of the SORWT model verification study, the 5% benchmark was selected. If the significance is greater than the benchmarks, then the differences between treatment means can be explained by random chance. If the significances are below the benchmarks, then the discrepancies between treatment means cannot be explained by random chance, and real differences exist between the subject groups. The P-Value for each analyte is included in the ANOVA table.

A summary of the ANOVA results for each of the analytes tested is presented in Table 4.4. As shown in Table 4.4, all 22 analytes and measurements listed have a significance well below the benchmark 5% level. In fact, all but two analytes have a significance below 0.1%. Table 4.4 indicates there is virtually no probability that the differences between the means of the SORWT groups are due only to random chance. Therefore, the null hypothesis is invalid, and the data strongly support the premise that SORWT groups exist.

Since a significant grouping effect was observed, a Tukey pairwise comparison was performed to identify which groups were significantly different from one another. This comparison can be found on the bottom portion of each page in Appendix E. The Tukey pairwise comparison first generates a matrix of pairwise mean differences. These are the differences between the mean concentrations of a

⁽a) SYSTAT for Windows is a registered trademark of SYSTAT, Inc.

			Group	Group	Group	Group	Group
		Significanc	VII	IV	XII	XV	XVI
	F-Test	e	Mean	Mean	Mean	Mean	Mean
Analyte	Ratio	(P-value)	(μg/g)	(μg/g)	(µg/g)	(µg/g)	(μg/g)
Al	5,514.85	0.000	3,490	117,000	14,323	570	1,425
Bi	45.15	0.000	61,753	39	17,356	23,563	19,354
Cr	199.78	0.000	2,835	2,353	685	1,799	854
Fe	75.35	0.000	10,156	1,424	10,812	18,038	17,486
La	2,284.41	0.000	13,592	9	8	4,108	74
Mn	64.67	0.000	14,508	1,150	58	6,283	97
Na	385.20	0.000	41,364	118,250	91,133	36,950	96,359
РЬ	15.11	0.000	1,125	39	181	365	750
Si	5.58	0.000	15,648	1,326	6,933	5,565	10,173
Zr	3.76	0.007	29	21	153	4	134
U	11.95	0.000	414	6,685	4,249	2,555	209
PO4 (aq)	59.63	0.000	1,706	1,310	22,256	15,538	24,555
NO3	47.38	0.000	56,589	186,300	121,261	41,238	145,000
NO ₂	21.38	0.000	719	25,730	7,638	897	22,910
F	206.39	0.000	6,134	132	8,261	2,301	1,761
CI	106.63	0.000	1,225	3,162	1,116	450	1,153
тос	5.38	0.001	8,768	1,606	739	3,119	634
			(µCi/g)	(µCi/g)	(µCi/g)	(µCi/g)	(μCi/g)
¹³⁷ Cs	7.34	0.000	0.403	62.308	18.533	0.166	40.638
[%] Sr	64.54	0.000	3.17	309.583	7.188	5.414	133.436
^{239/240} Pu	13.92	0.000	0.606	0.282	0.07	0.139	0.107
			(g/ml)	(g/ml)	(g/ml)	(g/ml)	(g/ml)
Density	13.89	0.000	1.171	1.64	1.286	1.235	1.271
рН	84.88	0.000	NA	12.803	10.631	11.65	8.221

 Table 4.4.
 Summary of ANOVA for SORWT Verification Study

pair of groups. The routine then compares this difference to the mean square error for the analyte calculated from the ANOVA table and calculates a P-value (probability) that the difference between the mean concentrations of any two groups is due to random chance. These P-values are presented as the matrix at the bottom of each page in Appendix E.

Tables 4.5 and 4.6 present a summary of the Tukey pairwise comparisons. These tables respectively present the number of analytes that are significantly different between any pair of SORWT

Group No.	VII	IV	XII	XV
IV	18			
XII	14	12		
XV	10	14	9	
XVI	16	13	8	9

 Table 4.5.
 Number of Analytes Showing Significant Difference Between Groups

Table 4.6. Analytes Showing Significant Concentration Difference Between Groups

Group No.	VII	IV	ХП	XV
IV	Al, Bi, Cr, Fe, La, Mn, Na, Pb, Si, 137 Cs, 90 Sr, $^{239/240}$ Pu, U, NO ₃ , NO ₂ , F, Cl, TOC			
XII	Al, Bi, Cr, La, Mn, Na, Pb, Si, $^{239/240}$ Pu, U, PO ₄ (aq), NO ₃ , F, TOC	Al, Bi, Cr, Fe, Na, 137 Cs, 90 Sr, PO ₄ (aq), NO ₃ , NO ₂ , F, Cl		
XV	Bi, Cr, Fe, La, Mn, Pb, ^{239/240} Pu, PO ₄ (aq), F, Cl	Al, Bi, Cr, Fe, La, Mn, Na, 137 Cs, 90 Sr, PO ₄ (aq), NO ₃ , NO ₂ , F, Cl	Al, Cr, Fe, La, Mn, Na, NO ₃ , F, Cl	
XVI	Al, Bi, Cr, Fe, La, Mn, Na, Pb, 137 Cs, $^{239/240}$ Pu, PO ₄ (aq), NO ₃ , NO ₂ , F, TOC, 90 Sr	Al, Bi, Cr, Fe, Na, Pb, Si, ⁹⁰ Sr, U, PO ₄ (aq), NO ₃ , F, Cl	Al, Fe, Na, Pb, ⁹⁰ Sr, U, NO ₂ , F	Cr, La, Mn, Na, 90 Sr, PO ₄ (aq), NO ₃ , NO ₂ , Cl

groups and a listing of which analytes differ significantly in the pair. As shown in Table 4.5, 18 out of 20 analytes were significantly different between Group VII and Group IV. The smallest number of analytes that were significantly different between groups was eight analytes when comparing Group XVI to Group XII. More than half the analytes considered in this study were significantly different for 7 of the 10 pairwise comparisons. This is another strong indication that the grouping methodology utilized by the SORWT model predicts real differences between the characteristics of tank groups. Density and pH were not included in these Tukey summary tables.

4.3 Descriptive Statistics of SORWT Group Data

In addition to the ANOVA study, descriptive statistics were calculated for each analyte by SORWT group. The descriptive statistics routine provides useful information such as number of cases, maximum and minimum values, range of values, mean values, standard deviations, variance, and coefficient of variance (CV). The report outputs from this routine for each group and analyte are included as Appendix F.

A comparison between the ungrouped composite results and the SORWT group results is summarized in Table 4.7. This table presents the analyte mean value and the CV for the ungrouped data and

	Group VII Mean		Group IV Mean		Group XII Mean		Group XV Mean		Group XVI Mean		Overali Mean	
Analyte	(µg/g)	c.v.	(µg/g)	c.v.	(µg/g)	c.v.	(µg/g)	c.v.	(µg/g)	c.v.	(µg/g)	c.v.
Al	3,490	1.35	117,000	0.034	14,323	0.099	570	0.189	1,425	0.692	17,418	2.11
Bi	61,753	0.528	38.8	0.192	17,356	0.305	23,562	0.138	19,354	0.127	24,079	0.927
Cr	2,835	0.22	2,353	0.062	685	0.393	1,799	0.043	854	0.163	1,399	0.63
Fe	10,156	0.487	1,424	0.469	10,812	0.13	18,038	0.121	17,486	0.188	13,281	0.469
La	13,592	0.092	9.41	0.117	7.97	0.004	4,108	0.15	73.6	0.302	2,599	1.94
Mn	14,508	0.574	1,150	0.336	58.1	0.298	6,282	0.042	97.2	0.26	3,072	2.05
Na	41,3 64	0.206	118,250	0.031	91,133	0.105	36,950	0.073	96,359	0.061	84,305	0.323
Pb	1,125	0.574	38.6	0.076	181	0.828	365	0.288	750	0.732	600	0.969
Si	15,648	1.34	1,326	0.282	6,933	0.105	5,565	0.056	10,173	0.264	9,122	1.04
Zr	28.9	0.959	21.2	0.463	153	0.295	4	0.002	134	1.6	96.6	1.63
U	414	0.561	6,685	0.103	4,249	1.7	2,555	0.481	209	0.164	2,130	1.87
PO4 (aq)	1,706	0.289	1,310	0.352	22,256	0.523	15,538	0.1	24,555	0.067	14,591	0.806
NO3	56,589	0.131	186,300	0.076	121,261	0.15	41,238	0.079	145,000	0.361	112,950	0.503
NO2	719	0.286	25,730	0.122	7,638	0.602	897	0.198	22,910	0.756	12,091	1.16
F	6,134	0.073	132	0.346	8,261	0.206	2,301	0.377	1,761	0.147	4,179	0.756
CI	1,225	0.38	3,162	0.05	1,116	0.332	450	0.102	1,153	0.152	1,351	0.594
TOC	8,768	1.42	1,606	0.35	739	0.323	3,119	0.255	634	0.675	2,416	2.31
	(µCi/g)		(µCi/g)		(µCi/g)		(µCi/g)		(µCi/g)		(µCi/g)	
¹³⁷ Cs	0.403	1.11	62.3	0.053	18.5	0.263	0.166	0.377	40.6	1.39	28.8	1.48
⁹⁰ Sr	3.17	0.595	310	0.081	7.19	0.409	5.414	0.372	133	0.751	92.4	1.31
^{239/240} Pu	0.606	0.897	0.282	0.373	0.07	0.432	0.139	0.051	0.107	0.185	0.231	1.39
	(g/ml)		(g/ml)		(g/ml)		(g/ml)		(g/ml)		(g/ml)	· · ·]
Density	1.171	0.114	1.64	0	1.286	0.124	1.235	0.052	1.271	0.074	1.24	0.109
pН	NA	NA	12.8	0.074	10.6	0.063	11.6	0	8.22	0.054	10.4	0.186

 Table 4.7.
 Nominal Compositions of Five SORWT Groups

each of the SORWT groups. The CV is defined as the standard deviation divided by the mean value. Since the CVs is normalized by its mean, all CVs are unitless and comparable to each other.

As shown in Table 4.7, there is a dramatic decrease in the CV for most analytes when the data have been categorized by SORWT group. This observation tends to strengthen the conclusion that the SORWT grouping methodology accurately identifies real distinctions between the waste characteristics of different groups.

4.4 Pairwise Comparisons

The analytical data from recent core samples collected from the waste tanks strongly support the validity of the SORWT model grouping methodology. Another qualitative observation that can be made from these data is to compare expected indicator analytes for the various waste types found in the tanks contained in the verification study with the analytical data from the same tanks. There will be certain differences in waste characteristics of the various SORWT groups that would be expected based upon the waste type. The expected differences can be confirmed or dismissed by the actual analytical data.

4.4.1 Expected Compositional Differences Between SORWT Groups

This section makes pairwise comparisons between SORWT groups and identifies expected differences in characteristics based upon the waste types making up a SORWT group. This effort is somewhat complicated, because three of the five SORWT groups included in the verification study have a primary and secondary waste type. Some qualitative interpretation is required to determine the influence the characteristics of each waste type has on the overall character of the group. It is important to note that very few SORWT groups, 4 out of 24, have only a primary waste type.

First, the expected characteristics of each SORWT group are determined. These determinations are made in a semi-quantitative fashion such that the concentrations of 12 analytes are placed into one of several categories: very high, high, medium, low, and none. The definitions of these categories are provided in Table 4.8.

The categories have slightly different definitions for radionuclides and nonradionuclides. The characteristics of each SORWT group included in the verification study were determined using the categories above and the descriptions of the each waste type from the previous section. Fission products are the sum of the ¹³⁷Cs and ⁹⁰Sr activity concentrations. The expected characteristics are summarized in Table 4.9. A pairwise order-of-magnitude comparison was then made between each SORWT group. These pairwise comparisons represent the expected differences between the analyte concentrations of the respective SORWT groups. The pairwise comparisons are also included in Table 4.9.

The comparisons listed in Table 4.9 are the expected concentration category of the row group relative to the expected concentration category of the column group. If the expected concentration

Nonradionuclides (µg/g)	Radionuclides (µCi/g)
100,000 < Very High	100 < High
10,000 < High < 100,000	10 < Medium < 100
1,000 < Medium < 10,000	Low < 10
100 < Low < 1,000	
None < 100	

 Table 4.8.
 Concentration Categories for Expected Characteristics

Table 4.9. Pairwise Comparison of Expected Characteristics

	Characteristic			Pairwi	ise Comparis	ion Group	
SORWT Group	Summary of SORWT Group	Comparison Analytes	Group VII	Group IV	Group XII	Group XV	Group XVI
	High Na	Al	_			0	0
	High NO ₃	Bi		+++	0	0	0
	High La	Cr		0	0	0	0
	High Mn	Fe		+	0	0	0
	High Bi	La		+++	+++	+	+++
VΠ	High Fe	Mn		?	+++	+	+++
224	Medium PO ₄	Na				0	-
	Medium Cr	U		-	-	0	0
	Medium F	NO ₃		-	-	0	-
	Low Al	PO ₄ (aq)		+	-	-	-
	Low U	F		?	0	0	0
	Low Fission Products	Fission Products			-	0	
		Al	++		0	++	++
1	Very High NO ₃	Bi					
	Very High Na	Cr	0		0	0	0
	High Al	Fe	-			-	-
	High Fission Products	La			0		0
IV	Medium Iron	Mn	?		?	?	?
R	Medium Cr	Na	+		0	+	0
	Medium U	U	+		0	+	+
	Low PO ₄	NO ₃	+		0	+	0
	No Bi	PO ₄ (aq)	-				
	No La	F	?		?	?	?
		Fission Products	++		+	++	0

Table 4.9. (contd)

	Characteristic			Pairw	ise Compari	son Group	
SORWT	Summary of SORWT	Comparison	Group	Group	Group	Group	Group
Group	Group	Analytes	VII	IV	XII	XV	XVI
	Very High Na	Al	++	0		++	++
	Very High NO ₃	Bi	0	+++		0	0
	High Al	Cr	0	0		0	0
	High Bi	Fe	0	+		0	0
	High PO ₄	La		0			0
	High Fe	Mn		?			0
IC TBP	Medium U	Na	+	0		+	0
	Medium Fission Products	U	+	0		+	+
	Medium Cr	NO ₃	+	0		+	0
	Medium F	PO ₄ (aq)	+	++		0	0
	No La	F	0_	?		0	0
	No Mn	Fission Products	+	-		+	-
	High Na	Al	0				0
	High NO ₃	Bi	0	+++	0		0
	High Bi	Cr	0	0	0		0
	High PO ₄	Fe	0	+	0		0
	High Fe	La	-	++	++		++
XV	Medium F	Mn	-	?	++		++
2C 224	Medium La	Na	0	-	-		-
	Medium Mn	U	0	-	-		0
	Medium Cr	NO ₃	0	-	-		-
	Low Al	PO ₄ (aq)	+	++	0		0
	Low U	F	0	?	0		0
	Low Fission Products	Fission Products	0		-		
	Very High Na	Al	0			0	
	Very High NO ₃	Bi	0	+++	0	0	
	High Bi	Cr	0	0	0	0	
	High PO ₄	Fe	0	+	0	0	
	High Fe	La		0	0		
XVI	High Fission Products	Mn		?	0		
2C 5-6	Medium F	Na	+	0	0	+	
	Medium Cr	U	0	-	-	0	
	Low Al	NO ₃	+	• 0	0	+	
	Low U	PO_4 (aq)	+	++	0	0	
	No La	F	0	?	0	0	
	No Mn	Fission Products	++	0	+	++	

category of the row group is an order of magnitude lower than the expected concentration group of the column, a "-" was placed in Table 4.9. If the concentration category difference was two orders of magnitude lower, then "--" was placed in the table. If the expected concentration of the row group was greater than the expected concentration of the column group, then a "+" was entered into the table. The number of symbols represents the number of orders of magnitude difference that would be expected between the concentrations of the respective groups. If there was no expected order of

4.17

magnitude difference between the groups, a "0" was entered in the table. The "?" designates a comparison that could not be made due to lack of information. The pairwise comparison was made for each of the analytes listed in Table 4.9.

An example of determining the expected difference between two SORWT groups is the comparison of Bi between row Group VII and column Group IV. The Bi concentration of the row group is expected to be "high," whereas the expected concentration of Bi in the column group is expected to be "none." Therefore, the concentration of Bi in Group VII is expected to be three orders of magnitude greater than Group IV and would be notated in Table 4.9 as "+ + +."

4.4.2 Comparison of Observed and Expected Differences Between Different SORWT Groups

A similar exercise was accomplished for the observed characteristic differences between SORWT groups. First, the observed characteristics of the SORWT groups were determined using the concentration categories in Table 4.8 and the nominal compositions of the SORWT groups from Table 4.7.

The observed characteristics of the SORWT groups are summarized in Table 4.10. The pairwise comparison was then repeated for the observed characteristics using the same notation scheme, and the results are also presented in Table 4.10.

The observed group characteristics and pairwise comparison were then compared with the expected characteristics, and the results are summarized in Table 4.11. The majority of the observed characteristics matched the corresponding expected characteristics. Table 4.11 presents the ratio of number of analytes in agreement to the total number of analytes compared. This comparison was made for the group characteristics and each of the pairwise comparisons.

There is a minimum agreement between the observed and expected characteristics of 8 out of 10 analytes compared for Group IV and a maximum agreement of 11 out of 12 for Groups VII, XII, and XV. In fact, there was almost a 12-for-12 agreement with Group XII, except that the concentration of Na was just barely below the threshold (91,133 compared with 100,000) of the concentration category expected. The high degree of agreement between the observed characteristics determined by laboratory analyses for each SORWT group and the expected characteristics based solely on the waste types is further evidence that the SORWT grouping methodology is accurately and effectively predicting real distinctions between groups of tanks.

SORWT	Observed	Comparison		Pairwis	e Compariso	n Group	<u>.</u>
Group	Characteristics of SORWT Group	Analytes	Group	Group	Group	Group	Group
	-		VII	IV	XII	XV	XVI
	High Na	Al			-	+	0
	High NO ₃	Bi		+++	0	0	0
	High La	Cr		0	0	0	0
	High Mn	Fe		+	0	0	0
	High Bi	La		+++	+++	+	+++
VП	High Fe	Mn		+	+++	+	+++
224	Medium PO ₄	Na		-	0	0	0
	Medium Cr	U		-	-	-	0
	Medium F	NO ₃		-	-	0	-
	Medium Al	PO ₄ (aq)		0	-	-	-
	Low Fission Products	F		+	0	0	0
	Low U	Fission Products			-	0	
	Very High Al	Al	++		+	+++	++
	Very High NO ₃	Bi					
	Very High Na	Cr	0		0	0	0
	High Fission Products	Fe	-		-	-	-
	Medium Iron	La			0		0
IV	Medium Cr	Mn	-		++	0	++
R	Medium U	Na	+		+	+	+
	Medium PO ₄	U	+		0	0	+
	Medium Mn	NO ₃	+		0	+	0
	Low F	PO_4 (aq)	0		-	-	-
	No Bi	F	-		-	-	-
	No La	Fission Products	+		+	++	0
	Very High NO ₃	Al	+	-		 ++	+
	High Na (~Very High)	Bi	0	+++		0	o
	High Al	Cr	0	0		0	0
	High Bi	Fe	0	+		0	0
	High PO₄	La		0			· 0
хп	High Fe	Mn					0 I
1C TBP	Medium U	Na	0	_		0	0
	Medium Fission Products	U	+	0		Ő	+
	Medium F	NO ₃	+	0 0		+	0
	Medium Cr	PO_4 (aq)	+	+		Ó	0
	No La	F	Ó	+		0 0	0
	No Mn	Fission Products	0 0	_		÷.	-
			<u> </u>	L		<u> </u>	

Table 4.10. Pairwise Comparison of Observed Characteristics

.

.

....

**

-

••

.

SORWT	Observed	Comparison		Pairwis	e Compariso	on Group	
Group	Characteristics of SORWT Group	Analytes	Group VII	Group IV	Group XII	Group XV	Group XVI
	High Na	Al	-				-
	High NO ₃	Bi	0	+++	0		0
	High Bi	Cr	0	0	0		0
	High PO ₄	Fe	0	+	0		0
	High Fe	La	-	++	++		++
XV	Medium F	Mn	-	0	++		++
2C 224	Medium La	Na	0	-	0		0
	Medium Mn	U	+	0	0		+
	Medium Cr	NO ₃	0	-	-		-
	Medium U	PO ₄ (aq)	+	+	0		0
	Low Al	F	0	+	0		0
	Low Fission Products	Fission Products	-		-		
	Very High NO ₃	Al	0			+	
	High Na (~Very High)	Bi	0	+++	0	0	
	High Bi	Cr	0	0	0	0	
	High PO ₄	Fe	0	+	0	0	
	High Fe	La		0	0		
XVI	High Fission Products	Mn			0		
2C 5-6	Medium F	Na	0	_	0	0	
	Medium Cr	U	0	-	-	-	
	Medium Al	NO ₃	+	0	0	+	
	Low U	PO ₄ (aq)	+	+	0	0	
	No La	F	0	+	0	0	
	No Mn	Fission Products	+	0	+	++	

Table 4.10. (contd)

Table 4.11. Comparison of Observed to Expected Characteristics

		Pairwise Comparison Group					
SORWT Group	Comparison of Group Characteristic Summaries	Group VII	Group IV	Group XII	Group XV	Group XVI	
VII	11/12						
IV	8/10	9/10					
XII	11/12 (~12/12)	10/12	7/10				
XV	11/12	10/12	7/10	10/12			
XVI	10/12 (~11/12)	11/12	8/10	11/12	9/12		

5.0 Nominal Compositions and Inventory of Five SORWT Groups

The nominal compositions of Groups VII, IV, XII, XV, and XVI were determined by calculating a mean concentration for each of the analytes included in the verification study across the tanks sampled within a particular SORWT group. The variance around these average group concentrations was also calculated. The inventory for each group was determined by projecting the average concentration to the total waste volume of the group.

In Section 4, Table 4.7 describes the nominal compositions of Groups VII, IV, XII, XV, and XVI. The overall composition (the nominal composition of all tanks regardless of group) is also included for comparison. In this section, Tables 5.1 through 5.5 describe each group individually, along with the corresponding nominal composition. The description of each group includes the number of tanks, the name of each tank, the primary and secondary waste types, and the total waste volume.

The nominal compositions of each group are based on the 20 analytes studied. The density and pH of each group are also included for comparison. The mean concentrations and coefficients of variance were calculated using the data from all core composites analyzed within the appropriate group. The mean concentration is listed in micrograms of analyte per gram of waste with the exception of ¹³⁷Cs, ⁹⁰Sr, and ^{239/240}Pu. These values are listed as microcuries of radioactivity per gram of waste.

The CV is defined as the standard deviation divided by the mean concentration. The mass of each analyte was determined using the mean density and total waste volume of the group, the mean concentration of the analyte, and a conversion factor to obtain the appropriate units. The mass of each analyte and the total mass are listed in kilograms. The following equations illustrate the calculations performed to obtain the inventories for each group. Subscript A indicates analyte properties, while subscript W indicates total waste properties.

$$\operatorname{Mass}_{W}(kg_{w}) = \operatorname{Waste}_{Volume}(kgal_{W}) * \frac{1,000gal_{W}}{kgal_{W}} * \frac{3.785L_{W}}{gal_{W}} * \frac{1,000ml_{W}}{L_{W}} * \operatorname{Denisty}\frac{g_{W}}{ml_{W}} * \frac{kg_{W}}{1,000g_{W}}$$

$$\operatorname{Mass}_{A}(\operatorname{kg}_{A}) = \operatorname{Mass}_{W}(\operatorname{kg}_{W}) * \frac{1,000g_{W}}{\operatorname{kg}_{W}} * \operatorname{Conc.}^{Halyte} \frac{\mu g_{A}}{g_{W}} * \frac{g_{A}}{10^{6}\mu g_{A}} * \frac{\operatorname{kg}_{A}}{1,000g_{A}}$$

Radioactivity_A(Ci_A)=Mass_W(kg_w) *
$$\frac{1,000g_W}{kg_W}$$
 * $\frac{\text{Analyte}}{\text{Activity}} \frac{\mu \text{Ci}_A}{g_W}$ * $\frac{\text{Ci}_A}{10^6 \mu \text{Ci}_A}$

Description of	Individual Tanks Within (Group VII	<u></u>	<u> </u>
No. of Tanks:	8		··	<u> </u>
Tank Name	Number of Cores Taken	Primary Waste Type	Secondary Waste Type	Waste Volume (kgal)
B-201	2	224		29
B-202	2	224		27
B-203	0	224		51
B-204	0	224		50
T-20 1	0	224		29
T-202	0	224	1	21
T-203	0	224		35
T-204	0	224		38
Total:	4			280
Analyte Invent	ory and Mean Concentrat	ions of Group VII		<u> </u>
Analytes	Mean Concentration	Coeff. of Variance	Inv	entory
	(µg/g)			(kg)
Al	3,490	1.35	4,331	
Bi	61,753	0.528	76,637	
Cr	2,835	0.22	3,518	
Fe	10,156	0.487	12,604	
La	13,592	0.092	16,868	
Mn	14,508	0.574	18,005	
Na	41,364	0.206	5:	1,334
РЬ	1,125	0.574	1	,3 9 6
Si	15,648	1.34	19	9,420
Zr	28.9	0.959		36
U	414	0.561		514
PO₄ (aq)	1,706	0.289	2	,117
NO3	56,589	0.131	70	0,228
NO ₂	719	0.286		892
F	6,134	0.073	7	,612
Cl	1,225	0.38		,520
TOC	8,768	1.42		NA
	(µCi/g)			(Ci)
¹³⁷ Cs	0.403	1.11		500
⁹⁰ Sr	3.17	0.595	3	,934
^{239/240} Pu	0.606	0.897	~	752
	(g/ml)			(kg)
Density	1.171	0.114	1,2	41,026
pН	NA	NA		

Table 5.1. Nominal Composition and Inventory of Group VII

.

Description of	Individual Tanks Within Gr	oup IV		
No. of Tanks:	10	···· · · · · · · · · · · · · · · · · ·		<u></u>
Tank Name	Number of Cores Taken	Primary Waste Type	Secondary Waste Type	Waste Volume (kgal)
SX-112	0	R		92
SX-108	0	R		87
SX-107	0	R		104
SX-109	0	R		250
SX-115	0	R		12
SX-110	0	R		62
SX- 111	0	R		125
SX-114	0	R		181
U-101	0	R		25
S-104	3	R		294
Total:	3			1,232
Analyte Invent	ory and Mean Concentration	ns of Group IV		
Analytes	Mean Concentration	Coeff. of Variance	Inve	entory
	(µg/g)	······································	()	kg) .
Al	117,000	0.034	894	,759
Bi	38.8	0.192	2	97
Cr	2,353	0.062	17,995	
Fe	1,424	0.469	10,890	
La	9.41	0.117	,	72
Mn	1,150	0.336	8,	795
Na	118,250	0.031		1,319
Рb	38.6	0.076	2	95
Si	1,326	0.282	10	,141
Zr	21.2	0.463	1	.62
U	6,685	0.103	51	,124
PO ₄ (aq)	1,310	0.352	10	,018
NO ₃	186,300	0.076		24,732
NO ₂	25,730	0.122		5,771
F	132	0.346	,	009
C1	3,162	0.05	24,181	
TOC	1,606	0.35		,282
107	(µCi/g)			Ci)
¹³⁷ Cs	62.3	0.053		5,440
⁹⁰ Sr	310	0.081		70,730
^{239/240} Pu	0.282	0.373		.157
	(g/ml)			kg)
Density	1.64	NA	7,64	47,517
pH	12.8	0.074		

Table 5.2. Nominal Composition and Inventory of Group IV

•

Description of	Description of Individual Tanks Within Group XII							
No. of Tanks:	: 4							
Tank Name	Number of Cores Taken	Primary Waste Type	Secondary Waste Type	Waste Volume (kgal)				
C-110	3	1C	TBP	187				
BX-107	2	1 C	TBP	345				
T-108	0	1 C	TBP	44				
B-106	0	1 C	TBP	117				
Total:	5	· · · · · · · · · · · · · · · · · · ·		693				
Analyte Inver	ntory and Mean Concent	trations of Group XII	· · · · · · · · · · · · · · · · · · ·					
Analytes	Mean Concentration	Coeff. of Variance	Inv	entory				
1	(µg/g)		((kg)				
Al	14,323	0.099	48	3,314				
Bi	17,356	0.305	58	3,545				
Cr	685	0.393	2,311					
Fe	10,812	0.13	36	5,471				
La	7.97	0.004	27					
Mn	58.1	0.298		196				
Na	91,133	0.105	30	7,408				
Pb	181	0.828	j .	611				
Si	6,933	0.105	23	3,386				
Zr	153	0.295		516				
U	4,248	1.7	14	4,329				
PO ₄ (aq)	22,256	0.523	7	5,074				
NO ₃	121,261	0.15	40	9,036				
NO ₂	7,638	0.602	2:	5,764				
F	8,261	0.206	2	7,866				
Cl	1,116	0.332	3	,764				
TOC	739	0.323	2	,493				
	(µCi/g)			(Ci)				
¹³⁷ Cs	18.5	0.263	62,404					
⁹⁰ Sr	7.19	0.409	24,253					
^{239/240} Pu	0.07	0.432	236					
	(g/ml)		1	(kg)				
Density	1.286	0.124	3,3	73,184				
pH	10.6	0.063						

Table 5.3. Nominal Composition and Inventory of Group XII

۰,

Description of	Description of Individual Tanks Within Group XV							
No. of Tanks:	: 3	· · · · · · · · · · · · · · · · · · ·		····				
	Number of Cores	Primary Waste	Secondary	Waste				
Tank Name	Taken	Туре	Waste Type	Volume (kgal)				
T-110	0	2C	224	379				
T-112	0	2C	224	67				
T-111	2	2C	224	458				
Total:	2			904				
Analyte Inven	ntory and Mean Concent	trations of Group XV	•	•				
Analytes	Mean Concentration	Coeff. of Variance	Inv	entory				
	(µg/g)		(kg)				
Al	570	0.189	2	,409				
Bi	23,562	0.138	99	9,567				
Cr	1,799	0.043	7	,602				
Fe	18,038	0.121	76	5,224				
La	4,108	0.15	17,359					
Mn	6,282	0.042	26	5,546				
Na	36,950	0.073	156,141					
Pb	365	0.288	1,542					
Si	5,565	0.056	23	8,516				
Zr	4	0.002		17				
U	2,555	0.481	10),797				
PO ₄ (aq)	15,538	0.1	65	5,659				
NO ₃	41,238	0.079	17	4,260				
NO ₂	897	0.198	3	,790				
F	2,301	0.377	9	,723				
Cl	450	0.102	1	,902				
TOC	3,119	0.255	13	3,180				
	(µCi/g)			(Ci)				
¹³⁷ Cs	0.166	0.377	· · · · · · · · · · · · · · · · · · ·	701				
⁹⁰ Sr	5.414	0.372	22	2,878				
^{239/240} Pu	0.139	0.051		587				
	(g/ml)	· · · · · · · · · · · · · · · · · · ·		(kg)				
Density	1.235	0.052	4,2	25,725				
pН	11.6	0						

Table 5.4. Nominal Composition and Inventory of Group XV

Description of Individual Tanks Within Group XVI								
No. of Tanks:	: 3							
	Number of Cores	Primary Waste	Secondary	Waste				
Tank Name	Taken	Туре	Waste Type	Volume (kgal)				
B-112	0	2C	5-6	33				
B-110	7	2C	5-6	246				
B-111	2	2C	5-6	237				
Total:	9			516				
Analyte Inver	ntory and Mean Concent	rations of Group XVI						
Analytes	Mean Concentration	Coeff. of Variance	Inv	entory				
	(µg/g)		(kg)				
Al	1,425	0.692	3	,535				
Bi	19,354	0.127	48	3,005				
Cr	854	0.163	2	,118				
Fe	17,486	0.188	43,372					
La	73.6	0.302	183					
Mn	97.2	0.26	241					
Na	96,359	0.061	239,008					
Pb	750	0.732	1,860					
Si	10,173	0.264	25	5,233				
Zr	134	1.6		332				
U	209	0.164		518				
PO ₄ (aq)	24,555	0.067	60	0,906				
NO ₃	145,000	. 0.361	35	9,656				
NO ₂	22,910	0.756	50	5,826				
F	1,761	0.147	4	,368				
Cl	1,153	0.152	2	,860				
TOC	634	0.675	1	,573				
	(µCi/g)		1	(Ci)				
¹³⁷ Cs	40.6	1.39	100,704					
⁹⁰ Sr	133	0.751	32	9,891				
^{239/240} Pu	0.107	0.185		265				
	(g/ml)	<u> </u>		(kg)				
Density	1.27	0.074		80,386				
pH	8.22	0.054		-				

Table 5.5. Nominal Composition and Inventory of Group XVI

5.1 Nominal Composition of Group VII

The nominal composition of Group VII is listed in Table 5.1. Group VII consists of eight tanks containing 224 waste exclusively. Notice the significantly higher concentrations of La and Mn, which are indicative of 224 waste. Also, notice that the PO_4 concentrations are an order of magnitude lower in Group VII than in the other groups containing BiPO₄ process waste (Groups XII, XV, and XVI). This agrees with the predictions made earlier in this study.

Of the eight tanks in Group VII, B-201 and B-202 have been sampled. B-201 and B-202 each contain 29,000 and 27,000 gallons of waste, respectively; therefore, 20% of the total 280,000 gallons of waste has been sampled. The pH measurements for samples in Group VII were not available.

5.2 Nominal Composition of Group IV

Table 5.2 describes the nominal composition of the waste found in Group IV. All 10 tanks included in Group IV contain R waste. The high Al, low Fe, and almost absent Bi concentrations are consistent with the predicted profile of R waste. The differences between Group IV and the other groups in this study are attributed to the fact that R waste is a REDOX process waste. All other groups included in the verification study consist of wastes from the BiPO₄ process. This clearly demonstrates that observable differences exist in the waste and a logical categorization based on process origin is possible.

Although S-104 is the only tank that has been sampled from this group, it contains 294,000 of the total 1,232,000 gallons of waste; this is approximately 24% of the waste found in Group IV. Furthermore, the composition of this tank can provide insight into other tanks with substantial quantities of R waste. A CV for the nominal density of Group IV is not listed because only one value could be found in the available literature.

5.3 Nominal Composition of Group XII

Table 5.3 describes the nominal composition of Group XII waste. These four tanks primarily contain 1C and TBP waste. The waste contains appreciable amounts of Al, Na, NO₃, and U as would be expected from 1C and TBP waste. Tanks C-110 and BX-107, containing 187,000 and 345,000 gallons, respectively, have been sampled. This is approximately 77% of the 693,000 gallons of total waste volume in Group XII.

5.4 Nominal Composition of Group XV

The nominal composition of Group XV is described in Table 5.4. Although only one of the three tanks has been sampled, T-111 contains 458,000 of the total 904,000 gallons of waste material—51%

of the total waste volume. Group XV contains primarily 2C and 224 type wastes. The presence of 224 waste explains the high concentrations of La and Mn, while the lack of fission products is indicative of both 224 and 2C wastes.

5.5 Nominal Composition of Group XVI

The nominal composition of Group XVI is listed in Table 5.5. Of the three tanks included in Group XVI, B-110 and B-111 have been sampled. Their combined waste volume of 483,000 gallons is 94% of the total waste volume in Group XVI. 2C and 5-6 are the primary waste types found in this group. The high concentration of fission products is due primarily to the presence of the 5-6 waste. As with 1C waste, 5-6 waste also has appreciable amounts of Na and NO₃.

6.0 Conclusions and Recommendations

The SORWT model presents a methodology to group SSTs that is both simple to understand and logical in its assumptions and construction. The SORWT model has predicted the existence of 24 groups of SSTs ranging from 22 tanks per group to two tanks per group. These 24 groups encompass 133 tanks and 93% of the total waste contained in SSTs. The first 14 groups (i.e., those that contain four tanks per group or more) represent 109 tanks and 83% of the total waste volume. This demonstrates the potential for using the SORWT model to efficiently allocate resources and to maximize characterization information gained by a minimum number of sampling events. The verification study has shown that the SST groups predicted by the SORWT model are statistically significant and reduce the variability in the concentrations for all analytes examined.

The SORWT model organizes a vast amount of information and presents clear options on which SSTs are more desirable to sample. The model is also simple and flexible in its ability to incorporate new parameters such as new SST analytical data, shifting programmatic needs, and/or risk assessment-oriented criteria.

This report presents the nominal composition, inventory, and uncertainty for five of the 24 SORWT groups, representing 28 tanks, 10% of the total waste volume, and 29% of the total sludge volume in SSTs. Consequently, this document provides a logical beginning framework for tank waste characterization until further information becomes available or different programmatic needs are identified.

6.1 Recommended Tank Waste Sampling

Tanks recommended for sampling based on the results of the SORWT model are listed in Tables 6.1 and 6.2. The list takes advantage of the SORWT model groups to establish a substantial amount of characterization information from a relatively small number of core and auger samples. Thirty-two additional core samples are recommended. If this new sampling and analysis information is combined with the existing data, nominal compositions of 104 tanks (70% of the SSTs) could be established. This would represent approximately 79% of the total waste volume, 63% of the total sludge volume, and 88% of the salt cake volume.

Sampling priority for the following list of recommended sampling events should be based on sampling the largest SORWT groups first. In most cases, the largest volume tanks should be given higher priority. It is recognized that programmatic priorities and technical difficulties with the sampling equipment might not allow rigid implementation of the proposed sampling and priority and that suitable alternatives can be identified, should the tanks designated here not be deemed appropriate. If there is a significant (i.e., 6 months) delay in field deployment of the rotary-mode core sample truck, then auger samples instead of core samples from the major SORWT groups should seriously be considered to begin assessing the salt cake types of waste and other waste types contributing large

Tank No.	SORWT	No. of Core	Wedeb Lind Chadar	Total Waste Volume
	Group	Samples	Watch-List Status	in Tank (kgal)
TX-105	Ι	2	Organic	609
S-109	Ι	2	NWL ^(a)	568
S-108	Ι	2	NWL	604
TX-112	II	2	NWL	649
TX-116	II	2	NWL	631
TX-117	II	2	NWL	626
BY-106	III	2	Ferrocyanide	642
BY-105	III	2	Ferrocyanide	503
BY-104	ш	2	Ferrocyanide	406
SX-114	IV	2	High Heat	181
TX-115	IX	2	NWL	640
U-111	IX	2	Organic	329
U-107	VI	2	Organic	406
TX-118	VI	2	Ferrocyanide, Organic	347
BX-110	VIII	2	NWL	198
B-107	VIII	2	NWL	165
Total		32		
(a) non-wat	ch list			

Table 6.1. List of Recommended Core Samples

 Table 6.2.
 List of Recommended Auger Samples

Tank No.	SORWT Group	No. of Auger Samples	Watch-List Status	Total Waste Volume in Tank (kgal)
TX-107	I	3	NWL	36
TX-104	Ι	3	NWL	65
BX-106	V	3	NWL	46
BX- 101	V	3	NWL	43
SX-112	IV	3	NWL	92
U-101	IV	3	NWL	25
Total		18		

quantities of material to the overall waste inventory (e.g., R waste). There is a significant lack of information regarding certain waste types, and auger sampling provides a means of acquiring relevant information quickly.

6.2 Recommended Suite of Analyses

The following suite of analyses is recommended at a minimum for the tank waste sampling events identified in the previous section. Table 6.3 presents the sample preparations and analytical procedures to be conducted on each composite sample. Additional analytical data requirements could be developed by other programs interested in the same tank wastes. The recommended suite of analyses is designed to determine the general characteristics of the waste and should be compatible with the available laboratory resources. Because the overall tank characteristics are of interest, laboratory analyses will likely be conducted on composite samples, with other programmatic analytical requirements needing narrower horizons being designated in the appropriate implementation documentation. This suite will capture the major cations, anions, H₂O, total organic carbon (TOC), waste energetic characteristics, gamma-emitting radionuclides (¹³⁷Cs), ⁹⁰Sr, ^{239/240}Pu, and total U. The suite would also measure water-soluble cations and gamma emitters to determine waste solubility.

Table 6.3.	Recommended	Suite of Analyses
Table 6.3.	Recommended	Suite of Analyses

Fusion Dissolution	Water Leach	Direct Sample
ICP	Ion Chromatography	wt% H ₂ O
GEA (¹³⁷ Cs)	GEA	TOC
· RadChem (⁹⁰ Sr)	ICP	DSC/TGA
Alpha Energy Analysis (^{239/240} Pu)		
Laser Fluorimetry (Total U)		

7.0 References

Adams, M. R., L. Jensen, and W. W. Schulz. 1986. Preliminary Assessment of the TRAC Model as a Predictor of Key Radionuclide Inventories. RHO-RE-EV-89 P, Rockwell Hanford Operations, Richland, Washington.

Anderson, J. D. 1990. A History of the 200 Area Tank Farms. WHC-MR-0132, Westinghouse Hanford Company, Richland, Washington.

Hanlon, B. M. 1990. Tank Farm Surveillance and Waste Status Summary Report for July 1990. WHC-EP-0182-28, Westinghouse Hanford Company, Richland, Washington.

Hanlon, B. M. 1994. Tank Farm Surveillance and Waste Status Summary Report for March 1994. WHC-EP-0182-72, Westinghouse Hanford Company, Richland, Washington.

Hill, J. G., W. I. Winters, B. C. Simpson, J. W. Buck, P. J. Chamberlain, and V. L. Hunter. 1991. Waste Characterization Plan for the Hanford Site Single-Shell Tanks—Appendix I: Test Plan for Sampling and Analysis of Ten Single-Shell Tanks. WHC-EP-0210 Rev. 3, Westinghouse Hanford Company, Richland, Washington.

Hill, J. G., and B. C. Simpson. 1994a. The Sort on Radioactive Waste Type Model: A Method to Sort Single Shell Tanks into Characteristic Groups. PNL-9814, Pacific Northwest Laboratory, Richland, Washington.

Hill, J. G., and B. C., Simpson. 1994b. The Sort on Radioactive Waste Type Model: A Method to Sort Single Shell Tanks into Characteristic Groups. PNL-9814, Rev. 1, Pacific Northwest Laboratory, Richland, Washington.

Jungfleisch, F. M. 1984. TRAC: A Preliminary Estimation of the Waste Inventories in Hanford Tanks Through 1980. SD-WM-TI-057, Rockwell Hanford Operations, Richland, Washington.

Morgan, L. G., W. W. Schulz, M. R. Adams, and K. W. Owens. 1988. Summary of Single-Shell Tank Waste Characterization: 1985 to 1987. WHC-EP-0075, Westinghouse Hanford Company, Richland, Washington.

Remund, K. M. et al. 1994. *Tank Characterization Report for Single-Shell Tank B-111*. PNL-10099, Pacific Northwest Laboratory, Richland, Washington.

Schneider, K. J. 1951. Flow Sheets and Flow Diagrams of Precipitation Separations Process. HW-23043, General Electric Company, Hanford Atomic Works, Richland, Washington.

Simpson, B. C., G. L. Borsheim, and L. Jensen. 1993a. Tank Characterization Report for Single-Shell Tank C-109. WHC-EP-0668, Westinghouse Hanford Company, Richland, Washington.

Simpson, B. C., G. L. Borsheim, and L. Jensen. 1993b. Tank Characterization Report for Single-Shell Tank C-112. WHC-EP-0640 Rev. 1, Westinghouse Hanford Company, Richland, Washington.

Winters, W. I., L. Jensen, L. M. Sasaki, R. L. Weiss, J. F. Keller, A. J. Schmidt, and M. G. Woodruff. 1989. *Waste Characterization Plan for Hanford Site Single-Shell Tanks*. WHC-EP-0210 Rev. 0, Westinghouse Hanford Company, Richland, Washington.

Winters, W. I., L. Jensen, L. M. Sasaki, R. L. Weiss, J. F. Keller, A. J. Schmidt, and M. G. Woodruff. 1990. *Waste Characterization Plan for Hanford Site Single-Shell Tanks*. WHC-EP-0210 Rev. 1, Westinghouse Hanford Company, Richland, Washington.

Appendices

.

Appendix A

Sort on Radioactive Waste Type (SORWT) Model Results . .

.

:

.

• •

-

.

, , ,

· · · ·

No 110 Fablic Law,

F 1 1.5

			Ľ	SULL OIL NA	uivacuiv	e waste	Type (SC	Volume	NIUUEI K	esuits	Volume	Total
			Primary		Tertiary	Other	,	of	Volume	Volume of		Waste
	SORWT		Waste	Secondary	Waste	Waste	Watch	Saltcake	of Sludge	Supernate	Liquid	Volume
	Group	Tank No.	Туре	Waste Type	Туре	Туре	List Status	(Kgal)	(Kgal)	(Kgal)	(Kgal)	(Kgal)
. –			 				. <u>.</u>					· · · ·
	I	S-101	R	EB	IX	MIX	N	171	244	12	84	427
	I	S-102	R	EB	DSSF		OG	545	4	0	230	549
•	I	S-103	R	EB	DSSF		N	221	10	17	85	248
	I	S-105	R	EB			N	454	2	0	35	456
	I	S-106	R	EB			N	447	28	4	186	479
-	I	S-107	R	EB	CW	IX-MIX	N	69	293	14	45	376
	I	S-108	R	EB			N	600	4	0	127	604
	I	S-109	R	EB			N	555	13	0	141	568
	I	S-110	R	EB	MIX		N	259	131	0	110	390
	I	S-111	R	EB			G	447	139	10	195	596
	I	S-112	R	EB			G	518	5	0	110	523
	I	SX- 101	R	EB	RIX		G	343	112	1	145	456
	I	SX- 102	R	EB	RIX		G	426	117	. 0	183	543
	I	SX-103	R	EB	CW	OWW	G	536	115	. 1	232	652
	I	SX-104	R	EB	RIX		G	478	136	0	201	614
	I	SX-105	R	EB	RIX	HLO	G	610	73	0	261	683
	I	SX-106	R	EB	RIX	HLO-MX	OG	465	12	61	194	538
	I	TX-102	R	EB	MIX		N	217	0	0	22	217
	Ι	TX-104	R	EB	MIX		N	64	0	1	14	65
	I	TX- 105	R	EB	MIX		0	609	0	0	20	609
	I	TX-106	R	EB	MIX		N	453	0	0	10	453
	I	TX- 107	R	EB			N	35	0	1	1	36
	Gr	roup I Subto	tal		22 Tanks			8,522	1,438	122	2,631	10,082
	П	B-105	EB	1 C	2C		N	266	40	0	23	306
	П	TX-109	EB	1C	TBP		N	384	0	0	10	384
	П	TX-110	EB	1 C	TBP		N	462	Õ	ů 0	15	462
	П	TX-111	EB	1C	TBP		N	370	0	0	9	370
	П	TX-112	EB	1C	121		N	649	0	0	24	649
	Ц	TX-113	EB	1C			N	607	Õ	0	16	607
	Ц	TX-114	EB	1C			N	535	0	ů	15	535
	п	TX-116	EB	1C			N	631	0 0	0	23	631
	П	TX-117	EB	1C			N	626	0	0	8	626
	П	TY-102	EB	1C	MIX		N	64	0	0	14	64
		11 102		10				01	Ŭ	Ū		
	Gr	oup II Subta	otal		10 Tanks			4,594	40	0	157	4,634
	Ш	BY- 101	TBP-F	EB-ITS	cw	1 C	F	278	109	0	5	387
	Ш	BY-103	TBP-F	EB-ITS	Р	CW-OW	F	395	5	0	160	400
	Ш	√ BY- 104	TBP-F	EB-ITS	CW	IX	F	366	40	0	18	406
	Ш	BY-105	TBP-F	EB-ITS	CW		F	459	44	0	192	503
	Ш	BY- 106	TBP-F	EB-ITS	CW		F	547	95	0	235	642
-	Ш	BY-107	TBP-F	EB-ITS	CW		F	206	60	0	25	266
	Ш	BY-108	TBP-F	EB-ITS	1 C	CW	F	74	154	0	9	228
_	Ш	~ BY- 110	TBP-F	EB-ITS	1 C	CW	F	295	103	0	9	398
ंर	ш	BY- 111	TBP-F	EB-ITS	oww	CW	F	438	21	0	0	459
	Ш	BY-112	TBP-F	EB-ITS	CW		F	286	5	0	8	291
-	Gro	oup III Subt	otal		10 Tanks			3,344	636	0	661	3,980

. .

			SULL OIL NA			Type (SC	Volume			Volume	Total
a o b turn		Primary	0 1	Tertiary	Other	TT7 - 1	of	Volume	Volume of	Interstitial	Waste
SORWT	T 1 X	Waste	Secondary	Waste	Waste	Watch	Saltcake	of Sludge	Supernate	Liquid	Volume
Group	Tank No.	Туре	Waste Type	Туре	Туре	List Status	(Kgal)	(Kgal)	(Kgal)	(Kgal)	(Kgal)
IV	S-104	R				N	0	293	1	28	294
IV	SX-107	R				Н	0	104	0	5	104
IV	SX-108	R				Н	0	87	0	5	87
IV	SX-109	R				GH	0	250	0	10	250
IV	SX-112	R				Н	0	92	0	3	92
IV	SX-115	R				N	0	12	0	0	12
IV	SX-110	R				Н	0	62	0	0	62
IV	SX-111	R				Н	0	125	0	7	125
ĪV	SX-114	R				Н	0	181	0	14	181
IV	U-101	R				N	0	22	3	0	25
Gro	oup IV Subt	otal		10 Tanks			0	1,228	4	72	1,232
v	BX- 101	TBP	CW	BL	IX	N	0	42	1	0	43
v	BX-102	TBP	CW	BL	DIA	F	0	96	0	4	96
v	BX-103	TBP	CW	OWW	MIX	N	0	62	4	0	66
v	BX-104	TBP	CW	IX	R	N	0	96	3	30	99
v	BX-105	TBP	CW	IX	EB	N	3	43	5	6	51
v	BX-106	TBP	CW	EB-IX	BL	F	0	31	15	0	46
v	BX-108	TBP	CW	1 C	IX	N	0	26	0	1	26
v	BX-109	TBP	CW	1C	IX	N	0	193	0	13	19 3
v	C-101	TBP	CW	Р	OWW	N	0	88	0	3	88
Gr	oup V Subte	otal		9 Tanks			3	677	28	57	708
VI	B-101	EB	CW	BL		N	0	113	0	6	113
VI	B-102	EB	CW	BL	IX	N	10	18	4	0	32
VI	B-103	EB	CW	IX	MIX	0	0	59	0	0	59
VI	TX-118	EB	CW	PNF		FO	347	0	0	27	347
VI	U-105	EB	CW	R		G	349	32	37	142	418
VI	U-107	EB	CW	MIX		0	360	15	31	147	406
VI	U-108	EB	CW	MIX		G	415	29	24	1 72	468
VI	U-109	EB	CW	R		G	396	48	19	163	463
Gr	oup VI Subt	otal		8 Tanks			1,877	314	115	657	2,306
VII	B-2 01	224				N	0	28	1	3	29
VII	B-202	224				N	0	27	0	3	27
VII	B-203	224				N	0	50	1	5	51
VII	B-204	224				N	0	49	1	5	50
VII	T-201	224				N	0	28	1	3	29
VII	T-202	224				'N	0	21	0	2	21
VII	T-203	224				N	0	35	0	4	35
VII	T-204	224				N	0	38	0	4	38
Gro	oup VII Sub	total		8 Tanks			0	276	4	29	280

		h		uivacuve	e wasie	Type (Sc	Volume		esuits	Volume	Total
SORWT		Primary Waste	Secondary	Tertiary Waste	Other Waste	Watch	of Saltcake	Volume of Sludge	Volume of Supernate	Interstitial Liquid	Waste Volume
Group	Tank No.	Туре	Waste Type	Туре	Туре	List Status	(Kgal)	(Kgal)	(Kgal)	(Kgal)	(Kgal)
VШ	B- 107	1C	EB	cw	TBP	N	0	164	1	12	165
VIII VIII	B-107 B-108	1C	EB	CW	IDF IX-TBP	N	0	94	0	4	94
· VIII	B- 108 B- 109	1C	EB	CW	IX-IDI IX	N	0	127	0	8	127
VIII	BX-110	1C	EB-ITS	CW		F	9	189	0	15	127
VIII	BX-110 BX-111	1C	EB-ITS	CW	IX	F	143	68	0	0	211
- VIII	BX-112	1C	EB	CW	IX	N	0	164	1	7	165
		-							-	-	
Gro	oup VIII Subt	total		6 Tanks			152	806	2	46	960
IX	TX-115	EB	R	CW	DW	N	640	0	0	19	640
IX	U-102	EB	R			N	313	43	18	126	374
IX	U-103	EB	R	MIX		G	423	32	13	176	468
$\mathbf{I}\mathbf{X}$	U-106	EB	R	BL	PL	0	185	26	15	68	226
IX	U-111	EB	R	1 C		0	303	26	0	122	329
Gr	oup IX Subto	otal		5 Tanks			1,864	127	46	511	2,037
x	C-107	1 C	cw	SRS		N	0	275	0	26	275
Х	T-105	1C	CW	2C	BL-IX	N	0	98	0	23	98
Х	T-106	1C	CW	2C	MIX	N	0	19	2	0	21
Х	T-107	1C	CW⁻	TBP •		F	0	171	9	13	180
х	U-110	1C	CW	R	LW	N	0	186	0	15	186
G	oup X Subto	otal		5 Tanks			0	749	11	77	760
XI	A-101	DSSF	NCPLX	EVAP		G	95 0	3	0	413	953
XI	A-102	DSSF	NCPLX	EVAP		N	22	15	4	2	41
XI	A-103	DSSF	NCPLX	EVAP		N	0	366	5	15	371
XI	AX- 101	DSSF	NCPLX	EVAP		G	745	3	0	320	748
Gr	oup XI Subto	otal		4 Tanks			1,717	387	9	750	2,113
XII	B-106	1 C	TBP	HLO	MIX	N	0	116	1 .	6	117
XII	BX-107	1 C	TBP	CW	IX	N	0	344	1	29	345
XII	C- 110	1 C	TBP	OWW	EB-IX	N	0	187	0	7	187
XII	T-108	1C	TBP	EB	HLO	N	0	44	0	0	44
Gro	oup XII Subt	otal		4 Tanks			0	691	2	42	693
хш	C-108	TBP-F	1C	CW	oww	F	0	66	0	0	66
XIII	C-109	TBP-F	1C	CW	IX	F	0	62	4	0	66
XIII	C-111	TBP-F	1 C	CW	HS	F	0	57	0	0	57
XIII -	C-112	TBP-F	1C	CW	IX	F	0	104	0	32	104
Gro	oup XIII Sub	total		4 Tanks			0	289	4	32	293

ы

Sort on Radioactive Waste Type (SORWT) Model Results

. .

		S	Sort on Rac	dioactive	e Waste	Type (SC	DRWT)	Model R	esults	.	T ()
SORWT Group	Tank No.	Primary Waste Type	Secondary Waste Type	Tertiary Waste Type	Other Waste Type	Watch List Status	Volume of Saltcake (Kgal)	Volume of Sludge (Kgal)	Volume of Supernate (Kgal)	Volume Interstitial Liquid (Kgal)	Total Waste Volume (Kgal)
XIV	C-201	HS				N	0	2	0	0	2
XIV	C-202	HS				N	0	1	0	0	- 1
XIV	C-203	HS				N	0	5	0	0	5
XIV	C-204	HS				N	0	3	0	0	3
Gro	up XIV Sub	total		4 Tanks			0	11	0	0	11
XV	T-110	2C	224			G	0	376	3	39	379
XV	T-111	2C	224	DW		0	0	456	2	49	458
XV	T-112	2C	224	DW	MIX	Ν	0	60	7	0	67
Gro	oup XV Subt	otal		3 Tanks			0	892	12	88	904
XVI	B- 110	2C	5-6	FP	IX	N	0	245	1	22	246
XVI	B-111	2C	5-6	FP	IX	N	0	236	1	21	237
XVI	B-112	2C	5-6	FP	EB-ITS	N	0	30	3	0	33
Gro	up XVI Sub	total		3 Tanks			0	511	5	43	516
XVII	T-101	CW	MIX	TBP-F	EVAP	F	0	101	1	16	102
XVII	T-102	CW	MIX	IX		N	0	19	13	0	32
XVII	T-103	CW	MIX			N	0	23	4	0	27
Gro	up XVII Sub	total		3 Tanks			0	143	18	16	161
хуш	U-201	CW				N	0	4	1	0	5
XVIII	U-202	CW				N	0	4	1	0	5
XVIII	U-203	CW				N	0	2	1	0	3
Grou	ıp XVIII Sul	ototal		3 Tanks			0	10	3	0	13
XIX	BY-102	TBP	EB-ITS	CW	1 C	N	341	0	0	41	341
XIX	BY-109	TBP	EB-ITS	CW	MW	N	340	83	0	78	423
Gro	oup XIX Sub	total		2 Tanks			681	83	0	119	764
xx	C-103	SRS	SR-WASH	Р	TBP-CW	0	0	62	133	0	195
XX	C-106	SRS	SR-WASH	P	TBP	H	0	197	32	16	229
Gr	oup XX Sub	total		2 Tanks			0	259	165	16	424
XXI	T-109	TBP	EB	MIX		N	0	58	0	0	58
XXI	TX-103	TBP	EB			N	0	157	0	15	157
Gro	oup XXI Sub	ototal		2 Tanks			0	215	0	15	215
XXII	TY-103	TBP	1 C- F	CW	R-MIX	F	0	162	0	5	162
XXII	TY-104	TBP	1 C- F	DW	MIX-R	F	0	43	3	12	46
Gro	oup XXII Sul	ototal		2 Tanks			0	205	3	17	208

				uluactive	w asic	Type (SC	Volume	WIUUCI N	csuits	Volume	Total
		Primary		Tertiary	Other		of	Volume	Volume of	Interstitial	Waste
SORWT		Waste	Secondary	Waste	Waste	Watch	Saltcake	of Sludge	Supernate	Liquid	Volume
Group	Tank No.	Туре	Waste Type	Туре	Туре	List Status	(Kgal)	(Kgal)	(Kgal)	(Kgal)	(Kgal)
		·•									
XXIII	AX-102	CCPLX	DSSF	EVAP		N	29	7	3	14	39
XXIII	AX-103	CCPLX	DSSF	EVAP		G	110	2	0	36	112
Grou	p XXIII Sul	btotal		2 Tanks			139	9	3	50	151
' XXIV	SX-113	R	DIA			N	0	26	0	0	26
XXIV	U-104	R	DIA			N	0	122	0	0 7	122
	0-101	R	DHI			11	Ū	122	Ū	•	1.00
Grou	p XXIV Su	btotal		2 Tanks			0	148	0	7	148
XXVA	A- 104	SLUICE	Р	H20	В	н	0	28	0	0	28
XXVA	A-104 A-105	P	r IX	H 20	Б	H	0 0	28 19	0 0	0 4	28 19
XXVC	A-105 A-106	CCPLX		EVAP	В	N N	0	19	0	4	19
XXVD	A-100 AX-104	EVAP	NCPLX	P	D	N	0	7	0	0	7
XXVE	B-104	2C	EB	TBP	1C	N	69	301	1	46	371
XXVE	C-102	CW	TBP	OWW	ic	N	0	423	0	37	423
XXVG	C-102 C-104	CW	OWW	SR-WAS	SRS		0	295	0	11	295
XXVH	C-104 C-105	TBP	SR-WASH	CW	P	H	0	150	0	11	150
XXVI	T-104	1DI 1C	SIC-WASII	CW	1	N	0	442	3	47	445
XXVI	TX-101	R	MIX	MIX		N	0	84	3	2	87
XXVK	TX-108	EB	DW	TAILY.		N	134	0	0	0	134
XXVL	TY-101	1 C-F	EB	TBP	R	F	0	118	0	0	118
XXVM	TY-105	TBP		101	I.	N	0	231	0	0	231
XXVN	TY-105	TBP	DIA			N	0	17	0	0	17
XXVO	U-204	R	2C	CW		N	0	2	1	0	3
XXVP	U-112	UK	20	en		N	0 0	45	4	0	49
T.		A - A - 1		16 Taala			202	2 297	10	165	2 502
Ung	rouped Sub	LOLAL		16 Tanks			203	2,287	12	165	2,502
Те	otal Invento	ry					23,096	12,431	568	6,258	36,095

a

				uivacuv	c waste	турс (БС	% of	% of	C34113		% of
		Primary		Tertiary	Other		Total	Total	% of Total	% of Total	Total
SORWT		Waste	Secondary	Waste	Waste	Watch	Saltcake	Sludge	Supernate	Interstitial	Waste
Group	Tank No.	Туре	Waste Type	Туре	Туре	List Status		Volume	Volume	Liquid	Volume
		-									
I	S-101	R	EB	IX	MIX	N	0.74%	1.96%	2.11%	1.34%	1.18%
I	S-102	R	EB	DSSF		OG	2.36%	0.03%	0.00%	3.68%	1.52%
I	S-103	R	EB	DSSF		N	0.96%	0.08%	2.99%	1.36%	0.69% •
I	S-105	R	EB			N	1.97%	0.02%	0.00%	0.56%	1.26%
I	S-106	R	EB			N	1.94%	0.23%	0.70%	2.97%	1.33%
1	S-107	R	EB	CW	IX-MIX	N	0.30%	2.36%	2.46%	0.72%	1.04% •
I	S-108	R	EB			N	2.60%	0.03%	0.00%	2.03%	1.67%
I	S-109	R	EB			N	2.40%	0.10%	0.00%	2.25%	1.57%
I	S-110	R	EB	MIX		N	1.12%	1.05%	0.00%	1.76%	1.08%
I	S-111	R	EB			G	1.94%	1.12%	1.76%	3.12%	1.65%
I	S-112	R	EB			G	2.24%	0.04%	0.00%	1.76%	1.45%
I	SX-101	R	EB	RIX		G	1.49%	0.90%	0.18%	2.32%	1.26%
I	SX- 102	R	EB	RIX		G	1.84%	0.94%	0.00%	2.92%	1.50%
I	SX- 103	R	EB	CW	OWW	G	2.32%	0.93%	0.18%	3.71%	1.81%
I	SX-104	R	EB	RIX		G	2.07%	1.09%	0.00%	3.21%	1.70%
I	SX-105	R	EB	RIX	HLO	G	2.64%	0.59%	0.00%	4.17%	1.89%
Ī	SX-106	R	EB	RIX	HLO-MX		2.01%	0.10%	10.74%	3.10%	1.49%
I	TX-102	R	EB	MIX	1.20 1.21	N	0.94%	0.00%	0.00%	0.35%	0.60%
I	TX-102	R	EB	MIX		N	0.28%	0.00%	0.18%	0.22%	0.18%
I	TX-104 TX-105	R	EB	MIX		0	2.64%	0.00%	0.00%	0.32%	1.69%
							1.96%	0.00%	0.00%	0.3278	1.26%
I	TX-106	R	EB	MIX		N N					0.10%
I	TX-107	R	EB			N	0.15%	0.00%	0.18%	0.02%	0.10%
G	roup I Subto	tal		22 Tanks			36.90%	11.57%	21.48%	42.04%	27.93%
П	B-105	EB	1C	2C		N	1.15%	0.32%	0.00%	0.37%	0.85%
Π	TX-109	EB	1C	TBP		N	1.66%	0.00%		0.16%	1.06%
п	TX-110	EB	1C	TBP		N	2.00%	0.00%		0.24%	1.28%
ш	TX-111	EB	1C	TBP		N	1.60%	0.00%		0.14%	1.03%
ш	TX-112	EB	1C			N	2.81%	0.00%		0.38%	1.80%
п	TX-113	EB	10			N	2.63%	0.00%		0.26%	1.68%
П	TX-114	EB	1C			N	2.32%	0.00%		0.24%	1.48%
П	TX-116	EB	1C			N	2.73%	0.00%	0.00%	0.37%	1.75%
1 I	TX-117	EB	1C			N	2.71%	0.00%		0.13%	1.73%
Ш	TY-102	EB	10 10	MIX		N	0.28%	0.00%		0.22%	0.18%
ш	11-102		10	TV LLIK			0.2070	0.0070	0.0074	0.2270	011070
Gr	oup II Subt	otal		10 Tanks			19.89%	0.32%	0.00%	2.51%	12.84%
ш	BY-1 01	TBP-F	EB-ITS	CW	1C	F	1.20%	0.88%	0.00%	0.08%	1.07%
Ш	BY-103	TBP-F	EB-ITS	Р	CW-OW	F	1.71%	0.04%	0.00%	2.56%	1.11%
Ш	BY-104	TBP-F	EB-ITS	CW	IX	F	1.58%	0.32%		0.29%	1.12%
· III	BY-105	TBP-F	EB-ITS	CW		F	1.99%	0.35%			1.39%
Ш	BY-106	TBP-F	EB-ITS	CW		F	2.37%	0.76%			1.78%
Ш	BY-107	TBP-F	EB-ITS	CW		F	0.89%	0.48%			0.74%
Ш	BY-108	TBP-F	EB-ITS	1C	CW	F	0.32%	1.24%			
Ш	BY-110	TBP-F	EB-ITS	1C	cw	F	1.28%	0.83%			
Ш	BY-111	TBP-F	EB-ITS	oww	cw	F	1.20%	0.17%			
ш	BY-112	TBP-F	EB-ITS	CW	011	F	1.30%	0.17%			
	oup III Subt			10 Tanks			14.48%	5.12%			
	•										

			•		uivactive	vv aste	Type (SC	% of	% of	csuits		% of
			Primary		Tertiary	Other		Total	Total	% of Total	% of Total	Total
	SORWT		Waste	Secondary	Waste	Waste	Watch	Saltcake	Sludge	Supernate	Interstitial	Waste
	Group	Tank No.	Туре	Waste Type	Туре	Туре	List Status		Volume	Volume	Liquid	Volume
•	Group		1990	Waste Type		1)pe				Volune	Inquia	Volune
	IV	S-104	R				N	0.00%	2.36%	0.18%	0.45%	0.81%
	ĪV	SX-107	R				Н	0.00%	0.84%	0.00%	0.08%	0.29%
•	ĪV	SX-108	R				H	0.00%	0.70%	0.00%	0.08%	0.24%
	ĪV	SX-109	R				GH	0.00%	2.01%	0.00%	0.16%	0.69%
	IV	SX-112	R				Н	0.00%	0.74%	0.00%	0.05%	0.25%
-	IV	SX-112	R				N	0.00%	0.10%	0.00%	0.00%	0.03%
	IV	SX-110	R				H	0.00%	0.50%	0.00%	0.00%	0.17%
	IV	SX-110 SX-111	R				H	0.00%	1.01%	0.00%	0.11%	0.35%
	IV	SX-111 SX-114	R				H	0.00%	1.46%	0.00%	0.22%	0.50%
	IV	U-101	R				N N	0.00%	0.18%	0.53%	0.00%	0.07%
	1 V	0-101	K				IN	0.0070	0.1070	0.5570	0.0070	0.0770
	Gro	oup IV Subto	ntal		10 Tanks			0.00%	9.88%	0.70%	1.15%	3.41%
	OI.	up I v Bubu	Juan					0.0070	7.0070	0.7070	1.1570	J.7170
	v	BX- 101	TBP	CW	BL	IX	N	0.00%	0.34%	0.18%	0.00%	0.12%
	v	BX-101 BX-102	TBP	CW	BL	DIA	F	0.00%	0.77%	0.00%	0.06%	0.27%
	v	BX-102 BX-103	TBP	CW	oww	MIX	N	0.00%	0.50%	0.70%	0.00%	0.18%
	v	BX-103 BX-104	TBP	CW	IX	R	N	0.00%	0.77%	0.53%	0.48%	0.27%
	v	BX-104 BX-105	TBP	CW	IX	EB	N	0.00%	0.35%	0.88%	0.10%	0.14%
	v	BX-105 BX-106	TBP	CW	EB-IX	BL	F	0.00%	0.25%	2.64%	0.00%	0.13%
	v	BX-108	TBP	CW	1C	IX	N	0.00%	0.23%	0.00%	0.00%	0.07%
	v	BX-108 BX-109	TBP	CW	1C	IX	N	0.00%	1.55%	0.00%	0.21%	0.53%
	v	C-101	TBP	CW	P	OWW	N	0.00%	0.71%	0.00%	0.05%	0.24%
	v	C- 101	IDI	C 11	Г	000	14	0.0070	0.7170	0.0070	0.0570	0.2470
	Gre	oup V Subto	tal		9 Tanks			0.01%	5.45%	4.93%	0.91%	1.96%
	VI	B-101	EB	CW	BL		N	0.00%	0.91%	0.00%	0.10%	0.31%
	VI	B-102	EB	CW	BL	IX	N	0.04%	0.14%	0.70%	0.00%	0.09%
	VI	B-103	EB	CW	IX	MIX	0	0.00%	0.47%	0.00%	0.00%	0.16%
	VI	TX- 118	EB	CW	PNF		FO	1.50%	0.00%	0.00%	0.43%	0.96%
	VI	U-105	EB	CW	R		G	1.51%	0.26%	6.51%	2.27%	1.16%
	VI	U-107	EB	CW	MIX		0	1.56%	0.12%	5.46%	2.35%	1.12%
	VI	U-108	EB	CW	MIX		G	1.80%	0.23%	4.23%	2.75%	1.30%
	VI	U-109	EB	CW	R		G	1.71%	0.39%	3.35%	2.60%	1.28%
	Gro	oup VI Subto	otal		8 Tanks			8.13%	2.53%	20.25%	10.50%	6.39%
	VII	B-2 01	224				N	0.00%	0.23%	0.18%	0.05%	0.08%
	VII	B-202	224				N	0.00%	0.22%	0.00%	0.05%	0.0 7%
	VΠ	B-203	224				N	0.00%	0.40%	0.18%	0.0 8%	0.14%
	VII	B-2 04	224				N	0.00%	0.39%	0.1 8%	0.08%	0.14%
	VII	T-2 01	224				N	0.00%	0.23%	0.18%	0.05%	0.08%
	VII	T-202	224				N	0.00%	0.1 7%	0.00%	0.03%	0.06%
	VII	T-203	224				N	0.00%	0.28%	0.00%	0.06%	0.10%
•	VII	T -2 04	224				N	0.00%	0.31%	0.00%	0.06%	0.11%
,	Gro	oup VII Subt	otal		8 Tanks			0.00%	2.22%	0.70%	0.46%	0.78%

.

.

		N		aivactive	, waste	Type (be	% of	% of	csurts		% of
		Primary		Tertiary	Other		Total	Total	% of Total	% of Total	Total
SORWT		Waste	Secondary	Waste	Waste	Watch	Saltcake	Sludge	Supernate	Interstitial	Waste
Group	Tank No.	Туре	Waste Type	Туре	Туре	List Status		Volume	Volume	Liquid	Volume
				<u>`</u>						·····	
VIII	B-107	1C	EB	CW	TBP	N	0.00%	1.32%	0.18%	0.19%	0.46%
VIII	B-108	1C	EB	CW	IX-TBP	N	0.00%	0.76%	0.00%	0.06%	0.26%
VIII	B-109	1 C	EB	CW	IX	N	0.00%	1.02%	0.00%	0.13%	0.35% `
VIII	BX- 110	1 C	EB-ITS	CW	IX	F	0.04%	1.52%	0.00%	0.24%	0.55%
VIII	BX- 111	1 C	EB-ITS	CW	IX	F	0.62%	0.55%	0.00%	0.00%	0.58%
νш	BX-112	1 C	EB	CW	IX	N	0.00%	1.32%	0.18%	0.11%	0.46%
Gro	up VIII Subt	total		6 Tanks			0.66%	6.48%	0.35%	0.74%	2.66%
IX	TX-115	EB	R	cw	DW	N	2.77%	0.00%	0.00%	0.30%	1.77%
IX	U-102	EB	R			N	1.36%	0.35%	3.17%	2.01%	1.04%
IX	U-103	EB	R	MIX		G	1.83%	0.26%	2.29%	2.81%	1.30%
IX	U-105	EB	R	BL	PL	õ	0.80%	0.21%	2.64%	1.09%	0.63%
IX	U-111	EB	R	1C		Õ	1.31%	0.21%	0.00%	1.95%	0.91%
	0					Ŭ	10170		010070		
Gro	oup IX Subto	otal		5 Tanks			8.07%	1.02%	8.10%	8.17%	5.64%
	•										
Х	C-107	1 C	CW	SRS		N	0.00%	2.21%	0.00%	0.42%	0.76%
х	T- 105	1C	CW	2C	BL-IX	N	0.00%	0.79%	0.00%	0.37%	0.27%
х	T- 106	1 C	CW	2C	MIX	N	0.00%	0.15%	0.35%	0.00%	0.06%
Х	T-107	1C	CW	TBP		F	0.00%	1.38%	1.58%	0.21%	0.50%
X	U-110	1C	CW	R	LW	N	0.00%	1.50%	0.00%	0.24%	0.52%
Gr	oup X Subto	otal		5 Tanks			0.00%	6.03%	1.94%	1.23%	2.11%
XI	A- 101	DSSF	NCPLX	EVAP		G	4.11%	0.02%	0.00%	6.60%	2.64%
XI	A-102	DSSF	NCPLX	EVAP		N	0.10%	0.12%		0.03%	0.11%
XI	A-103	DSSF	NCPLX	EVAP		N	0.00%	2.94%		0.24%	1.03%
XI	AX-101	DSSF	NCPLX	EVAP		G	3.23%	0.02%		5.11%	2.07%
Gro	oup XI Subt	otal		4 Tanks			7.43%	3.11%	Ì.58%	11.98%	5.85%
ХП	B- 106	1 C	TBP	HLO	MIX	N	0.00%	0.93%	0.18%	0.10%	0.32%
	B-100 BX-107	1C	TBP	CW	IX	N	0.00%	2.77%		0.46%	0.96%
	C-110	1C	TBP	oww	EB-IX	N	0.00%	1.50%		0.11%	0.52%
	T-108	1C	TBP	EB	HLO	N	0.00%	0.35%		0.00%	0.12%
ЛЦ	1-108	ic.	IDr	ED	шо	IN	0.0070	0.5570	0.0070	0.0070	0.1270
Gro	oup XII Subt	total		4 Tanks			0.00%	5.56%	0.35%	0.67%	1.92%
XIII	C-108	TBP-F	1 C	cw	oww	F	0.00%	0.53%	0.00%	0.00%	0.18%
XIII	C-108 C-109	TBP-F	1C 1C	CW	IX	F	0.00%	0.50%			0.18%
	C-109 C-111	TBP-F	1C	CW	HS	F	0.00%	0.46%		0.00%	0.16%
	C-112	TBP-F	1C	CW	IX	F	0.00%	0.84%			0.29%
лш	U-112	101-1		- 11			0.0070	5.0170	0.0070	0.0170	
Gro	oup XIII Sub	total		4 Tanks			0.00%	2.32%	0.70%	0.51%	0.81%

-

.

			1	Sort on Ra	dioactiv	e Waste	Type (SC			esults		0/ -£
			Duimon		Tantian	Other		% of Tatal	% of Total	0/ af Tatal	0/ af Tatal	% of Total
	SORWT		Primary	Saaan daw.	Tertiary	Other	Watah	Total	Total	% of Total		Total
		T .1. M	Waste	Secondary	Waste	Waste	Watch	Saltcake	Sludge	Supernate	Interstitial	Waste
-	Group	Tank No.	Туре	Waste Type	Туре	Туре	List Status	Volume	Volume	Volume	Liquid	Volume
	XIV	C-2 01	HS				N	0.00%	0.02%	0.00%	0.00%	0.01%
	XIV	C-202	HS				N	0.00%	0.01%	0.00%	0.00%	0.00%
· .	XIV	C-202	HS				N	0.00%	0.01%	0.00%	0.00%	0.01%
,	XIV	C-203 C-204	HS					0.00%				
	ΛIV	C-204	нэ				N	0.00%	0.02%	0.00%	0.00%	0.01%
•	Gro	up XIV Sub	to tal		4 Tanks			0.00%	0.09%	0.00%	0.00%	0.03%
41.0	xv	T- 110	2C	224			G	0.00%	3.02%	0.53%	0.62%	1.05%
	xv	T-111	2C	224	DW		õ	0.00%	3.67%	0.35%	0.78%	1.27%
	XV	T-112	2C 2C	224	DW	MIX	N	0.00%	0.48%	1.23%	. 0.00%	0.19%
*	ΛV	1-112	20	224	Dw	WILA	IN	0.00%	0.4870	1.2370	. 0.00%	0.1970
	Gro	up XV Subt	otal		3 Tanks			0 .00%	7.18%	2.11%	1.41%	2.50%
	XVI	B-110	2C	5-6	FP	IX	N	0.00%	1.97%	0.18%	0.35%	0.68%
	XVI	B-111	2C	5-6	FP	IX	N	0.00%	1.90%	0.18%	0.34%	0.66%
	XVI	B-112	2C	5-6	FP	EB-ITS	N	0.00%	0.24%	0.53%	0.00%	0.09%
	2012	D-112	20	5-0		LD-110		0.0070	0.2470	0.5570	0.0070	0.0970
	Gro	up XVI Subi	total		3 Tanks			0.00%	4.11%	0.88%	0.69%	1.43%
	XVII	T-101	cw	MIX	TBP-F	EVAP	F	0.00%	0.81%	0.18%	0.26%	0.28%
	XVII	T-102	CW	MIX	IX		N	0.00%	0.15%	2.29%	0.00%	0.09%
	XVII	T-103	CW	MIX			N	0.00%	0.19%	0.70%	0.00%	0.07%
	Cra		+++-1		7 Tomles				1.150/	2 170/	0.269/	0.450/
	Giu	ıp XVII Sub	total		3 Tanks			0.00%	1.15%	3.17%	0.26%	0.45%
	XVIII	U-201	CW				N	0.00%	0.03%	0.18%	0.00%	0.01%
	XVIII	U-202	CW				N	0.00%	0.03%	0.18%	0.00%	0.01%
	XVIII	U-203	CW				N	0.00%	0.02%	0.18%	0.00%	0.01%
	Grou	p XVIII Sub	ototal		3 Tanks			0.00%	0.08%	0.53%	0.00%	0.04%
	XIX	BY-102	TBP	EB-ITS	CW	1 C	N	1.48%	0.00%	0.00%	0.66%	0.94%
	XIX	BY-109	TBP	EB-ITS	CW	MW	N	1.47%	0.67%	0.00%	1.25%	1.17%
	Gro	up XIX Subt	otal		2 Tanks			2.95%	0.67%	0.00%	1.90%	2.12%
					-		•					
	XX	C-103	SRS	SR-WASH	Р	TBP-CW	0	0.00%	0.50%	23.42%	0.00%	0.54%
	XX	C-106	SRS	SR-WASH	Р	TBP	Н	0.00%	1.58%	5.63%	0.26%	0.63%
	Gro	up XX Subt	otal		2 Tanks		•	0.00%	2.08%	29.05%	0.26%	1. 17%
	XXI	T-109	TBP	EB	MIX		N	0.00%	0.47%	0.00%	0.00%	0.16%
					IVILA		N	0.00%		0.00%		0.43%
	XXI	TX-103	TBP	EB			IN	0.0076	1.26%	0.00%	0.24%	0.4370
	Gro	up XXI Subt	total		2 Tanks			0.00%	1.73%	0.00%	0.24%	0.60%
-	vvn	TV 102	TDD	10 F	OW	р ілу	F	0.000/	1 2004	0.000/	0.004/	0 450/
щ». '	' XXII	TY-103	TBP	1C-F	CW	R-MIX	F	0.00%	1.30%	0.00%	0.08%	0.45%
	XXII	TY-104	TBP	1C-F	DW	MIX-R	F	0.00%	0.35%	0.53%	0.19%	0.13%
•	Grou	ıp XXII Sub	total		2 Tanks			0.00%	1.65%	0.53%	0.27%	0.58%
			_									

		S	Sort on Ra	dioactive	Waste '	Type (SC		Model R	esults		% of
SORWT Group	Tank No.	Primary Waste Type	Secondary Waste Type	Tertiary Waste Type	Other Waste Type	Watch List Status	% of To tal Saltcake Volume	% of Total Sludge Volume	% of Total Supernate Volume	% of Total Interstitial Liquid	% of Total Waste Volume
XXIII	AX- 102	CCPLX	DSSF	EVAP		N	0.13%	0.06%	0.53%	0.22%	0.11%
XXIII	AX-103	CCPLX	DSSF	EVAP		G	0.48%	0.02%	0.00%	0.58%	0.31%
Grou	p XXIII Sul	ototal		2 Tanks			0.60%	0.0 7%	0.53%	0.80%	0.4 2%
XXIV	SX- 113	R	DIA			N	0.00%	0.21%	0.00%	0.00%	0.07% *
XXIV	U-104	R	DIA			N	0.00%	0.98%		0.11%	0.34%
Grou	p XXIV Sui	btotal		2 Tanks			0.00%	1.19%	0.00%	0.11%	0.41%
XXVA	A-104	SLUICE	Р	H20	В	н	0.00%	0.23%	0.00%	0.00%	0.08%
XXVB	A-105	Р	IX			Н	0.00%	0.15%	0.00%	0.06%	0.05%
XXVC	A-106	CCPLX	NCPLX	EVAP	В	N	0.00%	1.01%	0.00%	0.11%	0.35%
XXVD	AX- 104	EVAP	NCPLX	Р		N	0.00%	0.06%	0.00%	0.00%	0.02%
XXVE	B-104	2C	EB	TBP	1C	Ν	0.30%	2.42%	0.18%	0.74%	1.03%
XXVF	C-102	CW	TBP	OWW		N	0.00%	3.40%	0.00%	0.59%	1.17%
XXVG	C-104	CW	OWW	SR-WAS	SRS	MX N	0.00%	2.37%	0.00%	0.18%	0.82%
XXVH	C-105	TBP	SR-WASH	CW	Р	Н	0.00%	1.21%	0.00%	0.18%	0.42%
XXVI	T-104	1 C				N	0.00%	3.56%	0.53%	0.75%	1.23%
XXVJ	TX-101	R	MIX	MIX		N	0.00%	0.68%	0.53%	0.03%	0.24%
XXVK	TX-108	EB	DW			N	0.58%	0.00%	0.00%	0.00%	0.37%
XXVL	TY- 101	lC-F	EB	TBP	R	F	0.00%	0.95%	0.00%	0.00%	0.33%
XXVM	TY-105	TBP			•	N	0.00%	1.86%	0.00%	0.00%	0.64%
XXVN	TY-106	TBP	DIA			N	0.00%	0.14%	0.00%	0.00%	0.05%
XXVO	U-204	R	2C	CW		N	0.00%	0.02%	0.18%	0.00%	0.01%
XXVP	U-112	UK				N	0.00%	0.36%	0.70%	0.00%	0.14%
Ung	grouped Sub	total		16 Tanks			0.88%	18.40%	2.11%	2.64%	6.93%
Т	otal Invento	ry					100%	100%	100%	100%	100%

Appendix B

Waste Types in Hanford Site Single-Shell Tanks

. .

Waste Types in Hanford Site Single-Shell Tanks

This appendix summarizes available information that describes wastes in the Hanford Site single-shell tanks (SST). The complexity of the waste-generating processes, the waste transfers from generating facilities to SSTs, and the transactions between SSTs severely compromises the completeness and accuracy of the information contained in this appendix. These data, however, provide information to support tank categorization before actual characterization of SST waste.

The characterizations of waste types contained in this report were taken from a wide variety of sources. Compositions of the primary waste streams from two main extraction processes, bismuth phosphate (BiPO₄) and reduction oxidation (REDOX), as well as waste from the uranium extraction process at U Plant, were obtained from process flowsheets. For the plutonium-uranium extraction (PUREX) and B Plant waste fractionization processes, published reports of waste compositions were relied upon because of the complex process chemistry and several changes in flowsheets. The low-level waste and flush waste compositions are difficult to specify but can be assumed to be very dilute. In general, most low-level waste was sent to the cribs; only a small amount was sent to the SSTs. For the various campaigns to extract cesium and strontium (and in some cases other fission products), waste compositions were taken from process flowsheets when available. Some caution must be taken in evaluating the results because of several sources of error, including variability of the feed material, changes in process flowsheets, and the presence or absence of diluting streams such as wash wastes. Laboratory wastes from three laboratories operating at the Hanford Site also went into the SSTs; the composition of these wastes is unknown.

Not all of the named waste types have a unique point of origin. Some wastes result from evaporation of wastes already contained in SSTs, and other wastes are merely new names assigned to old wastes to reflect their suitability for further processing, including evaporation. During the early history of the Hanford Site, there was little interest in determining the composition of chemical waste streams, and little or no attempt was made to segregate wastes from different processes. The overriding concern during this period was to minimize waste volume to conserve space in the SSTs. To this end, from the early 1950s, waste in the SSTs was extensively subjected to evaporation. In the evaporators, supernatant liquids from the waste tanks were heated until a slurry was formed; this slurry was returned to the tanks, where a solid salt cake precipitated. Residual supernatant liquors were pumped to other tanks and re-evaporated. In another method, heaters were placed directly in the tanks and the wastes were evaporated without any transfers.

Because of the detection of leaks in several of the SSTs in the 1970s, it became necessary to reduce SST liquid wastes to a solid form or transfer them to the newly constructed double-shell tanks (DST). At this time, SST supernatant liquids were given designations according to the presence or absence of organic complexants and the suitability of the waste for further evaporation. For example, complexant concentrate (CC) waste was considered unsuitable for further evaporation at the SSTs because it was thought that the organic complexants might form a gel, making the waste difficult to pump. In contrast, evaporator feed (EF) was relatively dilute supernatant liquid that was suitable for evaporation. Terminal and residual liquors--waste types TL, HDRL, and RESD--should not be further evaporated at the SSTs because they would precipitate 1) fine aluminate solids that would settle and drain poorly or 2) deliquescent NaOH solids that would take up moisture from the air and redissolve. These waste types, designated double-shell slurry feed (DSSF), were pumped to the DSTs and then evaporated into a slurry. Because of the DSTs' secure construction, they were deemed suitable to accept liquids, suspended solids, and poorly draining slurries for indefinite storage.

PNL-9814 Rev. 2

WASTE DESCRIPTIONS

The following are brief descriptions and chemical compositions, where available, of 49 waste types discharged to the SSTs.

1. <u>B</u>. High-level waste from waste fractionization process at B Plant starting in 1967.

mol/L
0.079
0.000032
0.0001
0.002
0.12
0.029
0.00029
1.29
0.002
0.000003
0.000001
1.27
0.000048
0.0029
0.000048

Approximate Composition

- 2. <u>B Plant Flush (BFSH)</u>. Flush water from the B Plant during the time of the $BiPO_4$ process in the 1950s.
- 3. <u>BIX</u>. This is a misprint for RIX.

4. <u>BL</u>. Low-level waste from the waste fractionization plant beginning in 1968.

Element/isotope	mol/L
Al	0.55
C ₆ H ₅ O ₇ (citrate)	0.92
Ca	0.000005
CO ₃	2.61
Mn	0.0029
Na	5.55
Ni	0.0092
NO ₃	5.28
Рь	0.014
Pu	0.00087
SiO ₃	0.0029
U	0.37

Typical Composition

5. <u>BLEB</u>. Evaporator bottoms where B Plant low-level waste was the feed material.

6. <u>BNW</u>. Laboratory waste from Pacific Northwest Laboratory.

7. <u>CARB</u>. Organic wash waste from the PUREX Plant before 1963, using sodium carbonate solution.

Element/isotope	mol/L
CO3	0.21
Na	0.43
NO3	0.07
UO ₂	0.03

· · ·	a
Approximate	Composition

8. <u>Complexant Concentrate (CCPL or CC)</u>. Contains a high concentration of organic complexants such as HEDTA, EDTA, and citric acid as a result of B Plant processing and subsequent evaporation. Any further concentration of this waste would cause the complexants to form a gel that would not be pumpable nor considered suitable for storage in SSTs. The given composition is an average of sampled tanks.

Element/isotope	mol/L
Al	0.38
Ba	0.0001
Ca	0.013
Cd	0.00062
Cl	0.05
CO3	0.96
Cr	0.0046
Cu	0.00032
F	0.12
Fe	0.023
К	0.032
La	0.00065
Mg	0.0012
Mn	0.0016
Мо	0.003
Na	7.3
Ni	0.006
NO ₂	0.78
NO ₃	2.7
ОН	0.36
РЪ	0.0012
PO4	0.026
Si ·	0.0031
SO₄	0.09
Zn	0.0006
Zr	0.0013

Average Composition

PNL-9814 Rev. 2

- 9. <u>Cesium Feed (CF)</u>. Small quantities of this waste were put into Tank C-105 in 1976. It was a PUREX or PUREX sludge supernatant. For a typical composition, see waste type PSS.
- 10. <u>Complexed Waste (CPLX)</u>. Dilute waste material containing relatively high concentrations of organic chelating agents such as EDTA and HEDTA from the B Plant waste fractionization process. This waste type is defined as containing at least 10 g/L organic material, or 100 mCi/g radionuclides. This is a later designation (post-1976) that does not reflect the bulk composition or point of origin of the waste, but merely re-labels all the waste in a tank according to the presence or absence of B Plant complexants.

Element/isotope	mol/L
Al	0.1
CO3	0.5
F	0.007
Na	2.7
NO ₂	0.27
NO ₃	0.72
он	0.25
PO ₄	0.014
SO4	0.176

Typical Composition	
of Tank 102-AX	

11. <u>CW</u>. Waste produced at the PUREX Plant from dissolution of zircaloy (after 1964) or aluminum fuel cladding. The zircaloy cladding was dissolved in an ammonium/fluoride, ammonium nitrate solution. The aluminum cladding was dissolved in a sodium nitrate/sodium hydroxide solution.

•	Ŭ
Element/isotope	mol/L
F	1.01
Na	1.4
NO3	0.02
ОН	0.37
Pu	0.0006
U	0.0008
ZrO ₂	0.15

Approximate Composition -Zircaloy Cladding

Aluminum Cladding

Element/isotope	mol/L
Al	1
Na	3.7
NO ₂	0.9
NO ₃	0.6
он	1
Si	0.02

12. <u>CWP</u>. In 1963, some coating waste from the PUREX Plant was called CWP. See waste type CW.

13. <u>CWR</u>. REDOX process waste resulting from the dissolution of fuel element cladding. Both aluminum- and zircaloy-clad fuels were processed.

Element/isotope	mol/L
Al	2.32
Na	5.9
NO ₂	1.47
NO3	1.07
ОН	1
Pu	0.000004
U	0.0058

Approximate Composition	of
Aluminum Cladding Was	te

Approximate Composition of Zircaloy Cladding Waste

Element/isotope	mol/L
Al	0.21
F	2.25
Na	3.73
NO ₂	0.17
NO3	0.97
он	1.39
Р	0.000008
U	0.018
Zr	0.31

14. <u>Diatomaceous earth (DE)</u>. SiO₂.

.

15. DSSF. Noncomplexed waste that has been concentrated in evaporators until the solution is nearly saturated with sodium aluminate. Further evaporation will yield a slurry that is not suitable for storage in SSTs. This is a general term for noncomplexed HDRL (Hanford defense residual liquor), including partially neutralized waste.

Element/isotope	mol/L
Al	1.74
CO3	0.21
F	0.06
Na	12.53
NO ₂	2.62
NO3	2.72
ОН	3.43
PO4	0.07

Typical Composition

16. Decontamination Waste (DW). Wash solution from equipment decontamination efforts at the T Plant. This waste was mainly a dilute NaNO₂ solution, averaging 0.24 M NaNO₂.

<u>M</u> NaNO₂. <u>Evaporator Bottoms (EB)</u>. Slurry product from the evaporators. This slurry 17. precipitated a solid salt cake that was stored in SSTs.

Sampled Salt Cake in 241-S Tank Farm	
Element/isotope	Weight %
H ₂ O	12.8
NaAlO ₂	1.9
Na ₂ CO ₃	6.4
NaNO ₂	1.8
NaNO ₃	73.8
Na3(PO4)2	1.5

Average Composition of
Sampled Salt Cake in
241-S Tank Farm

18. <u>Evaporator Feed (EF)</u>. This term designates various kinds of supernatant liquids whose composition depends on source location and whether they underwent prior concentration. In general, EF may be either dilute feed that has not yet been evaporated or concentrated feed that has been partially evaporated but requires additional evaporation to meet requirements for residual liquor.

Element/isotope	mol/L
A1	0.4
CO3	0.2
Na	4.5
NO ₂	0.6
NO3	2.3
ОН	0.7
PO₄	0.03

Typical Composition of Dilute Feed

Typical Composition of Concentrated Feed

Element/isotope	mol/L
A1	0.9
CO3	0.23
Na	8.26
NO2	1.6
NO ₃	3.6
ОН	1.7
PO ₄	0.05

- 19. <u>EVAP</u>. This is a post-1976 designation for evaporator feed. For typical composition, see No. 18 Evaporator Feed (EF). With the exception of terminal liquors, which could not be further evaporated, and aging waste, which contained short-lived, high-heat fission products, any tank supernatant liquor could be designated evaporator feed.
- 20. <u>Fission Products (FP) Waste</u>. Waste produced at B Plant and Hot Semiworks during the 1960s in campaigns to isolate various fission products such as cerium and promethium.

- 21. <u>Hanford Defense Residual Liquor</u>. This is a late 1970s designation for terminal liquors remaining after waste evaporation, these including complexed and noncomplexed waste, partially neutralized wastes, and DSSF. Further evaporation of these wastes would cause precipitation of solids unsuitable for storage in SSTs. Composition is the same as No. 44 Terminal Liquor, TL.
- 22. <u>Hanford Laboratory Operations (HLO)</u>. Laboratory waste from 300 Area.
- 23. <u>HS</u>. Waste from Hot Semiworks Plant, which ran several strontium extraction campaigns from 1955 until 1961. There were 50,000 gallons of dilute wastes discharged to tank farms. For approximate chemical composition see SSW, Strontium Semiworks Waste.
- 24. Water (H_2O). Filtered Hanford Site water (200 East Area) contains the following impurities in parts per million:

Element/isotope	ppm
Ca	20-40
C1	1-5
CO2	0-2
Mg	4-5.5
SO4	14-30
SiO4	3-7.5

Filtered Hanford Site 200 East Water Impurities

25. <u>IWW</u>. Concentrated, neutralized high-level waste from the PUREX process. This waste type only entered the tank farms in one occurrence and is probably equivalent to waste type P. It should actually be written as 1WW and is bottom waste from the No. 1 acid concentrator.

	-
Element/isotope	mol/L
Fe	0.05
Na	5.37
NO ₃	5.82
ОН	5.37
Pu	0.000007
SO4	0.1
U	0.0126

Approximate Composition

26. <u>IX</u>. Ion exchange waste from the cesium recovery process at the B Plant. Feed was PUREX supernatant. This includes column waste, column wash waste, and cesium purification waste.

Approximate Composition

11	•
Element/isotope	mol/L
CO3	0.65
Na	3.9
NO2	1.9
NO ₃	0.49
SO₄	0.085

27. <u>LW</u>. Laboratory waste from 222-S Building.

28. <u>MW</u>. Metal waste from the BiPO₄ process. It was produced at the B and T Plants from the dissolution of uranium fuel elements.

	•
Element/isotope	mol/L
CO3	1.14
Na	3.53
NO3	0.59
ОН	1.16
PO4	0.23
SO4	0.24
U	0.25

Approximate Composition

29. <u>N</u>. Phosphate decontamination waste from N Reactor. After 1982 ion-exchange regeneration waste containing sodium sulfate was produced. The following composition is for post-1980 N Reactor waste; N Reactor waste produced during the time when the SSTs were active is assumed to be similar.

Element/isotope	mol/L
Na	1.11
NO ₂	0.014
ОН	0.01
PO₄	0.36

Approximate Composition of Concentrated Phosphate Waste

30. <u>Noncomplexed Waste (NCPL)</u>. A general term for supernatant liquids and saltwell liquors not identified as containing organic complexants. This term came into use after 1976 and does not reflect origin or composition of the waste, only its suitability for further treatment.

Element/isotope	mol/L
A1	1.5
CO3	0.2
Na	10.6
NO ₂	2.2
NO ₃	3.3
PO ₄	0.08

Estimated Composition

31. <u>OWW</u>. Organic solvent wash waste from the PUREX Plant, containing carbonate, permanganate, and nitrate.

Element/isotope	mol/L
CO3	0.21
К	0.01
MnO ₄	0.01
MnO ₂	0.01
Na	0.27
NO3	0.06
U	0.008

Approximate Composition

32. <u>P</u>. High-activity neutralized acid waste generated by the PUREX process.

Element/isotope	mol/L
Al	0.15
Fe	0.4
Na	1.4
NO ₃	1.3
PO4	0.02
SO4	0.9

Approximate Composition

33. <u>PL</u>. Low-level waste from the PUREX Plant.

Element/isotope	mol/L
Na	0.0013
NO ₃	0.0026
Np	5.0 E-7
Pu	3.2 E-6
U	0.0013

Approximate Composition

34. <u>PNF</u>. Waste used as feed for the partial neutralization campaigns conducted at the 242-S Evaporator during the late 1970s. Noncomplexed. For typical composition see No. 18, evaporator feed (EF).

35. <u>PUREX Sludge Supernatant (PSS) Liquid</u>. PUREX sludge supernatant liquid was produced by leaching PUREX sludge. This sludge, in underground storage, resulted from the neutralization of PUREX high-level waste and the removal of supernatant liquids.

Approximate Composition		
Element/isotope	mol/L	
Al	0.04	
CO3	0.24	
Cr	0.002	
Na	5.4	
NO ₃	4.2	
NO ₂	0.22	
SO₄	0.25	

36. <u>R</u>. High-level waste from the REDOX process. = $\frac{RSITCE}{RSITCE}$ (A_{max} , 1996 (AUE 31.25 E)

Element/isotope	mol/L
Al	1.2
Cr	0.177
Fe	0.016
Na	6.91
NO ₃	4.83
ОН	0.74
PU	7.7 E-7
SO4	0.031
U	0.0014

Approximate Composition

37. <u>RESD</u>. A residual evaporator liquor. This is the same as HDRL, which in turn was formerly called TL. For composition see No. 44, Terminal Liquor (TL).

38. <u>REDOX Ion Exchange (RIX) Waste</u>. Waste produced at B Plant after extraction of cesium from REDOX supernatant liquid by ion exchange. This includes column waste, column waste, and cesium purification waste.

Element/isotope	mol/L
A1	0.6
Na	3.1
NO ₃	1.97
NO ₂	0.27
OH	0.69
SO4	0.022

Approximate Composition

39. <u>REDOX Supernatant (RSN)</u>. Supernatant liquor portion of waste generated by the REDOX process and found above sludge in underground storage tanks.

Element/isotope	mol/L
Al	0.59
Na	5.2
NO ₂	0.18
NO3	3.08
OH	1.26
SO4	0.015

Approximate Composition

40. <u>SIX</u>. Waste resulting from the removal of cesium from PUREX sludge supernatant liquid (see waste type PSS) by ion exchange at the B Plant. The given composition includes column waste, wash waste, and cesium purification waste.

Element/isotope	mol/L
Al	0.027
CO3	0.16
Cr	0.0013
Na	2.93
NO ₂	0.4
NO3	2.76
SO4	0.16

Approximate Composition

41. <u>Strontium Sludge (SRS).</u> Sludge feed for the strontium extraction process at the B Plant. This waste type turned up during the mid-1970s and most likely originated largely from the PUREX process. Three compositions of PUREX sludges are given, two from sample analyses and one estimated from knowledge of essential material consumption and chemical behavior. The first waste composition is clearly labeled PUREX sludge but is not dated nor is a sampling method given. The third waste composition given here represents a homogenized core sample of the tank and may contain a variety of sludges. The one estimated composition contains less water than the actual compositions. The discrepancies between these three compositions reflect the difficulty of relying on a wide variety of sources to characterize highly variable waste types.

Element/isotope	mol/L
Al*	1.95
Ba	<0.04
Ca*	0.2
Fe*	1.78
Mg	0.09
Mn	0.55
Na	2.2
он	5.74
Pu	0.00025
Si*	0.136

Composition of a Sampled Sludge from Tank 241-C-106

* Assuming Al present as NaAlO₂, Fe as Fe(OH)₃, Ca as Ca(OH)₂, and Si as Na₂SiO₃.

Composition of a Composite of Sampled Solids from Tank 241-C-106 Done in September 1976

Element/isotope	mol/L
Al	2.11
Ca	0.425
Fe	1.33
Mg	0.386
Na	7.27
Р	0.13
Si	3.61
тос	6.6 gm/L

Element/isotope	mol/L
Al	3.87
Fe	2.75
Mn	0.8
Na	12.96
ОН	8.25
PO ₄	0.27
Si	4.14
Zr	1.1

PUREX Sludge Composition*

* This is a theoretical PUREX sludge composition based on known consumption of essential materials and known solubility behavior of ionic species.

42. <u>Strontium Semiworks Waste (SSW)</u>. Waste produced from the strontium extraction process at the strontium semiworks after 1961. Feed was typically PUREX high-level acid waste.

Element/isotope	mol/L
Ba	0.0002
Са	0.0049
Ce	0.0017
C ₂ H ₃ O ₂ (acetate)	1.34
Fe	0.03
К	0.078
Na	4.9
NO ₃	2.1
ОН	1.32
РЬ	0.034
RE	0.0069
Sr	0.0005

Approx	imate	Com	position

43. <u>TBP</u>. Waste from the TBP uranium-extraction process at U Plant, composed of concentrated, neutralized aqueous effluents from the primary extraction column and from the solvent wash.

Element/isotope	mol/L
Cl	0.0025
Fe	0.03
Na	8.87
NO ₃	7.35
ОН	0.09
PO ₄	0.3
Pu	6.7 E-7
SO₄	0.31
U	0.0061

Approximate Co	mposition
----------------	-----------

44. <u>Terminal Liquor (TL)</u>. Terminal liquor produced by evaporators as a concentrated supernatant liquid decanted from the evaporator bottoms. Terminal liquor is defined as evaporator liquor that may not be evaporated further without producing solids that are unsatisfactory for storage in SSTs. These undesirable solids may be either deliquescent caustic salts, fine and poorly draining aluminate solids, or gelled organic complexants.

Element/isotope	mol/L
Al	2.3
CO3	0.2
Na	12.6
NO ₂	3.0
NO ₃	2.5
ОН	4.4
PO ₄	0.001

Typical Composition

45. <u>1C</u>. First decontamination cycle waste from the $BiPO_4$ process at B and T Plants. This waste type consists of byproducts coprecipitated from a plutonium-containing solution. Coating waste from the removal of aluminum fuel element cladding was added and composed about 24% of this waste stream.

	•
Element/isotope	mol/L
Al	0.38
Bi	0.012
Ce	0.00022
Cr	0.0016
F	0.19
Fe	0.025
Na	3.34
NO ₂	0.28
NO3	1.54
OH	0.28
PO4	0.28
PU	0.000002
Si	0.034
SO4	0.052

Approximate Composition

46. <u>2C</u>. Waste from the second decontamination cycle of the $BiPO_4$ process at B and T Plants and consisting of effluent remaining after precipitation of plutonium product.

Element/isotope	mol/L
Bi	0.0092
Cr	0.0025
F	0.22
Fe	0.023
Na	2.04
NO3	1.27
PO ₄	0.34
Si	0.037
SO4	0.062

Approximate	Composition
ADDFOXIMAGE	Composition

47. $\underline{224}$. Waste from the final decontamination and concentration stage of the BiPO₄ process. In this stage, first the byproducts and finally the plutonium product are precipitated with lanthanum fluoride. This waste was largely sent into the ground through reverse flow wells and underground sumps.

Element/isotope	mol/L
Bi	0.0062
Cr	0.0009
F	0.31
$H_2C_2O_4$ (oxalate)	0.028
K	0.26
La	0.0014
Mn	0.0046
Na	1.75
NO3	1.06
ОН	0.59
PO4	0.049

Approximate Composition

48. <u>5-6</u>. Waste from Tank 5-6 at B Plant. This is a very hot waste that collected in the bottom of Section 5 at B Plant due to boil-over during dissolving and neutralization during the $BiPO_4$ process.

49. <u>Z</u>. Waste discharged from the Plutonium Finishing Plant during the late 1970s. Waste from the Plutonium Reclamation Facility and the Remote Mechanical C Line was sent to evaporators and put in SSTs. At times, slag and crucibles from processing of plutonium metal were used as feed material for plutonium reclamation, changing the waste composition.

Element/isotope	mol/L
Al	0.5
Ba	0.000003
Са	0.00071
Cr	0.0014
Fe	0.0007
К	0.0007
Mg	0.000021
Mn	0.0007
Na	4
Ni	0.00057
РЬ	0.00036
Sr	0.000021
ОН	0.0001
Cl	0.041
F	0.047
NO3	3.5
NO ₂	0.014
PO4	0.00014
SO₄	0.0014
TRU	0.00006
U	0.00001
TOC	3 g/L

Approximate Composition Without Slag and Crucible Processing

Approximate Composition with Slag and Crucible Processing (where different from above)

Element/isotope	mol/L
Ca	0.014
Fe	0.0071
F	0.018
I	0.00016
NO ₂	0.0065

T

Appendix C

Core Sample Analytical Data Tables Used in the SORWT Model Verification Study

I. -I ~ I. I

I

Sim Control Desc Lange Lange <thl< th=""><th>Group No.</th><th>Tank No.</th><th>Core No.</th><th>Composite No.</th><th>Sample No.</th><th>Al</th><th>BI</th><th>Cr</th><th>Fe</th><th>La</th><th>Mn</th></thl<>	Group No.	Tank No.	Core No.	Composite No.	Sample No.	Al	BI	Cr	Fe	La	Mn
Set Cillo 31 2 Set of the set											5.60E+01
Mit Color 97 2 Deginate Ling-off 12000 14000 12										and the second se	4.82E+01
Mit Cillo Jat 1 Derge Holson Holson <											5.01E+01 4.64E+01
Name Collo Mate 1 Depicts 1.301:00			and go and an a set of a								9.34E+01
Mat Chilo PP 1 Decker Control Control PP Decker Control PP Decker PP VT </td <td></td> <td></td> <td></td> <td></td> <td>Duplicate</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5.21E+01</td>					Duplicate						5.21E+01
No. C.110 Jam Jam <thjam< t<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3.10E+01</td></thjam<>											3.10E+01
Xiii Calibra Yes 2 Degine (PSR) (PSR) (PSR) (PSR) <t< td=""><td></td><td></td><td></td><td>and the second second</td><td></td><td></td><td></td><td></td><td></td><td></td><td>3.51E+01</td></t<>				and the second							3.51E+01
No. Bold T Oo 1 Departs 1.986/00	XII	C-110	39	2	Duplicate	1.45E+04	1.02E+04	4.13E+02	8.99E+03	7.95E+00	8.45E+01
Xii Diskrif 40 2 Single Algebra 118000 <td></td> <td>and the second s</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6.51E+01</td>		and the second s									6.51E+01
XII EX.107 40 2 Departure 1.200404 2.10040 2.80040 0.80070 3.800 201 BX.107 41 2 height 1.20140 2.20140 1.00140 1.10140 <td></td> <td>4.99E+01</td>											4.99E+01
Std BK-107 6 1 Deglors 1785/07 288-06 1098-06			40								5.89E+01
St. BYG107 0. 2 Series 1.85564 1.98640 1.98640 1.99764 2.00000 6.4884 VI R.500 Q3 1 Deplease 1.01564 1.91640											6.52E+01
Xii Discription 1.076-04 1.776-04 7.886-05 6720 VI D.201 5.0 1 Discription 1.076-04 1.786-04											8.16E+01 6.60E+01
With B-201 B-30 Image I											6.92E+01
Wit Bolt De 2 Seeps 108646 19904 217860 128640 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>and the second s</td><td>2.23E+04</td></th<>										and the second s	2.23E+04
Vitto Pactor 26. 26. Pactor 1000000000000000000000000000000000000	the second s										2.33E+03
Vit Bedra 277 Image: Second secon											2.08E+04
VI P.201 27 2 Seeming 1 Otherson 3 Seeming 1 Stateson 1 Matheward 1 Mathward 1 Mathward 1 Mathward <td></td> <td>B-201</td> <td>27</td> <td>1</td> <td>Sample</td> <td>1.17E+03</td> <td>9.61E+04</td> <td>3.48E+03</td> <td>1.16E+04</td> <td></td> <td>2.41E+04</td>		B-201	27	1	Sample	1.17E+03	9.61E+04	3.48E+03	1.16E+04		2.41E+04
Vitt PS30 27 2 Paylene 1065:00 3.968:00 1.958:00		the second s									2.59E+04
VI. Big20 24 I Suppl. 198:00 138:00 128:00 <											2.33E+04
Vitt B-302 24 1 B-972 1 (1960) 7 2786-04 9 786-05 1 (186-04)			24	1	Sampl					1.23E+04	1.14E+04
MU B.202 24 I Dp2 1.66663 2:2564 1.886:00 2.940:03 1.886:04 2.880:04 1.886:04 2.880:04 1.886:04 2.880:04 1.886:04 2.880:04 1.886:04 2.880:04 1.886:04 2.880:04 1.886:04 2.880:04 1.880:04 <th< td=""><td></td><td></td><td></td><td>······</td><td></td><td></td><td>2.765+04</td><td>1.078.02</td><td>1.01R+04</td><td>1 198404</td><td>1 2017+02</td></th<>				······			2.765+04	1.078.02	1.01R+04	1 198404	1 2017+02
Str. B.202 24 2 Supplex 1.658-00 3.0156-0 2.668-00 2.608-00											8.00E+03
Ul. B-202 24 2 Seeple	VII	B-202	24	2	Sample						1.28E+04
WT B-202 24 2 Duplement -						· · · · ·		· ·		•	•
VII. B-202 23 1 Supplex 2.550-02 3.050-04 2.058-02 3.050-04 2.058-02 3.050-01 1.425-04 7.445 VII. B-202 23 2 Sample 4.850-02 3.050-01 2.050-02								<u> </u>	·	•	
VI B-282 23 1 Draginate L58002 3668104 2788-03 3668104 2788-03 3668104 2788-03 3668104 2788-03 3668104 258644 258646 25864 25864 </td <td>VII</td> <td></td> <td>25</td> <td></td> <td></td> <td>2.55E+02</td> <td>3.50E+04</td> <td>2.78E+03</td> <td>4.09E+03</td> <td>1.45E+04</td> <td>1.35E+04</td>	VII		25			2.55E+02	3.50E+04	2.78E+03	4.09E+03	1.45E+04	1.35E+04
VID B.202 25 2 Burgh - </td <td>VII</td> <td>B-202</td> <td>25</td> <td></td> <td>Duplicate</td> <td>1.95E+02</td> <td>3.66E+04</td> <td>2.79E+03</td> <td></td> <td></td> <td>7.54E+03</td>	VII	B-202	25		Duplicate	1.95E+02	3.66E+04	2.79E+03			7.54E+03
VII 5.322 25 2 Sump2 6.6889703 3.328-04 2.208-03 4.888703 3.328-04 2.208-03 4.887003 1.887004 1.887004 1.887004 1.887004 1.887004 1.887004 1.88700 1.887004 1.88700 7.88700 1.88700 7.						4.85E+02	3.18E+04	2.56E+03	4.91E+03	1.31E+04	1.25E+04
YM 5.022 25 2 prig2 6.888442 3.3281-64 2.2081-60 3.5281-64 7.88444 7.88444 XVI B-110 1 1 Dupl 3.818-60 7.884444 <td>VII</td> <td></td> <td>25</td> <td></td> <td></td> <td>6.08E+02</td> <td>3.32E+04</td> <td>2.20E+03</td> <td>4.88E+03</td> <td>1.32E+04</td> <td>1.22E+04</td>	VII		25			6.08E+02	3.32E+04	2.20E+03	4.88E+03	1.32E+04	1.22E+04
XVI B+10 1 I Dep1 3 812+03 7 825-02 7 812+03 7 812+04	VII	B-202	25	2	Dup2	6.88E+02	3.32E+04	2.20E+03	5.32E+03	1.31E+04	1.20E+04
NYI B+10 1 1 Sump2 5.881:03 7.086:03 7.086:02				· · · · · · · · · · · · · · · · · · ·							7.60E+01 7.10E+01
NVI B-110 1 1 Deg2 1384-03 1981-04 7.3281-04 6.3281-04 7.3281-04 7.3281-04 7.3281-04 7.3281-04 7.3281-04 7.3281-04 7.3281-04 7.3281-04 7.3281-04 7.3281-04 7.3281-04 7.3281-04 7.3281-04 7.3281-04 7.3281-04 7.3281-04 7.3281-04 7.328											8.40E+01
SVI B-10 1 Dep3 1138-03 7.76604 2.968-02 1.828-04			1	1	· · · · · · · · · · · · · · · · · · ·				1.75E+04		8.10E+01
W1 B-110 I I Sump4 I168-03 I.184-04 II38-04 G.28710 S.2810 S.28100											1.59E+02
XVI B-110 1 1 Dept 1.11E+03 1.73E+04 7.80E+02 1.80E+04 6.80E+01 6.80E+04 6.90E+04 7.80E+04											9.10E+01 8.40E+01
XVI B-110 2 I Dogi I.718-03 2088-04 7.888-02 I.788-04 3.1876-01 5.087 XVI B-110 2 I Dug2 1.978-03 2.178-04 8.298-02 1.888-04 2.848-04 3.086	XVI									6.11E+01	7.30E+01
W1 B-110 2 1 Samp2 1798-03 2 288-04 2 281-04 2 281-04 2 281-04 2 508-04				· · · · · · · · · · · · · · · · · · ·							6.80E+01
XVI B-110 2 1 Dag2 1.971+03 2.171+04 8.961+02 1.971+04 7.921+04 7.262+04 7.302+04											7.40E+01
WM B-110 3 1 Dapl 210FHQ 2208FHQ 2218FHQ 181FHQQ 184FHQ 54FHQ 55FHQ 57FHQ XVI B-110 3 1 Dap2 700FHQ 2218FHQ 811FHQQ 184EHQ 57FHQ 75FHQ 75FHQ 75FHQ 57FHQ											6.70E+01
XVI B-110 3 1 Samp2 7.68E+02 2.218+04 8.10+02 1.84E+04 7.218+04 7.228+04 7.218+04 7.228+04 7.218+04 7.228+04 7.218+04 7.228+04 7.218+04 7.228+04 7.228+04 7.228+04 7.228+04 7.228+04 7.228+04 7.228+04 7.228+04 7.228+04 7.228+04 7.228+04 7.228+04 7.228+04 7.228+04 7.228+04											9.70E+01
XVI B-110 3 1 Dug1 700Fr02 2.05Hr04 7.58Hr04											6.80E+01 1.14E+02
XVI B-110 3 2 Dupi 1.126+03 2.266+04 8.484+02 1.766+04 7.716+01 7.706+ XVI B-110 3 2 Dupi 1.276+03 1.966+04 8.484+02 1.786+04 7.685+01 7.906+ XVI B-110 3 3 Sampl 1.226+04 8.348+02 1.838+04 6.808+01 XVI B-110 3 3 Sampl 2.776+02 2.246+04 7.016+02 1.838+04 6.808+02 1.228+01 8.008+02 1.228+01 8.008+02 1.228+01 8.008+02 1.228+01 8.008+02 1.248+04 8.388+02 1.028+01 1.248+04 8.388+02 1.228+04 9.338+01 1.028+02 1.248+04 1.328+04 9.338+01 1.028+02 1.248+04 1.328+04 8.328+01 1.028+02 1.248+04 1.328+04 8.328+01 1.028+02 1.248+04 1.328+04 8.328+01 1.428+04 1.328+04 8.328+01 1.428+04 1.328+02 1.428+04 1.328+04 8.328+01		· · · · · · · · · · · · · · · · · · ·			······						7.40E+01
XVI B-110 3 2 Samp2 1.274+03 2.362+04 8.441+02 1.892+04 7.868+01 7.507: XVI B-110 3 3 Samp1 1.234+03 2.162+04 8.461+02 1.484+04 6.831+01 6.802+ XVI B-110 3 3 Samp2 6.778+02 2.262+04 7.024+04 6.824+04 7.224+01 8.602+ XVI B-110 3 3 Samp2 6.758+02 2.242+04 7.024+04 7.224+04						6.44E+02	2.34E+04				5.70E+01
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			· · · · · · · · · · · · · · · · · · ·								6.10E+01 7.50E+01
Xv1 B-110 3 3 Dupl 138:001 2.04E-04 8.46E-02 1.86E-04 2.28E-04 6.89E-01 1.16E Xv1 B-110 3 3 Samp2 7.55E-01 2.24E-04 7.1EE-04 8.0EE-02 1.86E-04 8.0EE-01 9.22E Xv1 B-110 4 1 Samp1 1.26E+03 1.84E+04 8.0EE-02 1.87E+04 8.0EE-02 1.87E+04 8.0EE-02 1.87E+04 9.0EE+01 9.22E Xv1 B-110 4 1 Samp1 1.26E+03 1.84E+04 7.9EE+02 1.82E+04 8.9EE+04 9.9EE+01 1.02E Xv1 B-110 9 1 Dag2 1.26E+03 1.48E+04 7.3EE+02 1.46E+04 1.39E+02 1.46E+04 1.39E+0										· · · · · · · · · · · · · · · · · · ·	7.70E+01
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		\$	3	3			2.16E+04	8.34E+02	· · · · · · · · · · · · · · · · · · ·		6.80E+01
XvI B-110 3 Dup2 7538+02 2.248+04 7.608+02 1.77E+04 8.03E+01 1.248-04 XvI B-110 4 1 Dup1 1.266+03 1.78E+04 8.261+02 1.862+04 9.20E+04 9.20E+04 9.20E+04 9.20E+04 9.20E+04 9.01E+01 0.20E+04 8.27E+02 1.88E+04 8.27E+02 1.88E+04 8.27E+02 2.66E+04 8.85E+01 1.02E XvI B-110 9 1 Samp1 4.05E+02 1.84E+04 8.75E+02 1.46E+04 1.25E+02 9.0E+04 1.25E+02 9.0E+04 1.25E+02 9.0E+04 1.25E+02 9.0E+04 7.35E+02 1.44E+04 1.5E+02 9.0E XVI B-110 10 1 Samp1 3.35E+03 1.41E+04 7.35E+02 1.44E+04 1.25E+02 9.0E+0 1.36E+02 1.26E+01		· · · · · · · · · · · · · · · · · · ·									1.14E+02
Xvt B-110 4 1 Sampl 1.158+03 1.788+04 8.548+02 1.862+04 9.708+01 9.208+01 Xvt B-110 4 1 Sampl 1.266+03 1.948+04 8.712+02 1.898+04 9.9318+01 1.038 Xvt B-110 4 1 Dup2 1.778+03 1.348+04 8.518+02 1.828+04 9.918+01 1.048 Xvt B-110 9 1 Sampl 1.2678+02 1.468+04 1.228+02 9.308 Xvt B-110 9 1 Dup1 3.6728+02 1.468+04 1.328+02 1.478+04 1.386+02 1.018+02											1.24E+02
XVI B-110 4 1 Samp2 1.20E+03 1.74H+04 8.51H+02 1.82E+04 9.01E+01 1.02E XVI B-110 9 1 Samp1 4.05E+02 1.45E+04 7.53E+02 1.46E+04 1.23E+02 8.80E XVI B-110 9 1 Dup1 3.52E+02 1.45E+04 7.53E+02 1.46E+04 1.35E+04 7.53E+02 1.46E+04 1.30E+02 9.0E XVI B-110 9 1 Dup2 3.52E+02 1.45E+04 7.32E+04 6.48E+01 1.15E+02 9.10E 3.52E+01 3.48E XVI B-110 10 1 Samp2 1.21E+03 1.72E+04 6.48E+01 1.15E XVI B-110 10 1 Dup2 1.21E+03 1.72E+04 7.48E+02 1.86E+04 7.53E+02 1.48E+04 8.58E+02 1.85E+04 7.48E+01 1.85E+04 1.85E+04 1.85E+04 1.85E+04 1.85E+04 1.85E+04 1.85E+04 1.85E+04 1.85E+04										9.70E+01	9.20E+01
XVI B-110 4 1 Dup2 127E+03 143E+04 & 67B+02 2.06B+04 8.85E+01 1.14E XVI B-110 9 1 Dup1 3.87E+02 1.48E+04 7.39E+02 1.46E+04 7.39E+02 1.46E+04 7.39E+02 1.46E+04 1.19E+02 9.30E XVI B-110 9 1 Dup2 3.59E+02 1.44E+04 7.58E+02 1.44E+04 1.15E+02 9.10E XVI B-110 10 1 Samp2 1.22E+03 1.73E+04 7.58E+02 1.85E+04 6.52E+01 1.34E XVI B-110 10 1 Samp2 1.21E+03 1.73E+04 7.58E+02 1.85E+04 8.58E+01 1.15E XVI B-110 10 1 Samp2 1.21E+03 1.73E+04 7.58E+02 1.85E+04 1.51E+02 1.85E+04 1.51E+02 1.85E+04 1.51E+02 1.85E+04 1.51E+02 1.85E+04 1.51E+02 1.85E+04 1.51E+01 1.75E+04 1.51E+01]							1.03E+02
XVI B-110 9 1 Sampl 4 05E+02 1.58E+04 7.38E+02 1.46E+04 1.23E+02 8.20E XVI B-110 9 1 Dup2 3.52E+02 1.55E+04 7.33E+02 1.46E+04 1.13E+02 9.30E XVI B-110 9 1 Dup2 3.59E+02 1.54E+04 7.33E+02 1.44E+04 1.15E+02 9.10E XVI B-110 10 1 Dup2 3.59E+03 1.44E+04 7.38E+02 1.48E+04 6.59E+01 1.34E XVI B-110 10 1 Dup1 1.28E+03 1.74E+04 7.58E+02 1.82E+04 6.56E+01 1.16E XVI B-110 16 1 Dup2 1.21E+03 1.72E+04 7.58E+02 1.86E+04 1.15E+02 1.09E+03 1.86E+04 1.15E+02 1.09E+04 1.86E+04 1.15E+02 1.09E+04 1.86E+04 1.15E+02 1.09E+04 1.86E+04 1.15E+02 1.09E+04 1.08E+04 1.6E+01 1.09E+04											1.02E+02 1.14E+02
XVI B-110 9 1 Samp2 3.62E+02 1.47E+04 7.33E+02 1.47E+04 1.30E+02 1.00E+02 1.00E+04 1.35E+02 1.80E+04 7.33E+02 1.80E+04 6.52E+01 1.34E XVI B-110 10 1 Dupl 1.28E+03 1.70E+04 7.34E+02 1.82E+04 6.66E+01 1.29E XVI B-110 10 1 Dup2 1.21E+03 1.70E+04 7.83E+02 1.83E+04 6.67E+01 1.11E XVI B-110 16 1 Dup1 1.31E+03 1.89E+04 7.84E+02 1.83E+04 7.68E+01 1.60E+02 1.80E+04 7.68E+01 1.60E+02 1.80E+04 7.68E+01 1.60E+02 1.80E+04 7.68E+01 1.80E+04 7.68E+01 1.60E+02 1.80E+04 7.68E+01 1.60E+02 1.80E+04 7.68E+01 1.60E+03 1.68E+04 7.68E+01											8.80E+01
XVI B-110 9 1 Dup2 3.39B+02 1.44B+04 7.53B+02 1.44B+04 7.53B+02 1.44B+04 7.53B+02 1.44B+04 7.53B+02 1.44B+04 7.53B+02 1.84B+04 6.52B+01 1.34B XVI B-110 10 1 Dup1 1.28B+03 1.71B+04 7.34B+02 1.72B+04 6.69B+01 1.23B XVI B-110 10 1 Dup2 1.21B+03 1.72B+04 7.84B+02 1.83B+04 6.67B+01 1.12B+03 XVI B-110 16 1 Samp1 1.43B+03 1.95B+04 7.84B+02 1.83B+04 7.69B+01 1.03B+04 XVI B-110 16 1 Dap2 1.51B+03 1.95B+04 7.84B+02 1.83B+04 7.69B+01 1.00B+04 XVI B-110 16 1 Dap2 1.51B+03 2.06B+04 1.12B+03 1.69B+04 5.93B+01 1.07B+04 5.93B+01 1.07B+04 5.93B+01 1.07B+04 5.93B+01 1.02B+04 5.93										and the second sec	9.30E+01
XVI B-110 10 1 Sampl 1.35Br03 1.41Br04 7.83Br02 1.80Br04 6.69Br01 1.23B XVI B-110 10 1 Dup1 1.28Br03 1.70Br04 7.34Br02 1.82Br03 6.69Br01 1.23B XVI B-110 10 1 Dup2 1.21Br03 1.70Br04 7.84Br02 1.82Br03 6.67Br01 1.16Br XVI B-110 16 1 Dup2 1.21Br03 1.70Br04 7.84Br02 1.84Br04 8.63Br01 1.60Br04 8.80Br02 1.84Br04 8.63Br04 1.53Br02 1.60Br04 8.63Br01 1.60Br04 8.63Br01 1.60Br04 1.53Br02 1.60Br04 1.53Br01 1.60Br04 7.63Br01 1.60Br04 1.63Br04 1.63Br04 1.63Br04 1.63Br04 1.63Br04 1.63Br04 1.63Br04 1.63Br04 1.63Br04				······							9.10E+02
WT B-110 10 1 Dupl 1.28E+03 1.47E+04 7.34E+02 1.72E+04 6.669E+01 1.23E XVI B-110 10 1 Dup2 1.21E+03 1.72E+04 7.58E+02 1.82E+04 6.667E+01 1.13E+03 1.72E+04 7.58E+02 1.89E+04 6.667E+01 1.11E XVI B-110 16 1 Dup1 1.51E+03 1.58E+04 7.58E+02 1.83E+04 7.69E+04 1.58E+01 1.68E+04 1.58E+01 1.68E+04 1.58E+02 1.83E+04 7.69E+01 1.040E+0 1.05E+04 1.58E+04 7.64E+01 1.76E+04 1.58E+04 7.64E+01 1.76E+04 1.58E+04 7.64E+01 1.76E+04 5.58E+01 1.04E+0 1.72E+04 7.64E+04 1.76E+04 5.58E+01 1.07E+04 5.58E+01 1.05E+03 <td>and the second se</td> <td></td> <td></td> <td></td> <td>·····</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.34E+02</td>	and the second se				·····						1.34E+02
XVI B-110 10 1 Dup2 1.21E+03 1.72E+04 7.58E+02 1.89E+04 8.60E+01 11E XVI B-110 16 1 Dup1 1.51E+03 1.59E+04 8.60E+01 1.58E+04 8.60E+01 1.58E+04 8.60E+04 1.58E+04 8.60E+04 1.58E+04 8.60E+04 1.58E+04 8.60E+04 1.58E+04 8.60E+04 1.58E+04 8.60E+04 1.58E+04 7.64E+01 1.76E+04 5.53E+01 1.05E+04 5.20E+04 1.28E+04 7.64E+01 1.76E+ XVI B-111 29 1 Sample 1.15E+03 2.06E+04 1.12E+03 1.69E+04 5.32E+01 1.76E+04 5.32E+01 1.76E+04 5.32E+01 1.72E+04 5.32E+01 1.72E+04 5.32E+01 1.72E+04 5.32E+01 1.72E+04 5.32E+01 1.72E+04 5.32E+01 1.72E+04 1.52E+03 1.52E+03 2.02E+04 1.12E+03 1.62E+04 5.32E+01 1.02E+ XVI B-111 30 1 Duplicate 1.13E+03		B-110		1	Dupl	1.28E+03	1.47E+04				1.23E+02
XVI B-110 16 1 Sampl 1.43E+03 1.89E+04 7.84E+02 1.84E+04 8.63E+04 8.63E+04 8.63E+04 8.63E+04 1.15E+02 1.00E+04 1.30E+04 7.84E+02 1.86E+04 1.15E+02 1.00E+04 1.30E+04 7.84E+02 1.82E+04 7.64E+01 1.40E+ XVI B-110 16 1 Dup2 1.51E+03 1.99E+04 7.82E+02 1.82E+04 7.64E+01 1.76E+ XVI B-111 29 1 Duplicate 1.11E+03 2.00E+04 1.16E+03 1.68E+04 5.63E+01 1.21E+ XVI B-111 29 2 Sample 1.13E+03 2.00E+04 1.11E+03 1.68E+04 5.53E+01 1.02E+ XVI B-111 30 1 Sample 1.31E+03 2.02E+04 1.11E+03 1.88E+04 6.0E+01 1.02E+ XVI B-111 30 1 Duplicate 1.51E+03 2.04E+04 1.18E+03 8.83E+03 6.2E+01 1.18E+											1.16E+02 1.11E+02
XVI B-110 16 1 Dup1 151E+03 1.95E+04 8.03E+02 1.83E+04 7.69E+01 1.40E XVI B-110 16 1 Dup2 1.51E+03 1.93E+04 7.84E+02 1.83E+04 7.69E+01 1.40E XVI B-111 29 1 Sample 1.51E+03 2.06E+04 1.12E+03 1.69E+04 5.53E+01 1.07E XVI B-111 29 1 Duplicate 1.11E+03 2.06E+04 1.16E+03 1.67E+04 5.53E+01 1.05E XVI B-111 29 2 Sample 1.13E+03 2.06E+04 1.18E+03 8.83E+04 5.53E+01 1.05E XVI B-111 30 1 Sample 1.61E+03 2.04E+04 1.18E+03 8.83E+04 6.68E+01 1.09E XVI B-111 30 2 Sample 1.51E+03 2.04E+04 1.18E+03 1.88E+04 6.08E+01 1.09E XVI B-111 30 2											8.80E+01
XVI B-110 16 1 Dup2 1.51E+03 1.99E+04 7.82E+02 1.82E+04 7.64E+01 1.76E XVI B-111 29 1 Sample 1.15E+03 2.06E+04 1.12E+03 1.69E+04 5.53E+01 1.07E XVI B-111 29 2 Sample 1.13E+03 2.00E+04 1.16E+03 1.68E+04 5.53E+01 1.07E XVI B-111 29 2 Duplicate 1.19E+03 2.00E+04 1.10E+03 1.67E+04 5.53E+01 1.12E XVI B-111 30 1 Sample 1.61E+03 2.04E+04 1.18E+03 8.83E+04 6.08E+01 1.19E XVI B-111 30 2 Sample 1.57E+03 1.93E+04 1.13E+03 1.80E+04 6.08E+01 1.18E XVI B-111 30 2 Sample 1.16E+05 2.90E+01 1.18E+03 1.80E+04 6.08E+01 1.08E XVI B-111 30 2 <td>XVI</td> <td>B-110</td> <td>16</td> <td>1</td> <td>Dupl</td> <td>1.51E+03</td> <td>1.95E+04</td> <td>8.03E+02</td> <td></td> <td>1.15E+02</td> <td>1.03E+02</td>	XVI	B-110	16	1	Dupl	1.51E+03	1.95E+04	8.03E+02		1.15E+02	1.03E+02
XVI B-111 29 1 Sample 1.15E+03 2.06E+04 1.12E+03 1.69E+04 5.93E+01 1.07E- XVI B-111 29 1 Duplicate 1.11E+03 2.00E+04 1.16E+03 1.68E+04 5.63E+01 1.21E- XVI B-111 29 2 Duplicate 1.13E+03 2.02E+04 1.11E+03 1.68E+04 5.53E+01 1.05E- XVI B-111 30 1 Sample 1.63E+03 2.04E+04 1.18E+03 8.83E+03 6.21E+01 1.11E+03 XVI B-111 30 1 Duplicate 1.63E+03 2.04E+04 1.18E+03 1.88E+04 6.08E+01 1.09E XVI B-111 30 2 Duplicate 1.57E+03 2.07E+04 1.18E+03 1.88E+04 6.08E+01 1.08E+04 6.08E+01 1.08E+04 6.08E+01 1.08E+04 6.08E+01 1.08E+04 6.08E+01 1.08E+04 6.08E+01 1.08E+03 1.85E+03 1.85E+03 1.85E+03 1.85E+03<										·····	1.40E+02 1.76E+02
XVI B-111 29 1 Duplicate 1.11E+03 2.00E+04 1.16E+03 1.68E+04 5.63E+01 1.21E XVI B-111 29 2 Sample 1.13E+03 2.00E+04 1.10E+03 1.67E+04 5.53E+01 1.05E XVI B-111 30 1 Sample 1.61E+03 2.04E+04 1.18E+03 8.83E+03 6.21E+01 1.11E XVI B-111 30 1 Duplicate 1.57E+03 1.22E+04 1.18E+03 1.88E+04 6.08E+01 1.09E+ XVI B-111 30 2 Sample 1.57E+03 1.93E+04 1.18E+03 1.87E+04 6.00E+01 1.03E+ XVI B-111 30 2 Sample 1.57E+03 2.07E+04 1.19E+03 1.87E+04 6.00E+01 1.03E+ VV S-104 42 1 Duplicate 1.16E+05 2.90E+01 2.32E+03 1.56E+03 8.00E+00 1.22E+ IV S-104 42											1.07E+02
XVI B-111 29 2 Duplicate 1.19E+03 2.02E+04 1.11E+03 1.71E+04 5.59E+01 1.12E- XVI B-111 30 1 Sample 1.61E+03 2.04E+04 1.18E+03 8.83E+03 6.21E+01 1.11E- XVI B-111 30 2 Sample 1.57E+03 1.93E+04 1.18E+03 1.88E+04 6.08E+01 1.08E+ XVI B-111 30 2 Sample 1.57E+03 1.93E+04 1.18E+03 1.80E+04 6.08E+01 1.03E+ XVI B-111 30 2 Duplicate 1.16E+05 2.90E+01 2.53E+03 1.80E+04 6.08E+01 1.03E+ IV S-104 42 1 Duplicate 1.16E+05 2.90E+01 2.53E+03 1.65E+03 7.89E+00 1.22E+ IV S-104 42 2 Sample 1.9E+05 2.86E+01 2.62E+03 1.69E+03 7.94E+00 1.07E+ IV S-104 43	XVI	B-111	29	1	Duplicate	1.11E+03	2.00E+04	1.16E+03	1.68E+04	5.63E+01	1.21E+02
XVI B-111 30 1 Sample 1.61E+03 2.04E+04 1.18E+03 8.83E+03 6.21E+01 1.11E XVI B-111 30 1 Duplicate 1.63E+03 2.04E+04 1.18E+03 1.88E+04 6.08E+01 1.09E XVI B-111 30 2 Duplicate 1.57E+03 1.93E+04 1.18E+03 1.88E+04 6.08E+01 1.08E XVI B-111 30 2 Duplicate 1.51E+03 2.07E+04 1.18E+03 1.80E+04 6.26E+01 1.03E IV S-104 42 1 Duplicate 1.16E+05 2.90E+01 2.53E+03 1.56E+03 8.00E+00 8.05E+01 IV S-104 42 2 Sample 1.19E+05 2.86E+01 2.46E+03 1.63E+03 7.94E+00 1.22E IV S-104 43 1 Sample 1.22E+05 4.57E+01 2.30E+03 1.74E+03 9.88E+00 9.63E+02 IV S-104 43											1.05E+02 1.12E+02
XVI B-111 30 1 Duplicate 1.63E+03 2.04E+04 1.18E+03 1.88E+04 6.08E+01 1.09E XVI B-111 30 2 Sample 1.57E+03 1.93E+04 1.18E+03 1.80E+04 6.26E+01 1.18E XVI B-111 30 2 Duplicate 1.51E+03 2.07E+04 1.19E+03 1.87E+04 6.00E+01 1.03E IV S-104 42 1 Sample 1.16E+05 2.90E+01 2.33E+03 1.56E+03 8.00E+00 1.02E IV S-104 42 2 Sample 1.19E+05 2.86E+01 2.62E+03 1.90E+03 7.89E+00 1.22E IV S-104 42 2 Duplicate 1.13E+05 2.86E+01 2.46E+03 1.63E+03 7.94E+00 1.32E IV S-104 43 1 Duplicate 1.22E+05 4.5E+01 2.30E+03 1.74E+03 9.80E+00 6.33E IV S-104 43				2							1.12E+02 1.11E+02
XVI B-111 30 2 Duplicate 1.51E+03 2.07E+04 1.19E+03 1.87E+04 6.00E+01 1.03E+01 IV S-104 42 1 Sample 1.16E+05 2.90E+01 2.53E+03 1.56E+03 8.00E+00 8.15E+03 IV S-104 42 1 Duplicate 1.11E+05 2.90E+01 2.47E+03 1.45E+03 8.00E+00 1.02E+01 IV S-104 42 2 Sample 1.19E+05 2.86E+01 2.62E+03 1.63E+03 7.94E+00 1.13E+03 IV S-104 43 1 Sample 1.19E+05 4.57E+01 2.30E+03 1.74E+03 9.94E+00 1.07E+04 IV S-104 43 1 Duplicate 1.22E+05 4.55E+01 2.40E+03 1.63E+03 9.88E+00 9.90E+00 5.33E+104 9.88E+04 9.88E+00 9.90E+00 5.33E+11 1.42E+03 4.92E+03 1.69E+03 1.69E+03 1.69E+03 1.69E+03 1.69E+04 5.33E+11 1.22E+0	and the set of the set	B-111		1	Duplicate	1.63E+03	2.04E+04	1.18E+03	§		1.09E+02
IV S-104 42 1 Sample 1.16E+05 2.90E+01 2.53E+03 1.56E+03 8.00E+00 8.15E+01 IV S-104 42 1 Duplicate 1.11E+05 2.90E+01 2.47E+03 1.45E+03 8.00E+00 1.09E+03 IV S-104 42 2 Sample 1.19E+05 2.86E+01 2.46E+03 1.63E+03 7.89E+00 1.22E IV S-104 42 2 Duplicate 1.13E+05 2.86E+01 2.46E+03 1.63E+03 7.89E+00 1.22E IV S-104 43 1 Sample 1.19E+05 4.57E+01 2.30E+03 1.74E+03 9.4E+00 1.07E IV S-104 43 2 Sample 1.22E+05 4.55E+01 2.40E+03 1.81E+03 9.80E+00 6.53E IV S-104 43 2 Duplicate 1.22E+05 4.51E+01 2.30E+03 1.69E+03 9.80E+00 5.83E IV S-104 44				and the second s							1.18E+02
IV S-104 42 1 Duplicate 1.11E+05 2.90E+01 2.47E+03 1.45E+03 8.00E+00 1.09E+01 IV S-104 42 2 Sample 1.19E+05 2.86E+01 2.62E+03 1.90E+03 7.89E+00 1.22E+01 IV S-104 42 2 Duplicate 1.19E+05 2.86E+01 2.46E+03 1.63E+03 7.94E+00 1.13E+01 IV S-104 43 1 Sample 1.9E+05 4.57E+01 2.30E+03 1.74E+03 9.94E+00 1.07E+03 9.94E+00 1.07E+03 9.94E+00 1.07E+03 9.94E+00 1.07E+03 9.94E+00 1.07E+03 9.80E+00 9.02E+01 2.40E+03 1.74E+03 9.80E+00 9.653E+01 2.40E+03 1.67E+03 9.80E+00 6.53E+01 2.40E+03 1.69E+03 9.80E+00 9.80E+00 6.53E+01 1.92E+03 1.65E+03 1.64E+01 1.52E+01 2.30E+03 1.66E+03 1.04E+01 1.52E+01 1.92E+03 1.86E+01 1.04E+01 1.52E+01 1.					and the second sec						1.03E+02 8.15E+02
IV S-104 42 2 Sample 1.19E+05 2.86E+01 2.62E+03 1.90E+03 7.89E+00 1.22E+01 IV S-104 42 2 Duplicate 1.13E+05 2.88E+01 2.46E+03 1.63E+03 7.94E+00 1.13E+05 IV S-104 43 1 Sample 1.19E+05 4.57E+01 2.30E+03 1.74E+03 9.94E+00 1.07E+01 IV S-104 43 1 Duplicate 1.22E+05 4.55E+01 2.40E+03 1.81E+03 9.88E+00 9.00E+01 IV S-104 43 2 Sample 1.22E+05 4.51E+01 2.30E+03 1.76E+03 9.80E+00 6.53E+01 IV S-104 43 2 Duplicate 1.14E+05 4.49E+01 2.30E+03 1.66E+03 1.04E+01 1.52E+01 IV S-104 44 1 Duplicate 1.23E+05 4.25E+01 2.20E+03 1.65E+01 1.05E+01 1.96E+01 IV S-104 4	IV	S-104	42				2.90E+01	2.47E+03	1.45E+03	8.00E+00	1.09E+03
IV S-104 43 1 Sample 1.19E+05 4.57E+01 2.30E+03 1.74E+03 9.94E+00 1.07E IV S-104 43 1 Duplicate 1.22E+05 4.55E+01 2.40E+03 1.81E+03 9.88E+00 9.90E IV S-104 43 2 Sample 1.22E+05 4.51E+01 2.30E+03 1.76E+03 9.80E+00 6.53E IV S-104 43 2 Duplicate 1.14E+05 4.49E+01 2.30E+03 1.69E+03 9.80E+00 5.83E IV S-104 44 1 Sample 1.15E+05 4.19E+01 2.10E+03 1.66E+03 1.04E+01 1.52E IV S-104 44 1 Duplicate 1.23E+05 4.25E+01 2.27E+03 1.85E+03 1.05E+01 1.96E IV S-104 44 2 Sample 1.17E+05 4.21E+01 2.20E+03 1.67E+01 1.04E+01 1.29E IV S-104 44 2 <td>IV</td> <td>S-104</td> <td>42</td> <td></td> <td>Sample</td> <td>1.19E+05</td> <td>2.86E+01</td> <td>2.62E+03</td> <td></td> <td></td> <td>1.22E+03</td>	IV	S-104	42		Sample	1.19E+05	2.86E+01	2.62E+03			1.22E+03
IV S-104 43 1 Duplicate 1.22E+05 4.55E+01 2.40E+03 1.81E+03 9.88E+00 9.90E IV S-104 43 2 Sample 1.22E+05 4.51E+01 2.30E+03 1.76E+03 9.80E+00 6.53E IV S-104 43 2 Duplicate 1.14E+05 4.49E+01 2.30E+03 1.69E+03 9.80E+00 5.83E IV S-104 44 1 Sample 1.15E+05 4.19E+01 2.10E+03 1.66E+03 1.04E+01 1.52E IV S-104 44 1 Duplicate 1.23E+05 4.25E+01 2.27E+03 1.85E+03 1.05E+01 1.96E IV S-104 44 2 Sample 1.17E+05 4.21E+01 2.20E+03 1.66E+03 1.04E+01 1.29E IV S-104 44 2 Duplicate 1.17E+05 4.21E+01 2.20E+03 1.66E+03 1.04E+01 1.29E IV S-104 44 2<						4					1.13E+03 1.07E+03
IV S-104 43 2 Sample 1.22E+05 4.51E+01 2.30E+03 1.76E+03 9.80E+00 6.53E IV S-104 43 2 Duplicate 1.14E+05 4.49E+01 2.30E+03 1.69E+03 9.80E+00 5.83E IV S-104 44 1 Sample 1.15E+05 4.19E+01 2.10E+03 1.66E+03 1.04E+01 1.52E IV S-104 44 1 Duplicate 1.23E+05 4.25E+01 2.27E+03 1.85E+03 1.05E+01 1.96E IV S-104 44 2 Sample 1.17E+05 4.21E+01 2.20E+03 1.67E+01 1.04E+01 1.29E IV S-104 44 2 Duplicate 1.13E+05 4.22E+01 2.20E+03 1.86E+01 1.04E+01 1.48E XV T-111 31 1 Sample 6.56E+02 2.14E+04 1.92E+03 2.08E+04 3.63E+03 6.29E XV T-111 31 1 <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td>· · · · · · ·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>9.90E+02</td>		· · · · · · · · · · · · · · · · · · ·		· · · · · · ·							9.90E+02
IV S-104 43 2 Duplicate 1.14E+05 4.49E+01 2.30E+03 1.69E+03 9.80E+00 5.83E IV S-104 44 1 Sample 1.15E+05 4.19E+01 2.10E+03 1.66E+03 1.04E+01 1.52E IV S-104 44 1 Duplicate 1.23E+05 4.25E+01 2.27E+03 1.85E+03 1.04E+01 1.52E IV S-104 44 2 Sample 1.17E+05 4.21E+01 2.20E+03 1.67E+01 1.04E+01 1.29E IV S-104 44 2 Duplicate 1.17E+05 4.21E+01 2.20E+03 1.67E+01 1.04E+01 1.29E IV S-104 44 2 Duplicate 6.56E+02 2.14E+04 1.92E+03 2.08E+04 3.75E+03 6.47E XV T-111 31 1 Duplicate 6.32E+02 2.05E+04 1.86E+03 2.02E+04 3.63E+03 6.29E XV T-111 31 <td< td=""><td>IV</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>9.80E+00</td><td>6.53E+02</td></td<>	IV									9.80E+00	6.53E+02
IV S-104 44 1 Duplicate 1.23E+05 4.25E+01 2.27E+03 1.85E+03 1.05E+01 1.96E IV S-104 44 2 Sample 1.17E+05 4.21E+01 2.20E+03 1.67E+01 1.04E+01 1.29E IV S-104 44 2 Duplicate 1.17E+05 4.21E+01 2.20E+03 1.67E+01 1.04E+01 1.29E IV S-104 44 2 Duplicate 1.13E+05 4.22E+01 2.29E+03 1.86E+01 1.04E+01 1.48E XV T-111 31 1 Sample 6.56E+02 2.14E+04 1.92E+03 2.08E+04 3.75E+03 6.47E XV T-111 31 1 Duplicate 6.32E+02 2.05E+04 1.86E+03 2.02E+04 3.63E+03 6.29E XV T-111 31 2 Sample 7.06E+02 2.01E+04 1.73E+03 1.97E+04 3.38E+03 5.86E XV T-111 33 1<	IV	S-104	43		Duplicate	1.14E+05	4.49E+01		1.69E+03		5.83E+02
IV S-104 44 2 Sample 1.17E+05 4.21E+01 2.20E+03 1.67E+01 1.04E+01 1.29E IV S-104 44 2 Duplicate 1.13E+05 4.22E+01 2.29E+03 1.86E+01 1.04E+01 1.48E XV T-111 31 1 Sample 6.56E+02 2.14E+04 1.92E+03 2.08E+04 3.75E+03 6.47E XV T-111 31 1 Duplicate 6.32E+02 2.05E+04 1.86E+03 2.02E+04 3.63E+03 6.29E XV T-111 31 2 Sample 7.06E+02 2.01E+04 1.73E+03 1.97E+04 3.45E+03 6.02E XV T-111 31 2 Duplicate 6.80E+02 2.02E+04 1.67E+03 1.97E+04 3.45E+03 6.02E XV T-111 31 2 Duplicate 6.80E+02 2.02E+04 1.67E+03 1.97E+04 3.38E+03 5.86E XV T-111 33 1<											1.52E+03 1.96E+03
IV S-104 44 2 Duplicate 1.13E+05 4.22E+01 2.29E+03 1.86E+01 1.04E+01 1.48E XV T-111 31 1 Sample 6.56E+02 2.14E+04 1.92E+03 2.08E+04 3.75E+03 6.47E XV T-111 31 1 Duplicate 6.32E+02 2.05E+04 1.86E+03 2.02E+04 3.63E+03 6.29E XV T-111 31 2 Sample 7.06E+02 2.01E+04 1.73E+03 1.97E+04 3.45E+03 6.02E XV T-111 31 2 Duplicate 6.80E+02 2.02E+04 1.67E+03 1.97E+04 3.45E+03 6.02E XV T-111 31 2 Duplicate 6.80E+02 2.02E+04 1.67E+03 1.97E+04 3.38E+03 5.86E XV T-111 33 1 Sample 4.85E+02 2.63E+04 1.76E+03 1.57E+04 4.45E+03 6.15E XV T-111 33 1<		S-104									1.29E+03
XV T-111 31 1 Duplicate 6.32E+02 2.05E+04 1.86E+03 2.02E+04 3.63E+03 6.29E XV T-111 31 2 Sample 7.06E+02 2.01E+04 1.73E+03 1.97E+04 3.45E+03 6.02E XV T-111 31 2 Duplicate 6.80E+02 2.01E+04 1.67E+03 1.97E+04 3.45E+03 6.02E XV T-111 31 2 Duplicate 6.80E+02 2.02E+04 1.67E+03 1.95E+04 3.38E+03 5.86E XV T-111 33 1 Sample 4.85E+02 2.63E+04 1.76E+03 1.57E+04 4.45E+03 6.15E XV T-111 33 1 Duplicate 4.83E+02 2.66E+04 1.81E+03 1.62E+04 4.58E+03 6.29E XV T-111 33 2 Sample 4.59E+02 2.61E+04 1.81E+03 1.61E+04 4.78E+03 6.59E XV T-111 33 2<			44	2							1.48E+03
XV T-111 31 2 Sample 7.06E+02 2.01E+04 1.73E+03 1.97E+04 3.45E+03 6.02E XV T-111 31 2 Duplicate 6.80E+02 2.02E+04 1.67E+03 1.95E+04 3.38E+03 5.86E XV T-111 33 1 Sample 4.85E+02 2.63E+04 1.76E+03 1.57E+04 4.45E+03 6.15E XV T-111 33 1 Duplicate 4.83E+02 2.66E+04 1.81E+03 1.62E+04 4.58E+03 6.29E XV T-111 33 2 Sample 4.59E+02 2.61E+04 1.81E+03 1.62E+04 4.58E+03 6.29E XV T-111 33 2 Sample 4.59E+02 2.61E+04 1.81E+03 1.61E+04 4.78E+03 6.59E											6.47E+03 6.29E+03
XV T-111 31 2 Duplicate 6.80E+02 2.02E+04 1.67E+03 1.95E+04 3.38E+03 5.86E XV T-111 33 1 Sample 4.85E+02 2.63E+04 1.76E+03 1.57E+04 4.45E+03 6.15E XV T-111 33 1 Duplicate 4.83E+02 2.66E+04 1.81E+03 1.62E+04 4.58E+03 6.29E XV T-111 33 2 Sample 4.59E+02 2.61E+04 1.82E+03 1.61E+04 4.78E+03 6.59E											6.02E+03
XV T-111 33 1 Sample 4.85E+02 2.63E+04 1.76E+03 1.57E+04 4.45E+03 6.15E XV T-111 33 1 Duplicate 4.83E+02 2.66E+04 1.81E+03 1.62E+04 4.58E+03 6.29E XV T-111 33 2 Sample 4.59E+02 2.61E+04 1.82E+03 1.61E+04 4.78E+03 6.59E	XV										5.86E+03
XV T-111 33 2 Sample 4.59E+02 2.61E+04 1.82E+03 1.61E+04 4.78E+03 6.59E	XV	T-111		1	Sample	4.85E+02	2.63E+04	1.76E+03			6.15E+03
											6.29E+03 6.59E+03
				+						·····	6.59E+03 6.59E+03

PNL-9814 Rev . 2

•

C.1

. *	٠ 			Data Set Used		-			•	
Group No. XII	Tank No. C-110	Core No. 37	Composite No.	Sample No. Sample	Na 8.10E+04	Pb 4.36E+02	Si 7.53E+03	Zr 1.67E+02	Cs-137 1.54E+01	Sr-90 7.13E+00
XII	C-110	37	1	Duplicate	8.01E+04	4.61E+02	7.48E+03	1.72E+02	1.53E+01	7.21E+00
	C-110 C-110	37 37	2 2	Sample Duplicate	8.58E+04 8.48E+04	4.43E+02 4.24E+02	7.54E+03 7.22E+03	1.80E+02 1.76E+02	1.51E+01 1.41E+01	7.15E+00 6.50E+00
XII	C-110	38	1	Sample	8.06E+04	2.09E+02	7.86E+03	1.97E+02	1.91E+01	4.38E+00
XII XII	C-110 C-110	<u>38</u> 39	1	Duplicate Sample	7.39E+04 8.92E+04	2.15E+02 1.11E+02	7.58E+03 6.43E+03	2.01E+02 1.51E+02	2.05E+01 2.39E+01	4.26E+00 3.72E+00
XII	C-110	39	1	Duplicate	8.77E+04	1.18E+02	6.37E+03	1.56E+02	2.29E+01	2.59E+00
	C-110 C-110	<u>39</u> 39	2	Sample Duplicate	8.68E+04 8.67E+04	1.28E+02 1.26E+02	6.28E+03 6.26E+03	1.36B+02 1.33E+02	2.41E+01 2.40E+01	3.94E+00 3.55E+00
	BX-107	40	1	Sample	1.02E+05	3.54E+01	6.43E+03	1.33E+02	1.35E+01	9.76E+00
	BX-107	40	1	Duplicate	1.06E+05	5.45E+01	6.77E+03	1.97E+02	1.34E+01	1.02E+01
	BX-107 BX-107	<u>40</u> 40	2 2	Sample Duplicate	9.97E+04 1.02E+05	6.56E+01 6.48E+01	5.63E+03 6.37E+03	7.90B+01 5.34B+01	1.09E+01 1.16E+01	7.71E+00 8.79E+00
XII	BX-107	41	1	Sample	1.01E+05	1.23E+02	7.98E+03	1.73E+02	2.00E+01	1.18E+01
	BX-107 BX-107	41 41	1 2	Duplicate Sample	1.03E+05 9.45E+04	7.58E+01 1.01E+02	7.99E+03 6.10E+03	6.92E+01 1.35E+02	2.04E+01 2.43E+01	1.20E+01 8.74E+00
	BX-107	41	2	Duplicate	9.56E+04	7.51E+01	6.97E+03	1.97E+02	2.51E+01	9.96E+00
VII VII	B-201 B-201	<u>26</u> 26	1	Sample Duplicate	5.40E+04 5.85E+04	2.22E+03 2.24E+03	5.53E+04 5.97E+04	8.24E+01 7.70E+01	9.90E-01 1.61E+00	3.87E+00 5.18E+00
VII	B-201	26	2	Sample	5.38E+04	1.32E+03	4.49E+04	5.60E+01	6.16E-01	2.76E+00
	B-201 B-201	26 27	2	Duplicate Sample	5.67E+04 3.60E+04	1.36E+03 1.62E+03	4.77E+04 6.95E+03	5.20E+01 4.40E+01	8.53E-01 4.63E-01	2.22E+00 1.04E+00
VII	B-201	27	1	Duplicate	4.11E+04	1.96E+03	7.73E+03	4.50E+01	8.26E-01	1.33E+00
	B-201 B-201	27 27	2 2	Sample Duplicate	3.79E+04 3.87E+04	1.50E+03 1.55E+03	7.31E+03 7.67E+03	4.20E+01 4.40E+01	4.53E-01 5.90E-01	9.40E-01 8.30E-01
	B-201 B-202	24	1	Sampl	3.46E+04	7.55E+02	3.34E+03	6.40E+00	2.62E-02	3.90E+00
	B-202	24 24	1	Dupl	2 5 671 04	7.77E+02	5.85E+03	3.90E+00	6.74E-02	7.37E+00
	B-202 B-202	24 24	1	Samp2 Dup2	3.56E+04 3.36E+04	7.15E+02	5.19E+03	4.00E+00	6.54E-02	6.05E+00
VII	B-202	24	2	Sample	3.96E+04	8.33E+02	4.78E+03	7.00E+00	2.74E-02	5.85E+00
	B-202 B-202	24	2 2	Duplicate Sample			· · ·		2.92E-02	1.88E+00
VII	B-202	24	2	Duplicate			•	•		· · · · · · · · · · · · · · · · · · ·
	B-202 B-202	25 25	1	Sample Duplicate	3.88E+04 3.71E+04	4.40E+02 4.39E+02	1.20E+03 1.13E+03	6.50E+00 6.90E+00	3.52E-01 2.48E-01	3.03E+00 3.04E+00
VII	B-202	25	2	Samp1	3.71E+04 3.63E+04	4.39E+02 7.12E+02	1.13E+03 1.93E+03	6.40E+00	2.48E-01 2.09E-02	2.66E+00
	B-202 B-202	25	2	Dupl			2.66E+03	4002:00	1 147 00	2360.00
	B-202 B-202	25 25	2 2	Samp2 Dup2	3.50E+04 3.58E+04	3.34E+02 3.41E+02	2.66E+03 2.69E+03	4.00E+00 4.00E+00	1.14E-02 1.07E-02	2.36E+00 2.72E+00
XVI	B-110	1	1	Samp1	1.06E+05	6.51E+02	1.36E+04	4.98E+01	1.44E+01	2.13E+02
XVI XVI	B-110 B-110	1	1	Dupl Samp2	1.05E+05 1.18E+05	6.57E+02 1.08E+03	1.79E+04 2.39E+04	6.13E+01 5.17E+01	1.47E+01 1.50E+01	2.36E+02 2.31E+02
XVI	B-110	i	1	Dup2	1.00E+05	8.56E+02	1.59E+04	4.39E+01	1.46E+01	1.90E+02
XVI XVI	B-110 B-110	1	1	Samp3 Dup3	1.01E+05 9.65E+04	1.10E+03 1.13E+03	9.48E+03 9.37E+03	7.98E+02 3.38E+01	·	· · ·
XVI	B-110 B-110	1	1	Samp4	9.84E+04	9.77E+02	9.50E+03	8.29E+02	· ·	•
	B-110 B-110	1 2	1	Dup4 Samp1	9.59E+04 9.80E+04	9.20E+02 3.88E+02	9.33E+03 1.04E+04	3.44E+01 4.55E+02	1.50E+01	.
	B-110 B-110	2	1	Dupl	9.14E+04	2.46E+02	9.37E+03	1.89E+01	1.50E+01	
	B-110	2	1	Samp2	9.44E+04	2.87E+02	9.78E+03 1.01E+04	1.71E+01	1.49E+01 1.53E+01	··
	B-110 B-110	2 3	1	Dup2 Samp1	9.80E+04 9.21E+04	2.81E+02 4.97E+01	9.15E+04	5.19E+02 5.26E+01	1.46E+01	2.74E+01
XVI	B-110	3	1	Dup1	8.84E+04	5.11E+01	8.95E+03	5.42E+01	1.31E+01	2.64E+01
	B-110 B-110	3	1	Samp2 Dup2	9.52E+04 9.45E+04	4.32E+01 4.83E+01	9.58E+03 9.52E+03	4.58E+01 5.12E+01	1.39E+01 1.41E+01	2.61E+01 2.59E+01
XVI	B-110	3	2	Sampl	9.19E+04	4.60E+02	8.99E+03	4.87E+01	1.34E+01	· · · · ·
XVI XVI	B-110 B-110	3	2 2	Dup1 Samp2	9.04E+04 9.48E+04	5.17E+02 6.17E+02	9.01E+03 9.56E+03	5.48E+01 5.45E+01	1.36E+01 1.37E+01	· · · · ·
XVI	B-110	3	2	Dup2	9.16E+04	1.04E+03	9.15E+03	5.30E+01	1.36E+01	
XVI XVI	B-110 B-110	3	3	Sampl Dupl	9.49E+04 9.49E+04	4.75E+02 5.84E+02	9.55E+03 9.69E+03	4.85E+01 4.84E+01	1.31E+01 1.31E+01	· · · · · · · · · · · · · · · · · · ·
XVI	B-110	3	3	Samp2	9.22E+04	4.84E+02	9.03E+03	5.12E+01	1.41E+01	
	B-110 B-110	3 4	3	Dup2	9.27E+04 1.07E+05	5.38E+02 5.38E+02	8.93E+03 9.21E+03	5.70E+01 5.55E+02	1.42E+01 1.67E+01	1.16E+02
	B-110 B-110	4	1	Samp1 Dup1	1.09E+05	6.03E+02	9.38E+03	5.46E+02	1.69E+01	1.37E+02
XVI	B-110	4	1	Samp2	1.06E+05	5.92E+02	9.12E+03	5.16E+02	1.64E+01	1.19E+02
<u>XVI</u>	B-110 B-110	4 9	1 1	Dup2 Samp1	1.04E+05 9.24E+04	9.05E+02 5.24E+02	9.11E+03 8.39E+03	5.07E+02 7.10E+01	1.64E+01 1.37E+01	1.92E+02 5.00E+01
XVI	B-110	9	1	Dupl	9.27E+04	5.07E+02	8.20E+03	6.87E+01	1.36E+01	5.00E+01
	B-110 B-110	9 9	1	Samp2 Dup2	9.15E+04 9.17E+04	5.57E+02 4.92E+02	8.17E+03 8.21E+03	7.52E+01 6.67E+01	1.41E+01 1.49E+01	4.78E+01 4.64E+01
XVI	B-110	10	1	Samp1	9.37E+04	5.17E+02	8.93E+03	3.39E+01	1.49E+01	4.73E+01
XVI XVI	B-110 B-110	10 10	1	Dup1 Samp2	8.80E+04 9.39E+04	5.09E+02 5.51E+02	8.63E+03 8.96E+03	3.27E+01 3.17E+01	1.51E+01 1.47E+01	7.75E+01 7.25E+01
XVI	B-110	10	1	Dup2	9.48E+04	4.93E+02	9.05E+03	3.26E+01	1.47E+01	7.43E+01
XVI	B-110	16	1	Samp1	9.57E+04	3.06E+02	1.01E+04	4.59E+01	1.40E+01	7.12E+00
	B-110 B-110	16 16	1	Dup1 Samp2	9.68E+04 9.25E+04	4.08E+02 2.73E+02	1.02E+04 1.01E+04	6.11E+01 4.09E+01	1.43E+01 1.42E+01	6.44E+00
XVI	B-110	16	1	Dup2	9.29E+04	2.71E+02	1.00E+04	4.06E+01	1.43E+01	
	B-111 B-111	29 29	1	Sample Duplicate	1.01E+05 9.78E+04	1.90E+03 1.80E+03	9.50E+03 9.45E+03	2.20E+01 1.90E+01	1.73E+02 1.62E+02	3.37E+02 2.79E+02
XVI	B-111	29	2	Sample	9.63E+04	1.74E+03	9.37E+03	1.90E+01	1.90E+02	2.94E+02
XVI XVI	B-111 B-111	29 30	2	Duplicate Sample	9.49E+04 9.48E+04	1.49E+03 1.88E+03	9.61E+03 1.12E+04	2.20E+01 2.07E+01	1.64E+02 1.43E+02	3.04E+02 1.69E+02
XVI	B-111	30	1	Duplicate	9.50E+04	1.92E+03	1.13E+04	2.03E+01	1.44E+02	1.75E+02
	B-111	30	2	Sample	9.07E+04	1.82E+03	1.10E+04	2.09E+01	1.42E+02	2.07E+02 2.19E+02
- <u>XVI</u> IV	B-111 S-104	30 42	2	Duplicate Sample	9.52E+04 1.24E+05	1.93E+03 3.55E+01	1.14E+04 1.03E+03	2.00E+01 1.31E+01	1.48E+02 6.75E+01	2.19E+02 2.95E+02
IV	S-104	42	1	Duplicate	1.25E+05	3.55E+01	1.04E+03	8.63E+00	6.20E+01	2.81E+02
IV	S-104 S-104	42 42	2 2	Sample Duplicate	1.16E+05 1.19E+05	3.50E+01 3.52E+01	1.18E+03 1.09E+03	4.85E+00 1.25E+01	6.61E+01 6.26E+01	3.39E+02 3.10E+02
IV	S-104	43	1	Sample	1.19E+05	3.88E+01	1.23E+03	2.60E+01	6.02E+01	3.05E+02
IV	0.104	43	1 2	Duplicate Sample	1.20E+05	3.85E+01 3.82E+01	1.13E+03 2.31E+03	2.83E+01 2.97E+01	6.03E+01 5.83E+01	3.00E+02 3.10E+02
IV IV	S-104 S-104	41	<u> </u>	Duplicate	1.19E+05	3.81E+01	9.47E+02	3.79E+01	5.57E+01	3.45E+02
IV IV IV IV	S-104 S-104	43 43	2	Dupileate			1.44E+03			2 007 02
IV IV IV IV IV	S-104 S-104 S-104	43 44	2 1	Sample	1.14E+05	4.19E+01		2.29E+01	6.31E+01	2.99E+02
IV IV IV IV	S-104 S-104	43	2		1.14E+05 1.13E+05 1.15E+05	4.19E+01 4.25E+01 4.21E+01	1.40E+03 1.57E+03	2.29E+01 2.03E+01 2.09E+01	6.31E+01 6.40E+01 6.39E+01	3.56E+02 2.72E+02
IV	S-104 S-104 S-104 S-104 S-104 S-104	43 44 44 44 44 44	2 1 1 2 2 2	Sample Duplicate Sample Duplicate	1.13E+05 1.15E+05 1.19E+05	4.25E+01 4.21E+01 4.22E+01	1.40E+03 1.57E+03 1.55E+03	2.03E+01 2.09E+01 2.94E+01	6.40E+01 6.39E+01 6.40E+01	3.56E+02 2.72E+02 3.03E+02
IV XV	S-104 S-104 S-104 S-104 S-104 S-104 T-111	43 44 44 44 44 44 31	2 1 1 2 2 1	Sample Duplicate Sample Duplicate Sample	1.13E+05 1.15E+05 1.19E+05 4.01E+04	4.25E+01 4.21E+01 4.22E+01 4.53E+02	1.40E+03 1.57E+03 1.55E+03 6.04E+03	2.03E+01 2.09E+01 2.94E+01 4.00E+00	6.40E+01 6.39E+01 6.40E+01 2.11E-01	3.56E+02 2.72E+02 3.03E+02 7.34E+00
IV IV IV IV IV IV IV IV XV XV XV XV	S-104 S-104 S-104 S-104 S-104 S-104 T-111 T-111 T-111	43 44 44 44 31 31 31 31	2 1 1 2 2 1 1 1 2	Sample Duplicate Sample Duplicate Sample Duplicate Sample	1.13E+05 1.15E+05 1.19E+05 4.01E+04 3.96E+04 3.94E+04	4.25E+01 4.21E+01 4.22E+01 4.53E+02 4.27E+02 4.86E+02	1.40E+03 1.57E+03 1.55E+03 6.04E+03 5.88E+03 5.09E+03	2.03E+01 2.09E+01 2.94E+01 4.00E+00 4.01E+00 3.99E+00	6.40E+01 6.39E+01 6.40E+01 2.11E-01 2.12E-01 2.38E-01	3.56E+02 2.72E+02 3.03E+02 7.34E+00 6.97E+00 7.31B+00
IV IV IV IV IV IV IV IV IV XV XV XV XV XV XV XV XV	S-104 S-104 S-104 S-104 S-104 T-111 T-111 T-111 T-111 T-111	43 44 44 44 31 31 31 31 31	2 1 1 2 2 1 1 1 2 2 2 2	Sample Duplicate Sample Duplicate Sample Duplicate Sample Duplicate	1.13E+05 1.15E+05 1.19E+05 4.01E+04 3.96E+04 3.94E+04 3.85E+04	4.25E+01 4.21E+01 4.22E+01 4.53E+02 4.27E+02 4.86E+02 4.82E+02	1.40E+03 1.57E+03 1.55E+03 6.04E+03 5.88E+03 5.09E+03 5.78E+03	2.03E+01 2.09E+01 2.94E+01 4.00E+00 4.01E+00 3.99E+00 3.99E+00	6.40E+01 6.39E+01 6.40E+01 2.11E-01 2.12E-01 2.38E-01 2.36E-01	3.56E+02 2.72E+02 3.03E+02 7.34E+00 6.97E+00 7.31E+00 7.55E+00
IV IV IV IV IV IV IV IV XV XV XV XV	S-104 S-104 S-104 S-104 S-104 S-104 T-111 T-111 T-111	43 44 44 44 31 31 31 31	2 1 1 2 2 1 1 1 2	Sample Duplicate Sample Duplicate Sample Duplicate Sample	1.13E+05 1.15E+05 1.19E+05 4.01E+04 3.96E+04 3.94E+04	4.25E+01 4.21E+01 4.22E+01 4.53E+02 4.27E+02 4.86E+02	1.40E+03 1.57E+03 1.55E+03 6.04E+03 5.88E+03 5.09E+03	2.03E+01 2.09E+01 2.94E+01 4.00E+00 4.01E+00 3.99E+00	6.40E+01 6.39E+01 6.40E+01 2.11E-01 2.12E-01 2.38E-01	3.56E+02 2.72E+02 3.03E+02 7.34E+00 6.97E+00 7.31B+00

PNL-9814 Rev . 2

C.2

			Γ	Data Set Used	in Verificatio	on Study				
Group No.	Tank No.	Core No.	Composite No.	Sample No.	Pu-239/40	U	PO4	NO3	NO2	F
	C-110 C-110	37 37	1	Sample Duplicate	5.58E-02 5.83E-02	1.98E+03 2.05E+03	3.71E+04 3.81E+04	9.59E+04 9.69E+04	2.81E+03 2.60E+03	8.51E+03 8.77E+03
XII	C-110	37	2	Sample	6.17E-02	1.96E+03	4.15E+04	9.65E+04	2.84E+03	9.14E+03
	C-110 C-110	37 38	2	Duplicate Sample	6.52E-02 7.65E-02	2.05E+03 1.51E+03	4.93E+04 1.89E+04	9.14E+04 1.22E+05	2.79E+03 5.42E+03	9.37E+03 7.81E+03
	C-110	38	1	Duplicate	8.85E-02	1.27E+03	3.20E+04	1.10E+05	4.76E+03	8.59E+03
XII	C-110	39	1	Sample	1.35E-01	9.43E+02	1.47E+04	1.19E+05	1.23E+04	6.74E+03
	C-110 C-110	39 39	1 2	Duplicate Sample	1.53E-01 5.18E-02	1.08E+03 1.05E+03	1.68E+04 1.96E+04	1.22E+05 1.18E+05	1.35E+04 1.24E+04	7.06E+03 4.86E+03
XII	C-110	39	2	Duplicate	5.44E-02	1.17E+03	1.87E+04	1.17E+05	1.31E+04	4.33E+03
	BX-107	40	1	Sample	3.49E-02	1.56E+03	1.45E+04	1.45E+05	1.02E+04	8.91E+03
	BX-107 BX-107	40 40	1 2	Duplicate Sample	5.33E-02 8.34E-02	2.07E+03 1.86E+03	1.43E+04 1.48E+04	1.39E+05 1.46E+05	9.17E+03 9.12E+03	8.11E+03 8.50E+03
ХП	BX-107	40	2	Duplicate	7.57E-02	2.18E+03	1.51E+04	1.53E+05	9.19E+03	8.33E+03
	BX-107 BX-107	41	11	Sample Duplicate	5.49E-02 5.64E-02	2.82E+03 2.82E+03	1.34E+04 1.34E+04	1.23E+05 1.29E+05	1.25E+04 1.24E+04	9.04E+03 8.72E+03
XII	BX-107	41	2	Sample	4.49E-02	2.29E+04	1.43E+04	1.28E+05	1.21E+03	1.09E+04
	BX-107	41	2	Duplicate	5.41E-02	2.52E+04	1.41E+04	1.31E+05	1.18E+03	1.10E+04
	B-201 B-201	26 26	1	Sample Duplicate	7.66E-01 8.38E-01	7.63E+02 8.60E+02	1.00E+03 1.10E+03	4.70E+04 5.00E+04	9.00E+02 1.00E+03	5.20E+03 5.90E+03
VII	B-201	26	2	Sample	6.67E-01	6.52E+02	1.00E+03	5.10E+04	1.00E+03	6.10E+03
	B-201 B-201	26 27	2	Duplicate Sample	9.05E-01 1.40E+00	7.02E+02 2.89E+02	1.30E+03 1.40E+03	5.90E+04 5.10E+04	1.10E+03 8.00E+02	7.20E+03 6.30E+03
	B-201 B-201	27	1	Duplicate	1.56E+00	3.21E+02	1.40E+03	4.90E+04	8.00E+02	5.90E+03
VII	B-201	27	2	Sample	1.44E+00	3.12E+02	1.36E+03	4.80E+04	7.20E+02	5.60E+03
	B-201 B-202	27 24	2	Duplicate Samp1	1.50E+00 1.55E-01	3.23E+02 1.71E+02	1.42E+03 1.85E+03	4.90E+04 6.29E+04	7.30E+02 4.55E+02	5.80E+03 5.95E+03
VII	B-202	24	1	Dupl		· · ·	1.81E+03	6.61E+04	4.39E+02	6.13E+03
	B-202	24	1	Samp2	1.58E-01	5.39E+02		· · · · · · · · · · · · · · · · · · ·		
	B-202 B-202	24 24	2	Dup2 Sample	1.40E-01 1.18E-01	5.05E+02 6.97E+02	1.69E+03	7.13E+04	4.46E+02	6.23E+03
VII	B-202	24	2	Duplicate	1.83E-01	1.19E+02	,	· ·		· · ·
	B-202 B-202	24 24	2 2	Sample Duplicate	· · ·	·	2.22E+03 2.00E+03	5.85E+04 5.52E+04	7.48E+02 7.46E+02	6.37E+03 6.08E+03
	B-202 B-202	25	1	Sample	2.50E-01	2.06E+02	2.00E+03 2.73E+03	6.67E+04	7.46E+02 5.80E+02	6.71E+03
VII	B-202	25	1	Duplicate	3.19E-01	2.32E+02	2.23E+03	6.02E+04	4.96E+02	5.98E+03
	B-202 B-202	25 25	2	Samp1 Dup1	2.07E-01	3.37E+02	1.77E+03	5.13E+04	4.47E+02	5.90E+03
VII	B-202	25	2	Samp2	1.61E-01	2.12E+02	2.20E+03	6.12E+04	7.70E+02	6.50E+03
	B-202	25	2	Dup2	1.41E-01 1.09E-01	2.11E+02 2.36E+02	2.22E+03 2.42E+04	6.12E+04 1.55E+05	7.60E+02 9.85E+03	6.57E+03 1.60E+03
	B-110 B-110	1	1	Samp1 Dup1	1.13E-01	2.30E+02 2.40E+02	2.42E+04	1.68E+05	9.83E+03	1.70E+03
XVI	B-110	1	1	Samp2	1.16E-01	2.31E+02	• • • •			
	B-110 B-110	1	1	Dup2 Samp3	9.60E-02	2.33E+02	•	· ·	•	
XVI	B-110	1	1	Dup3	· · · ·	· · ·	•	•	•	
XVI	B-110	1	1	Samp4	·		•	· ·		•
	B-110 B-110	1 2	1	Dup4 Sampl	· · ·	2.27E+02	2.36E+04	1.66E+05	1.06E+04	1.71E+03
XVI	B-110	2	i	Dupl		2.32E+02	2.60E+04	1.74E+05	1.08E+04	1.77E+03
XVI	B-110	2	1	Samp2	· · · · ·	2.29E+02				•
	B-110 B-110	2	1	Dup2 Samp1	1.41E-01	2.21E+02 1.80E+02	2.36E+04	1.63E+05	9.24E+03	1.59E+03
XVI	B-110	3	1	Dupl	1.58E-01	1.75E+02	2.18E+04	1.62E+05	9.17E+03	1.36E+03
	B-110 B-110	3	1	Samp2 Dup2	1.09E-01 1.39E-01	1.80E+02 1.81E+02	•		•	
XVI	B-110	3	2	Sampl	1.551-01	1.011102		··		
XVI	B-110	3	2	Dupl	·		•		· · · · · ·	·
XVI XVI	B-110 B-110	3	2	Samp2 Dup2	•		· · · · · · · · · · · · · · · · · · ·	•		•
XVI	B-110	3	3	Sampl	· ·					
XVI	B-110	3	3	Dupl	·		· · · · ·	·		•
	B-110 B-110	3	3	Samp2 Dup2					<u>.</u>	· · · · · · · · · · · · · · · · · · ·
XVI	B-110	4	1	Sampl	1.12E-01	2.00E+02	2.76E+04	2.35E+05	1.23E+04	2.23E+03
<u> </u>	B-110 B-110	4	1	Dup1 Samp2	1.16E-01 1.09E-01	2.17E+02 2.12E+02	2.85E+04	2.26E+05	1.16E+04	2.29E+03
	B-110 B-110	4	1	Dup2	1.31E-01	2.33E+02	· · · · · ·	· · · · · · · · · · · · · · · · · · ·		
XVI	B-110	9	1	Sampl	9.23E-02	1.82E+02	2.42E+04	1.87E+05	9.03E+03	1.97E+03
XVI XVI	B-110 B-110	9 9	1	Dup1 Samp2	9.28E-02 9.68E-02	1.76E+02 1.93E+02	2.62E+04	1.89E+05	8.87E+03	2.04E+03
XVI	B-110	9	1	Dup2	9.55E-02	1.77E+02				· · ·
XVI XVI	B-110 B-110	10 10	1	Samp1 Dup1	7.12E-02 6.89E-02	2.52E+02 2.72E+02	2.46E+04 2.41E+04	1.92E+05 1.80E+05	1.12E+04 1.09E+04	2.05E+03 1.99E+03
	B-110 B-110	10	1	Samp2	1.12E-01	2.72E+02 2.83E+02	<u>2.71</u> 			
XVI	B-110	10	1	Dup2	1.17E-01	2.82E+02	0.007	1.600.05	1.002:01	1.0472.00
	B-110 B-110	16 16	1 1	Samp1 Dup1	1.15E-01 1.26E-01	1.36E+02 1.48E+02	2.36E+04 2.43E+04	1.67E+05 1.70E+05	1.03E+04 1.03E+04	1.94E+03 2.01E+03
XVI	B-110	16	1	Samp2	ļ				•	•
XVI XVI	B-110 B-111	16 29	1	Dup2 Sample	7.33E-02	2.07E+02	2.31E+04	7.50E+04	4.90E+04	1.50E+03
	B-111 B-111	29	1	Duplicate	9.02E-02	2.07E+02 2.04E+02	2.31E+04 2.33E+04	7.50E+04 7.50E+04	4.90E+04	1.50E+03
XVI	B-111	29	2	Sample	1.04E-01	2.04E+02	2.38E+04	7.50E+04	4.90E+04	1.60E+03
	B-111 B-111	29 30	2	Duplicate Sample	1.07E-01 9.51E-02	2.08E+02 1.88E+02	2.24E+04 2.49E+04	7.70E+04 8.80E+04	5.00E+04 4.00E+04	1.50E+03 1.60E+03
XVI	B-111 B-111	30	1	Duplicate	1.05E-01	1.84E+02	2.33E+04	8.70E+04	4.10E+04	1.60E+03
741	B-111	30	2	Sample	1.09E-01	1.89E+02	2.54E+04	8.90E+04	4.10E+04	1.60E+03
XVI			-	Duplicate	9.44E-02	1.95E+02	2.52E+04	9.00E+04		1.60E+03
XVI XVI	B-111	30 42	2		1.37E-01	· · · · · · · · · · · · · · · · · · ·			4.10E+04 2.84E+04	1.10R+02
XVI XVI IV IV	B-111 S-104 S-104	42 42	1	Sample Duplicate	1.37E-01 1.36E-01	7.10E+03 6.51E+03	1.10E+03 1.09E+03	1.70E+05 1.97E+05	2.84E+04 2.58E+04	1.10E+02 1.09E+02
XVI XVI IV IV IV	B-111 S-104 S-104 S-104	42 42 42	1 1 2	Sample Duplicate Sample	1.36E-01 1.57E-01	7.10E+03 6.51E+03 6.90E+03	1.10E+03 1.09E+03 1.10E+03	1.70E+05 1.97E+05 1.97E+05	2.84E+04 2.58E+04 2.61E+04	1.09E+02 1.10E+02
XVI XVI IV IV	B-111 S-104 S-104	42 42 42 42 42	1	Sample Duplicate	1.36E-01 1.57E-01 1.54E-01	7.10E+03 6.51E+03	1.10E+03 1.09E+03	1.70E+05 1.97E+05	2.84E+04 2.58E+04	1.09E+02
XVI XVI IV IV IV IV IV IV	B-111 S-104 S-104 S-104 S-104 S-104 S-104	42 42 42 42 43 43	1 1 2 2 1 1	Sample Duplicate Sample Duplicate Sample Duplicate	1.36E-01 1.57E-01 1.54E-01 2.96E-01 3.14E-01	7.10E+03 6.51E+03 6.90E+03 7.27E+03 7.06E+03 6.52E+03	1.10E+03 1.09E+03 1.10E+03 1.10E+03 1.08E+03 1.08E+03	1.70E+05 1.97E+05 1.97E+05 2.00E+05 1.95E+05 1.89E+05	2.84E+04 2.58E+04 2.61E+04 2.48E+04 2.98E+04 2.66E+04	1.09E+02 1.10E+02 1.20E+02 1.08E+02 1.08E+02
XVI XVI IV IV IV IV IV IV IV IV	B-111 S-104 S-104 S-104 S-104 S-104 S-104 S-104	42 42 42 43 43 43 43	1 1 2 2 1 1 2	Sample Duplicate Sample Duplicate Sample Duplicate Sample	1.36E-01 1.57E-01 1.54E-01 2.96E-01 3.14E-01 3.85E-01	7.10E+03 6.51E+03 6.90E+03 7.27E+03 7.06E+03 6.52E+03 7.53E+03	1.10E+03 1.09E+03 1.10E+03 1.10E+03 1.08E+03 1.08E+03 1.09E+03	1.70E+05 1.97E+05 1.97E+05 2.00E+05 1.95E+05 1.89E+05 1.57E+05	2.84E+04 2.58E+04 2.61E+04 2.98E+04 2.98E+04 2.66E+04 2.04E+04	1.09E+02 1.10E+02 1.20E+02 1.08E+02 1.08E+02 1.09E+02
XVI XVI IV IV IV IV IV IV IV	B-111 S-104 S-104 S-104 S-104 S-104 S-104	42 42 42 42 43 43	1 1 2 2 1 1	Sample Duplicate Sample Duplicate Sample Duplicate	1.36E-01 1.57E-01 1.54E-01 2.96E-01 3.14E-01	7.10E+03 6.51E+03 6.90E+03 7.27E+03 7.06E+03 6.52E+03	1.10E+03 1.09E+03 1.10E+03 1.10E+03 1.08E+03 1.08E+03	1.70E+05 1.97E+05 1.97E+05 2.00E+05 1.95E+05 1.89E+05	2.84E+04 2.58E+04 2.61E+04 2.48E+04 2.98E+04 2.66E+04	1.09E+02 1.10E+02 1.20E+02 1.08E+02 1.08E+02
XVI XVI IV IV IV IV IV IV IV IV IV IV IV	B-111 S-104 S-104 S-104 S-104 S-104 S-104 S-104 S-104 S-104 S-104	42 42 42 43 43 43 43 43 43 44 44	1 1 2 2 1 1 2 2 2 1 1 1	Sample Duplicate Sample Duplicate Sample Duplicate Sample Duplicate Sample Duplicate	1.36E-01 1.57E-01 1.54E-01 2.96E-01 3.14E-01 3.85E-01 3.61E-01 3.65E-01 4.04E-01	7.10E+03 6.51E+03 6.90E+03 7.27E+03 7.06E+03 6.52E+03 7.51E+03 6.14E+03 6.21E+03	1.10E+03 1.09E+03 1.10E+03 1.10E+03 1.08E+03 1.08E+03 1.09E+03 1.09E+03	1.70E+05 1.97E+05 2.00E+05 1.95E+05 1.95E+05 1.89E+05 1.57E+05 1.77E+05	2.84E+04 2.58E+04 2.61E+04 2.48E+04 2.98E+04 2.66E+04 2.04E+04 2.12E+04	1.09E+02 1.10E+02 1.20E+02 1.08E+02 1.08E+02 1.09E+02 1.09E+02
XVI XVI IV IV IV IV IV IV IV IV IV IV IV	B-111 S-104 S-104 S-104 S-104 S-104 S-104 S-104 S-104 S-104 S-104 S-104	42 42 42 43 43 43 43 43 44 44 44	1 1 2 2 1 1 2 2 2 1 1 2 2	Sample Duplicate Sample Duplicate Sample Duplicate Sample Duplicate Sample Duplicate Sample	1.36E-01 1.57E-01 1.54E-01 2.96E-01 3.14E-01 3.85E-01 3.65E-01 4.04E-01 3.66E-01	7.10E+03 6.51E+03 6.90E+03 7.27E+03 7.06E+03 6.52E+03 7.51E+03 6.14E+03 6.21E+03 5.15E+03	1.10E+03 1.09E+03 1.10E+03 1.10E+03 1.08E+03 1.08E+03 1.09E+03 1.09E+03 2.19E+03	1.70E+05 1.97E+05 1.97E+05 2.00E+05 1.95E+05 1.89E+05 1.57E+05 1.77E+05 1.86E+05	2.84E+04 2.58E+04 2.61E+04 2.48E+04 2.98E+04 2.66E+04 2.04E+04 2.12E+04 2.48E+04	1.09E+02 1.10E+02 1.20E+02 1.08E+02 1.08E+02 1.09E+02 1.09E+02 2.19E+02
XVI XVI IV IV IV IV IV IV IV IV IV IV IV XV	B-111 S-104 S-104 S-104 S-104 S-104 S-104 S-104 S-104 S-104 S-104	42 42 42 43 43 43 43 43 44 44 44 44 44 31	1 1 2 2 1 1 2 2 2 1 1 1	Sample Duplicate Sample Duplicate Sample Duplicate Sample Duplicate Sample Duplicate	1.36E-01 1.57E-01 1.54E-01 2.96E-01 3.14E-01 3.85E-01 3.61E-01 3.65E-01 4.04E-01	7.10E+03 6.51E+03 6.90E+03 7.27E+03 7.06E+03 6.52E+03 7.51E+03 6.14E+03 6.21E+03	1.10E+03 1.09E+03 1.10E+03 1.10E+03 1.08E+03 1.08E+03 1.09E+03 1.09E+03	1.70E+05 1.97E+05 2.00E+05 1.95E+05 1.95E+05 1.89E+05 1.57E+05 1.77E+05	2.84E+04 2.58E+04 2.61E+04 2.48E+04 2.98E+04 2.66E+04 2.04E+04 2.12E+04	1.09E+02 1.10E+02 1.20E+02 1.08E+02 1.08E+02 1.09E+02 1.09E+02
XVI XVI IV IV IV IV IV IV IV IV IV IV IV XV XV	B-111 S-104 S-104 S-104 S-104 S-104 S-104 S-104 S-104 S-104 S-104 S-104 S-104 S-104 T-111 T-111	42 42 42 43 43 43 43 43 44 44 44 44 31 31	1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	Sample Duplicate Sample Duplicate Sample Duplicate Sample Duplicate Sample Duplicate Sample Duplicate Sample Duplicate	1.36E-01 1.57E-01 1.54E-01 2.96E-01 3.14E-01 3.85E-01 3.65E-01 4.04E-01 3.66E-01 3.10E-01 1.41E-01 1.35E-01	7.10E+03 6.51E+03 6.90E+03 7.27E+03 7.06E+03 6.52E+03 7.51E+03 6.14E+03 6.21E+03 5.15E+03 6.32E+03 2.21E+03 2.40E+02	1.10E+03 1.09E+03 1.10E+03 1.10E+03 1.08E+03 1.09E+03 1.09E+03 2.19E+03 2.19E+03 1.67E+04 1.56E+04	1.70E+05 1.97E+05 2.00E+05 1.95E+05 1.89E+05 1.57E+05 1.77E+05 1.86E+05 1.95E+05 4.41E+04 4.45E+04	2.84E+04 2.58E+04 2.61E+04 2.48E+04 2.98E+04 2.04E+04 2.12E+04 2.48E+04 2.94E+04 1.10E+03 1.10E+03	1.09E+02 1.10E+02 1.20E+02 1.08E+02 1.09E+02 1.09E+02 2.19E+02 2.19E+02 2.18E+02 3.03E+03 3.14E+03
XVI XVI IV IV IV IV IV IV IV IV IV IV IV XV XV XV	B-111 S-104 S-104 S-104 S-104 S-104 S-104 S-104 S-104 S-104 S-104 S-104 S-104 S-104 T-111 T-111	42 42 42 43 43 43 43 43 43 44 44 44 44 31 31 31 31	1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 1 1 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 2 1 1 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	Sample Duplicate Sample Duplicate Sample Duplicate Sample Duplicate Sample Duplicate Sample Duplicate Sample Duplicate Sample	1.36E-01 1.57E-01 1.54E-01 2.96E-01 3.14E-01 3.85E-01 3.65E-01 4.04E-01 3.66E-01 3.10E-01 1.41E-01 1.35E-01 1.37E-01	7.10E+03 6.51E+03 6.90E+03 7.27E+03 7.06E+03 6.52E+03 7.51E+03 6.14E+03 6.21E+03 5.15E+03 6.32E+03 2.21E+03 2.40E+02 3.75E+03	1.10E+03 1.09E+03 1.10E+03 1.10E+03 1.08E+03 1.09E+03 1.09E+03 2.19E+03 2.18E+03 1.67E+04 1.56E+04 1.77E+04	1.70E+05 1.97E+05 2.00E+05 1.95E+05 1.89E+05 1.57E+05 1.77E+05 1.86E+05 1.95E+05 4.41E+04 4.45E+04 4.39E+04	2.84E+04 2.58E+04 2.61E+04 2.48E+04 2.98E+04 2.04E+04 2.12E+04 2.48E+04 2.94E+04 1.10E+03 1.10E+03 1.10E+03	1.09E+02 1.10E+02 1.20E+02 1.08E+02 1.09E+02 1.09E+02 2.19E+02 2.19E+02 2.18E+02 3.03E+03 3.14E+03 3.09E+03
XVI XVI IV IV IV IV IV IV IV IV IV IV IV XV XV	B-111 S-104 S-104 S-104 S-104 S-104 S-104 S-104 S-104 S-104 S-104 S-104 S-104 S-104 T-111 T-111	42 42 42 43 43 43 43 43 44 44 44 44 31 31	1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	Sample Duplicate Sample Duplicate Sample Duplicate Sample Duplicate Sample Duplicate Sample Duplicate Sample Duplicate	1.36E-01 1.57E-01 1.54E-01 2.96E-01 3.14E-01 3.85E-01 3.65E-01 4.04E-01 3.66E-01 3.10E-01 1.41E-01 1.35E-01	7.10E+03 6.51E+03 6.90E+03 7.27E+03 7.06E+03 6.52E+03 7.51E+03 6.14E+03 6.21E+03 5.15E+03 6.32E+03 2.21E+03 2.40E+02	1.10E+03 1.09E+03 1.10E+03 1.10E+03 1.08E+03 1.08E+03 1.09E+03 1.09E+03 2.19E+03 2.18E+03 1.67E+04 1.56E+04	1.70E+05 1.97E+05 2.00E+05 1.95E+05 1.89E+05 1.57E+05 1.77E+05 1.86E+05 1.95E+05 4.41E+04 4.45E+04	2.84E+04 2.58E+04 2.61E+04 2.48E+04 2.98E+04 2.04E+04 2.12E+04 2.48E+04 2.94E+04 1.10E+03 1.10E+03	1.09E+02 1.10E+02 1.20E+02 1.08E+02 1.09E+02 1.09E+02 2.19E+02 2.19E+02 2.18E+02 3.03E+03 3.14E+03
XVI XVI IV IV IV IV IV IV IV IV IV IV IV XV XV XV XV	B-111 S-104 S-104 S-104 S-104 S-104 S-104 S-104 S-104 S-104 S-104 S-104 S-104 S-104 T-111 T-111 T-111	42 42 42 43 43 43 43 43 43 44 44 44 44 31 31 31 31 31	1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	Sample Duplicate Sample Duplicate Sample Duplicate Sample Duplicate Sample Duplicate Sample Duplicate Sample Duplicate Sample Duplicate	1.36E-01 1.57E-01 1.54E-01 2.96E-01 3.14E-01 3.85E-01 3.65E-01 4.04E-01 3.66E-01 3.10E-01 1.41E-01 1.35E-01 1.37E-01 1.34E-01	7.10E+03 6.51E+03 6.90E+03 7.27E+03 7.06E+03 6.52E+03 7.51E+03 6.14E+03 6.21E+03 5.15E+03 6.32E+03 2.21E+03 2.21E+03 2.40E+02 3.75E+03 4.00E+03	1.10E+03 1.09E+03 1.10E+03 1.10E+03 1.08E+03 1.09E+03 1.09E+03 2.19E+03 2.18E+03 1.67E+04 1.56E+04 1.77E+04 1.71E+04	1.70E+05 1.97E+05 2.00E+05 1.95E+05 1.95E+05 1.57E+05 1.77E+05 1.77E+05 1.95E+05 4.41E+04 4.45E+04 4.39E+04 4.36E+04	2.84E+04 2.58E+04 2.61E+04 2.98E+04 2.98E+04 2.04E+04 2.12E+04 2.48E+04 2.94E+04 1.10E+03 1.10E+03 1.10E+03 8.71E+02	1.09E+02 1.10E+02 1.20E+02 1.08E+02 1.09E+02 1.09E+02 2.19E+02 2.19E+02 2.18E+02 3.03E+03 3.14E+03 3.09E+03

C.3

PNL-9814 Rev. 2

• •

.

ι.

				Data Set Used i		-	4
Group No. XII	Tank No. C-110	Core No. 37	Composite No.	Sample No. Sample	Cl 7.88E+02	TOC 5.00E+02	рН 11
	C-110 C-110	37	1	Duplicate	8.06E+02	1.05E+02	11.07
XII	C-110	37	2	Sample	7.35E+02	1.09E+03	11.33
XII	C-110	37	2	Duplicate	6.61E+02	1.09E+03	11.29
	C-110	38	1	Sample	9.14E+02	· · · · · ·	10.7
	C-110 C-110	38	1	Duplicate Sample	8.52E+02 2.02E+03	5.28E+02	10.86 10.86
	C-110 C-110	39	1	Duplicate	2.02E+03	3.281102	10.80
XII	C-110	39	2	Sample	1.11E+03		11.12
XII	C-110	39	2	Duplicate	1.10E+03		11.11
	BX-107	40	1	Sample	1.17E+03	7.00E+02	9.59
	BX-107	40	1	Duplicate	1.14E+03	7.00E+02	9.66
	BX-107 BX-107	40	2 2	Sample Duplicate	1.14E+03 1.21E+03	5.50E+02 5.50E+02	<u>9.77</u> 9.58
	BX-107	41	1	Sample	1.02E+03	5.00E+02	
XII	BX-107	41	1	Duplicate	1.06E+03	5.50E+02	•
XII	BX-107	41	2	Sample	1.20E+03	7.96E+02	•
	BX-107 B-201	41 26	2	Duplicate Sample	1.15E+03 1.70E+03	9.97E+02	· · ·
	B-201	26	1	Duplicate	1.80E+03		· · · · · · · · · · · · · · · · · · ·
VII	B-201	26	2	Sample	1.80E+03		•
VII	B-201	26	2	Duplicate	2.00E+03		
	B-201	27	1	Sample	1.60E+03		
	B-201 B-201	27	1 2	Duplicate Sample	1.50E+03 1.50E+03	· · ·	· · ·
	B-201	27	2	Duplicate	1.50E+03		· · · ·
VШ	B-202	24	1	Sampl	7.48E+02	3.14E+04	
	B-202	24	1	Dup1	7.05E+02	3.32E+04	
	B-202 B-202	24	1	Samp2		<u> </u>	
	B-202 B-202	24	2	Dup2 Sample	1.35E+03	3.77E+03	•
VII	B-202 B-202	24	2	Duplicate			
VII	B-202	24	2	Sample	7.17E+02	1.90E+03	· ·
VII	B-202	24	2	Duplicate	6.46E+02	2.20E+03	
	B-202	25	1	Sample Duplicate	1.04E+03	3.80E+03	•
	B-202 B-202	25	1 2	Duplicate Samp1	9.48E+02 1.13E+03	3.36E+03 3.65E+03	•
	B-202 B-202	25	2	Dup1			•
VII	B-202	25	2	Samp2	6.95E+02	2.10E+03	
VII	B-202	25	2	Dup2	6.64E+02	2.30E+03	•
<u> </u>	B-110	1	1	Samp1	1.05E+03	3.98E+02	8.24
	B-110 B-110	1	1	Dup1 Samp2	9.87E+02	4.39E+02	8.22
XVI	B-110	1	1	Dup2			
XVI	B-110	1	1	Samp3		<u>-</u>	
XVI	B-110	1	1	Dup3	· · · · · ·	·	
	B-110 B-110	1	1	Samp4	·	· · ·	•
XVI	B-110 B-110	2	<u> </u>	Dup4 Samp1	1.05E+03	3.12E+02	8.99
XVI	B-110	2	1	Dupl	1.08E+03	3.28E+02	8.88
XVI	B-110	2	1	Samp2	•		
XVI	B-110	2	1	Dup2			· · · ·
	B-110 B-110	3	1	Samp1	1.05E+03 1.05E+03	3.58E+02 3.00E+02	<u>7.57</u> 7.88
	B-110 B-110	3	1	Dupl Samp2	1.05E+03	3.00E+02	/.88
XVI	B-110	3	1	Dup2			
XVI	B-110	3	2	Samp1	•	-	•
XVI	B-110	3	2	Dupl	·		
	B-110 B-110	3	2	Samp2	·	· · · · · · · · · · · · · · · · · · ·	:
XVI	B-110 B-110	3	2 3	Dup2 Samp1	· · · · · · · · · · · · · · · · · · ·	· · ·	
XVI	B-110	3	3	Dupl			· · ·
XVI	B-110	3	3	Samp2			
XVI	B-110	3	3	Dup2			
	B-110 B-110	4	1	Sampl	1.50E+03 1.45E+03	4.56E+02 3.96E+02	•
	B-110 B-110	4	1	Dup1 Samp2	1.436703	3.901102	· · · ·
XVI	B-110	4	1	Dup2			•
XVI	B-110	9	1	Sampl	1.23E+03	3.04E+02	8
XVI	B-110	9	1	Dupl	1.28E+03	2.98E+02	7.81
XVI XVI	B-110 B-110	9	1	Samp2 Dup2	· · ·	-	
	B-110 B-110	10	1	Samp1	1.30E+03	4.63E+02	7.88
XVI	B-110	10	1	Dupl	1.26E+03	4.21E+02	8.33
XVI	B-110	10	1	Samp2		· · · ·	
XVI	B-110	10	1	Dup2			
<u> </u>	B-110 B-110	16	1	Sampl Dup!	1.43E+03 1.44E+03	4.57E+02 4.07E+02	<u> </u>
	B-110 B-110	16	1	Samp2	4.74ETU3	ч.07 <u>1</u> 3 T U2	0.00
XVI	B-110 B-110	16		Dup2			· · ·
XVI	B-111	29	1	Sample	1.00E+03	6.80E+02	8.87
XVI	B-111	29	1	Duplicate	1.00E+03	8.20E+02	•
	B-111 B-111	29 29	2 2	Sample Duplicate	1.10E+03 1.00E+03	6.70E+02 5.60E+02	•
	B-111 B-111	30	1	Sample	1.00E+03	1.62E+02	· · · · ·
XVI	B-111	30	1	Duplicate	1.00E+03	1.59E+03	· ·
XVI	B-111	30	2	Sample	1.00E+03	1.32E+03	·
XVI	B-111	30	2	Duplicate	1.10E+03	1.34E+03	
IV IV	S-104 S-104	42 42	1	Sample	3.22E+03 3.08E+03	2.19E+03	10.17 13.29
	S-104 S-104	42	2	Duplicate Sample	3.08E+03 3.13E+03	2.38E+03 1.30E+03	13.29
IV	S-104	42	2	Duplicate	3.10E+03	1.30E+03	13.38
IV	S-104	43	1	Sample	3.14E+03	2.35E+03	12.91
IV	S-104	43	1	Duplicate	3.00E+03	2.06E+03	12.63
IV 1V	S-104 S-104	43 43	2 2	Sample Duplicate	2.95E+03 3.22E+03	1.19E+03 1.09E+03	13.08
1V 1V	S-104 S-104	43	1	Sample	J.22ETU3	1.072703	13.09
IV	S-104	44	1	Duplicate			
IV	S-104	44	2	Sample	3.26E+03	1.10E+03	13.07
	S-104	44	2	Duplicate	3.52E+03	1.10E+03	13.09
IV	T-111	31	1	Sample	4.66E+02	3.68E+03	11.65
IV XV	· · · · · · · · · · · · · · · · · · ·	'	1	i I himbioota	4.73E+02	3.30E+03	•
IV XV XV	T-111	31		Duplicate			
IV XV XV XV	T-111 T-111	31	2	Sample	4.75E+02	3.85E+03	•
IV XV XV	T-111						· · · · · · · · · · · · · · · · · · ·
IV XV XV XV XV XV	T-111 T-111 T-111	31 31	2 2	Sample Duplicate	4.75E+02 5.18E+02	3.85E+03 4.12E+03	· · ·

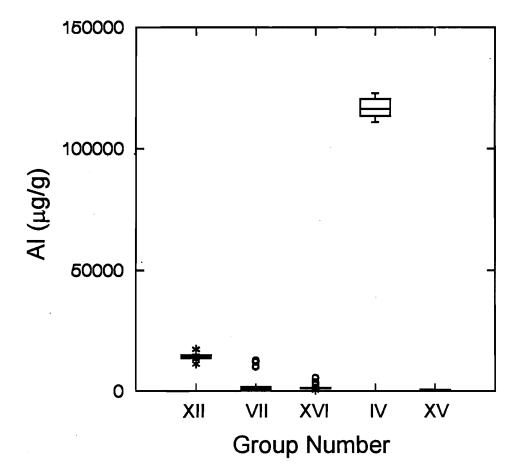
PNL-9814 Rev. 2

C.4

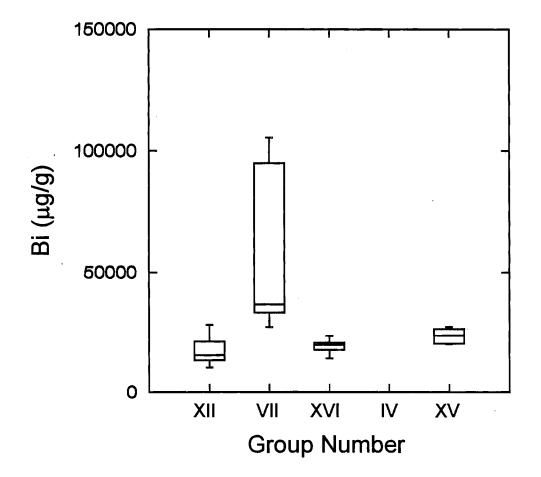
.

Genue No	Tank No.	Density
Group No. XII	BX-107	1.47
XII	BX-107	1.45
XII	BX-107	1.4
XII	C-110	1.18
	C-110 C-110	<u>1.21</u>
	C-110	1.34
XII	C-110	1.24
VII	B-201	1.25
VII	B-201	1.3
	B-201 B-201	1.4
<u></u>	B-201	1.2
VII	B-201	1.2
VII	B-201	1.3
	B-201 B-201	1.3
	B-201 B-201	1.3
VII	B-201	1.2
VII	B-201	1.2
<u></u>	B-201	1.2
	B-201 B-201	1.3
	B-201 B-201	1.3
VII	B-201	1.3
VII	B-202	1.01
	B-202	1.02
	B-202 B-202	0.94
	B-202 B-202	1.3
VII	B-202	1.1
VII	B-202	1.13
VII	B-202	0.87
	B-202 B-202	1.08
VII	B-202 B-202	1.02
VII	B-202	1.08
VII	B-202	0.92
VII	B-202	1.08
	B-202	1.13
XVII	B-110 B-110	1.29
XVII	B-110	1.31
XVII	B-110	1.3
XVII	B-110	1.21
	B-110 B-110	1.47
XVII	B-110 B-110	1.17
XVII	B-110	1.37
XVII	B-110	1.36
XVII	B-110	1.3
	B-110 B-110	1.3
XVII	B-110 B-110	1.3
	B-110	1.3
XVII	B-110	1.3
	B-110	1.3
	B-110 B-110	<u> </u>
XVII	B-110	1.24
XVII	B-110	1.29
XVII	B-110	1.28
	B-110	1.28
	B-110 B-110	1.3
XVII	B-110 B-110	1.3
XVII	B-110	1.3
XVII	B-110	1.3
	B-111	1.2
	B-111 B-111	<u>1.2</u> 1.3
XVII	B-111	1.3
XVII	B-111	0.9
XVII	B-111	1.3
	B-111	1.3
1 7 11	B-111	1
vi	S-104	1 64
IV XV	S-104 T-111	1.64 1.19

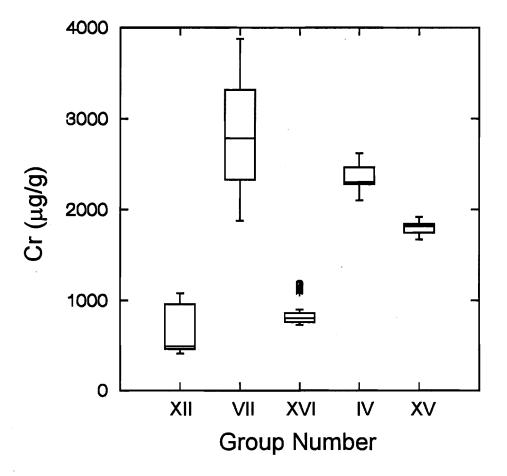
·

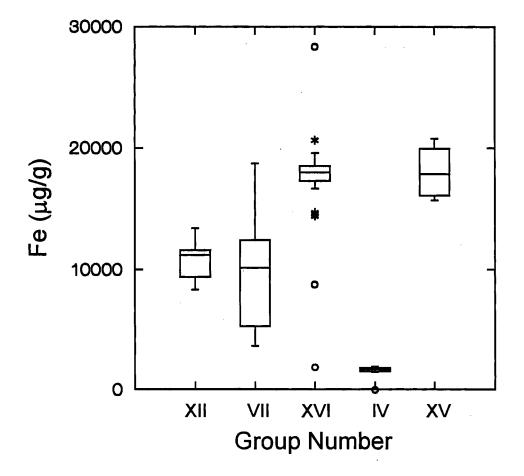

Appendix D

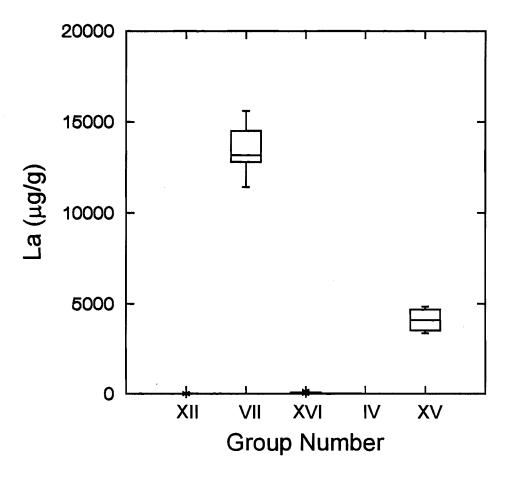
• •


Box Plots of Core Sample Analytical Data Used in the SORWT Model Verification Study

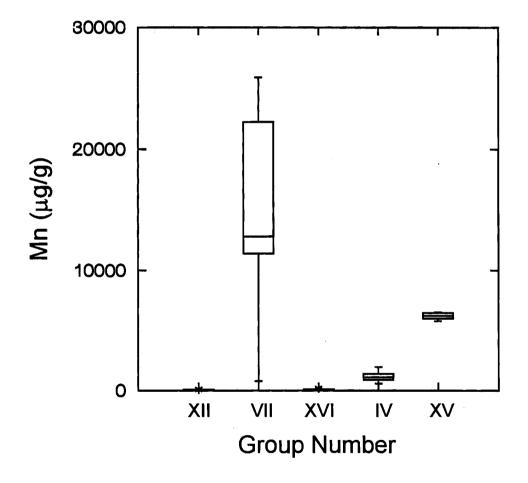
.


Box Plot of Al Concentrations in SORWT Groups

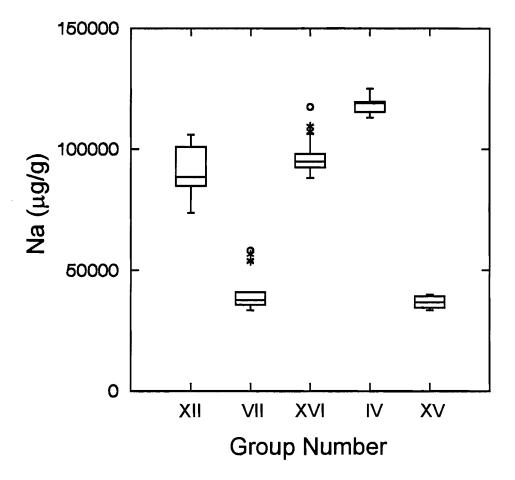

Box Plot of Bi Concentrations in SORWT Groups


Box Plot of Cr Concentrations in SORWT Groups

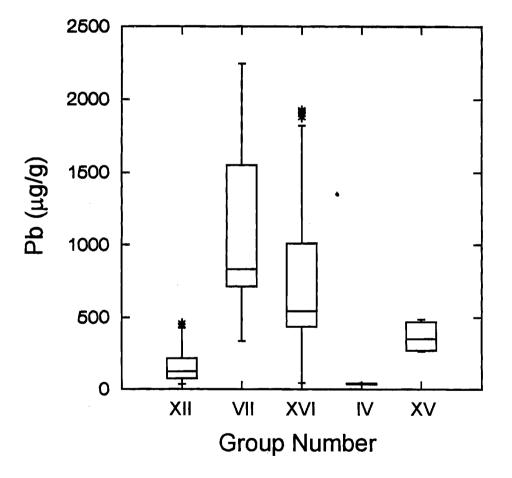
Box Plot of Fe Concentrations in SORWT Groups



Box Plot of La Concentrations in SORWT Groups

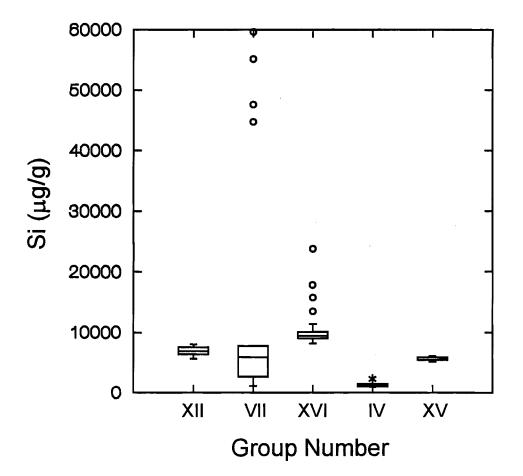

D.5

Box Plot of Mn Concentrations in SORWT Groups

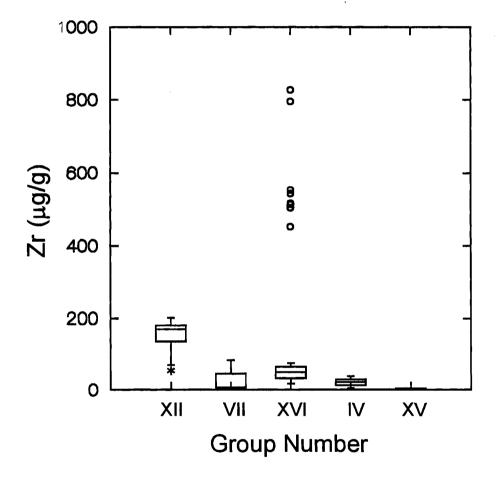


D.6

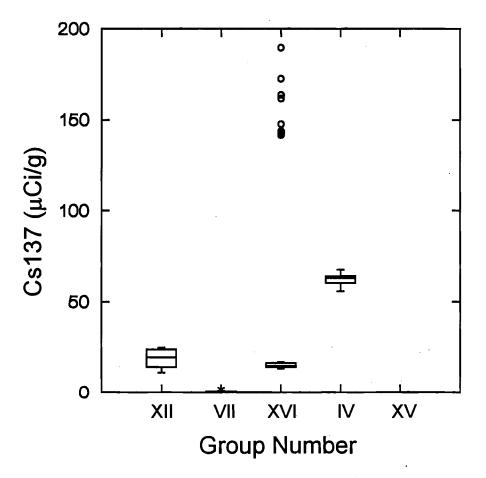
Box Plot of Na Concentrations in SORWT Groups



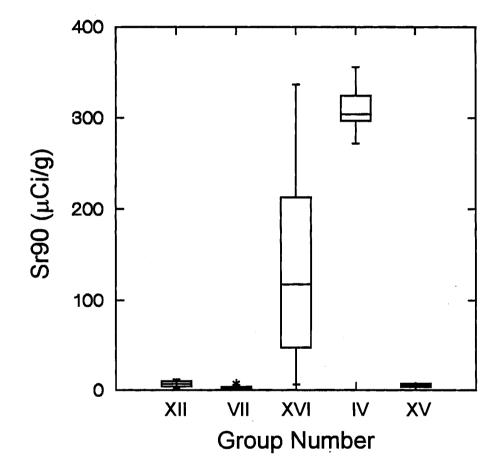
Box Plot of Pb Concentrations in SORWT Groups



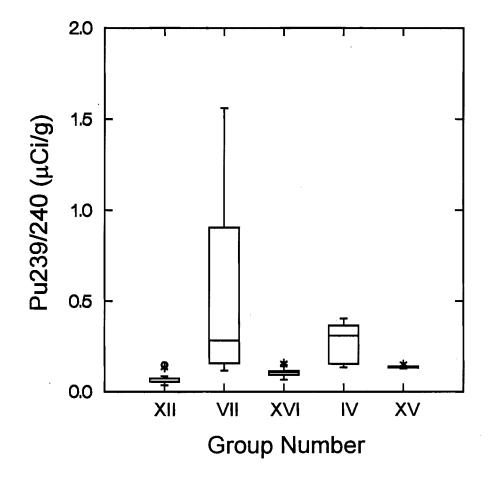
D.8


Box Plot of Si Concentrations in SORWT Groups

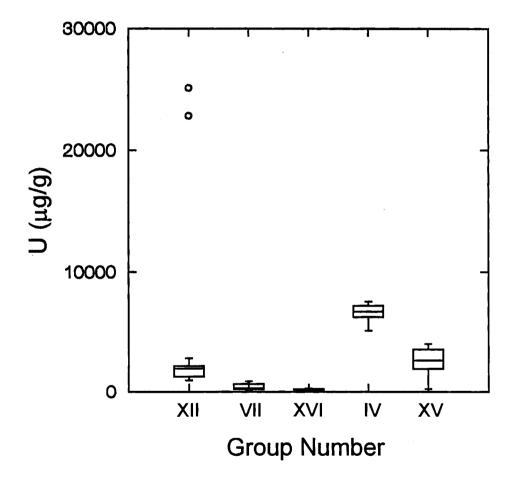
Box Plot of Zr Concentrations in SORWT Groups



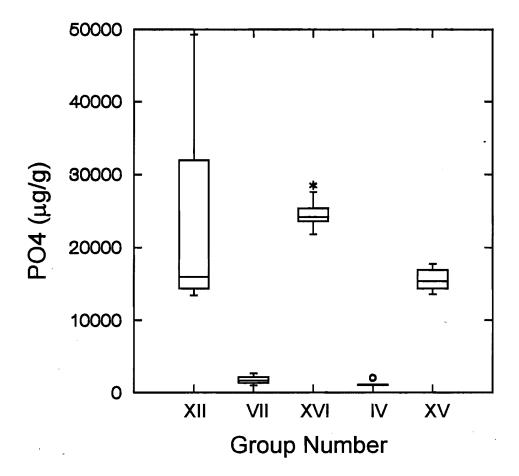
Box Plot of Cs137 Concentrations in SORWT Groups


D.11

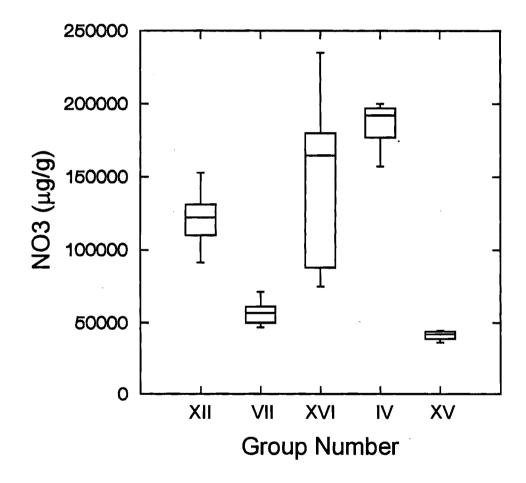
Box Plot of Sr90 Concentrations in SORWT Groups


D.12

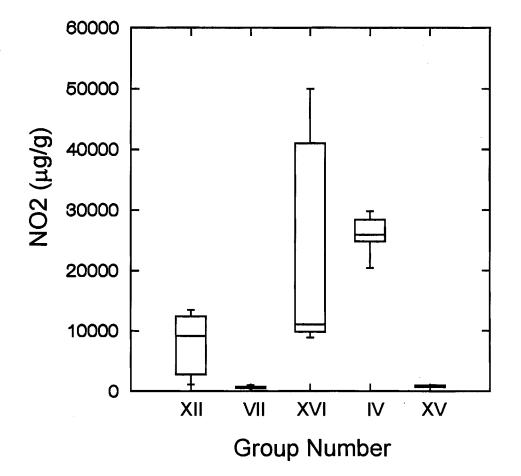
Box Plot of Pu239/240 Concentrations in SORWT Groups



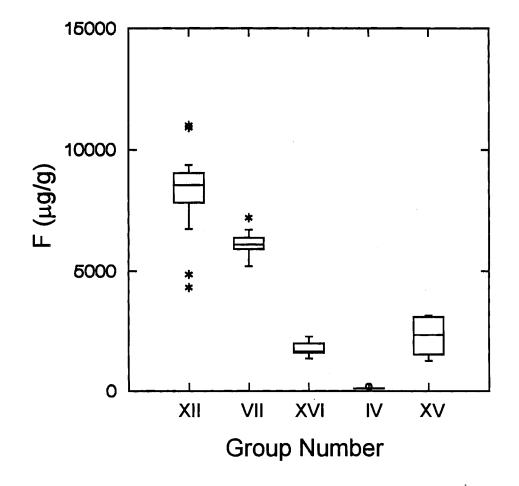
PNL-9814 Rev 2


Box Plot of U Concentrations in SORWT Groups

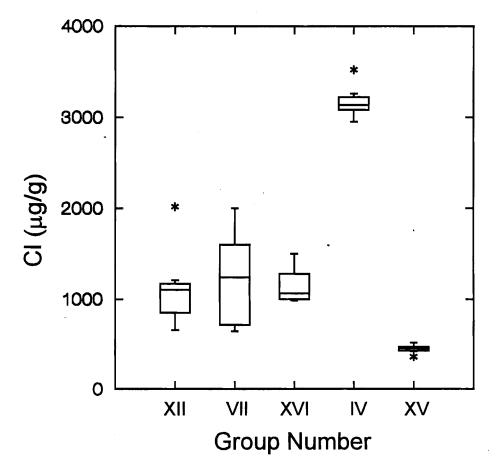
Box Plot of PO4 Concentrations in SORWT Groups

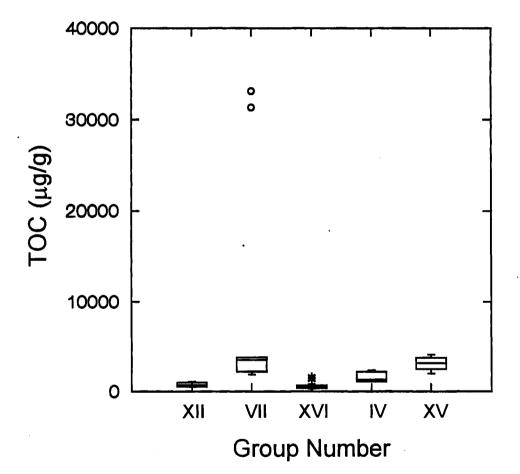


Box Plot of NO3 Concentrations in SORWT Groups



D.16


Box Plot of NO2 Concentrations in SORWT Groups


Box Plot of F Concentrations in SORWT Groups

Box Plot of CI Concentrations in SORWT Groups

Box Plot of TOC Concentrations in SORWT Groups

Appendix E

ANOVA Results of Core Sample Analytical Data Used in the SORWT Model Verification Study

- • -. . .

FRI 1/27/95 1:24:29 PMD:\SORWT\SORWTDAT.SYSLEVELS ENCOUNTERED DURING PROCESSING ARE:
GROUPNO\$GROUPNO\$IVVIIXIIXVXVIXVIXVI

5 CASES DELETED DUE TO MISSING DATA.

DEP VAR: AL 103 MULTIPLE R: 0.998 SQUARED MULTIPLE R: 0.996 N: ANALYSIS OF VARIANCE SOURCE Ρ SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO GROUPNO\$.137018E+12 4 .342544E+11 5514.853 0.000 ERROR .608707E+09 98 6211300.211 FRI 1/27/95 1:24:55 PM D:\SORWT\SORWTDAT.SYS COL/ ROW GROUPNOS 1 IV 2 VII 3 XII 4 X۷ 5 XVI

USING LEAST SQUARES MEANS.

POST HOC TEST OF AL

USING MODEL MSE OF 6211300.211 WITH 98. DF. MATRIX OF PAIRWISE MEAN DIFFERENCES:

5 1 2 3 4 1 0.000 2 -113510.000 0.000 3 -102677.434 10832.566 0.000 4 -116430.000 -2920.000 -13752.566 0.000 5 -115575.229 ·2065.229 -12897.795 854.771 0.000

TUKEY HSD MULTIPLE COMPARISONS. MATRIX OF PAIRWISE COMPARISON PROBABILITIES:

	1	2	3	4	5
1	1.000				
2	0.000	1.000			
3	0.000	0.000	1.000		
4	0.000	0.056	0.000	1.000	
5	0.000	0.033	0.000	0.897	1.000

FRI 1/27/95 1:26:32 PMD:\SORWT\SORWTDAT.SYSLEVELS ENCOUNTERED DURING PROCESSING ARE:
GROUPNO\$
IVVIIXIIXVXVI

5 CASES DELETED DUE TO MISSING DATA.

DEP VAR:	BI	N:	103	MULTIPLE F	: 0.805	SQUARED	MULTIPLE	R: 0.648	
ANALYSIS OF VARIANCE									
SOURCE	SUM-OF-	SQUARES	DF	MEAN - SQUAR	E F-	RATIO	Ρ		
GROUPNO\$.3295	19 E+ 11	4	.823799E+10	45	. 153	0.000		
ERROR	.1787	96E+11	98	.182445E+09	I				
FRI 1/27/95 1:26:41 PM D:\SORWT\SORWTDAT.SYS COL/ ROW GROUPNO\$ 1 IV 2 VII 3 XII 4 XV 5 XVI									
USING LEAST	SQUARES	MEANS .							
POST HOC TES	ST OF	BI				•			
USING MODEL MATRIX OF PA					DF.				
		1		2	3		4	5	
	1 2 3 4 5	0.000 61714.696 17316.781 23523.725 19315.017	-4	0,000 44397.915 38190.971 42399.679	0.00 6206.94 1998.23	4 (0.000 8.708	0.000	
TUKEY HSD MULTIPLE COMPARISONS. MATRIX OF PAIRWISE COMPARISON PROBABILITIES:									
		1		2	3		4	5	
	1 2 3 4 5	1.000 0.000 0.008 0.002 0.000) } 2	1.000 0.000 0.000 0.000	1.00 0.81 0.98	.6	1.000 0.925	1.000	

FRI 1/27/95 1:28:10 PMD:\SORWT\SORWTDAT.SYSLEVELS ENCOUNTERED DURING PROCESSING ARE:
GROUPNO\$
IVVIIXIIXVXVIXII

5 CASES DELETED DUE TO MISSING DATA.

DEP VAR: CR N: 103 MULTIPLE R: 0.944 SQUARED MULTIPLE R: 0.891

ANALYSIS OF VARIANCE

SOURCE	SUM-OF-SQUARES	DF	MEAN - SQUARE	F-RATIO	Р
GROUP NO \$.707020E+08	4	.176755E+08	199.780	0.000
ERROR	8670526.646	98	88474.762		

FRI 1/27/95 1:28:16 PM D:\SORWT\SORWTDAT.SYS COL/ ROW GROUPNO\$ 1 IV 2 VII 3 XII

- 4 XV
- 5 XVI

USING LEAST SQUARES MEANS.

POST HOC TEST OF CR

1 2

3

4 5

USING MODEL MSE OF 88474.762 WITH 98. DF. MATRIX OF PAIRWISE MEAN DIFFERENCES:

1 2 3 5 4 0.000 481.667 0.000 -2150.000 -1668.333 0.000 -554.583 -1036.250 1113.750 0.000 -1499.438 -1981.104 168.896 -944.854 0.000

TUKEY HSD MULTIPLE COMPARISONS. MATRIX OF PAIRWISE COMPARISON PROBABILITIES:

	1	2	3	4	5
1 2 3 4 5	1.000 0.000 0.000 0.001 0.001 0.000	1.000 0.000 0.000 0.000	1.000 0.000 0.248	1.000 0.000	1.000

FRI 1/27/95 1:28:43 PMD:\SORWT\SORWTDAT.SYSLEVELS ENCOUNTERED DURING PROCESSING ARE:
GROUPNO\$VIIIVVIIXIIXVXVI

5 CASES DELETED DUE TO MISSING DATA.

DEP VAR: FE N: 103 MULTIPLE R: 0.869 SQUARED MULTIPLE R: 0.755

ANALYSIS OF VARIANCE

SOURCE	SUM-OF-SQUARES	DF	MEAN-SQUARE	F-RATIO	P
GROUPNO\$.299271E+10	4	.748177E+09	75.346	0.000
ERROR	.973134E+09	98	9929936.716		

FRI 1/27/95 1:29:00 PM D:\SORWT\SORWTDAT.SYS COL/ ROW GROUPNO\$ 1 IV 2 VII 3 XII 4 XV 5 XVI

USING LEAST SQUARES MEANS.

-

POST HOC TEST OF FE

USING MODEL MSE OF 9929936.716 WITH 98. DF. MATRIX OF PAIRWISE MEAN DIFFERENCES:

. 2 4 5 1 3 1 0.000 8731.872 0.000 2 3 9387.892 656.020 0.000 4 16613.725 7881.853 7225.833 0.000 16062.329 7330.457 5 6674,438 -551.396 0.000

TUKEY HSD MULTIPLE COMPARISONS. MATRIX OF PAIRWISE COMPARISON PROBABILITIES:

	1	2	3	4	5
1 2 3 4 5	1.000 0.000 0.000 0.000 0.000 0.000	1.000 0.972 0.000 0.000	1.000 0.000 0.000	1.000 0.991	1.000

FRI 1/27/95 1:29:25 PM D:\SORWT\SORWTDAT.SYS LEVELS ENCOUNTERED DURING PROCESSING ARE: GROUPNO\$ I۷ VII XII X۷ XVI

5 CASES DELETED DUE TO MISSING DATA.

DEP VAR: LA 103 MULTIPLE R: 0.995 SQUARED MULTIPLE R: 0.989 N:

ANALYSIS OF VARIANCE

SOURCE	SUM-OF-SQUARES	DF	MEAN - SQUARE	F-RATIO	Р
GROUPNO\$.257985E+10	4	.644963E+09	2284.408	0.000
ERROR	.276686E+08	98	282332.659		

FRI 1/27/95 1:29:38 PM D:\SORWT\SORWTDAT.SYS COL/ ROW GROUPNO\$ 1 IV 2 VII 3 XII 4 X۷

5 XVI

USING LEAST SQUARES MEANS.

POST HOC TEST OF LA

1

USING MODEL MSE OF 282332.659 WITH 98. DF. MATRIX OF PAIRWISE MEAN DIFFERENCES:

> 5 2 4 1 3 0.000 23 13582.117 0.000 -1.445 -13583.562 0.000 4 4098.087 -9484.029 4099.533 0.000 5 64.190 -13517.927 65.635 0.000 -4033.898

TUKEY HSD MULTIPLE COMPARISONS. MATRIX OF PAIRWISE COMPARISON PROBABILITIES:

	1	2	3	4	5
1 2	1.000 0.000	1.000			
3	1.000	0.000	1.000		
4	0.000	0.000	0.000	1.000	
5	0.996	0.000	0.992	0.000	1.000

FRI 1/27/95 1:29:54 PM D:\SORWT\SORWTDAT.SYS LEVELS ENCOUNTERED DURING PROCESSING ARE: GROUPNO\$ IV XII XVI VII XV

5 CASES DELETED DUE TO MISSING DATA.

DEP VAR:	MN	N:	103	MULTIPLE R	: 0. 852	SQUARED MU	LTIPLE R:	0.725
		ANALY	SIS (OF VARIANCE				
SOURCE	SUM-OF	- SQUARES	DF	MEAN - SQUAR	E F-	RATIO	Ρ	
GROUPNO\$. 293	853E+10	4	.734633E+09	64	.674	0.000	
ERROR	. 111	318E+10	98	.113590E+08	3			
FRI 1/27/95 1:30:05 PM D:\SORWT\SORWTDAT.SYS COL/ ROW GROUPNO\$ 1 IV 2 VII 3 XII 4 XV 5 XVI USING LEAST SQUARES MEANS. POST HOC TEST OF MN								
USING MODEL MATRIX OF PA					DF.			
		1		2	3	4	!	5
	1 2 3 4 5	0.00 13358.38 -1091.97 5132.41 -1052.85	7 2 -1 7 -	0.000 14450.359 •8225.971 14411.241	0.00 6224.38 39.11	9 0.0		0.000
TUKEY HSD MU MATRIX OF PA				DBABILITIES				
		1		2	3	4		5
	1 2 3 4 5	1.00 0.00 0.90 0.01 0.86	0 7 0	1.000 0.000 0.000 0.000	1.00 0.00 1.00	0 1.0		1.000

E.6

FRI 1/27/95 1:33:56 PM D:\SORWT\SORWTDAT.SYS LEVELS ENCOUNTERED DURING PROCESSING ARE: GROUPNO\$ IV VII XII XV XVI

5 CASES DELETED DUE TO MISSING DATA.

DEP VAR:	NA N:	103 MULTIPLE R:	0.970 SQUARED	MULTIPLE R: 0.940
	ANAL	YSIS OF VARIANCE		
SOURCE	SUM-OF-SQUARES	DF MEAN-SQUARE	F-RATIO	Р
GROUPNO\$.709272E+11	4 .177318E+11	385.204	0.000
ERROR	.451116E+10	98 .460323E+08		

FRI 1/27/95 1:34:29 PM D:\SORWT\SORWTDAT.SYS COL/ ROW GROUPNO\$ 1 IV 2 VII 3 XII

4 XV 5 XVI

USING LEAST SQUARES MEANS.

POST HOC TEST OF NA

USING MODEL MSE OF 46032257.982 WITH 98. DF. MATRIX OF PAIRWISE MEAN DIFFERENCES:

	1	2	3	4	5
1 2 3 4 5	0.000 -76885.941 -27116.667 -81300.000 -21891.188	0.000 49769.275 -4414.059 54994.754	0.000 -54183.333 5225.479	0.000 59408.813	0.000

TUKEY HSD MULTIPLE COMPARISONS. MATRIX OF PAIRWISE COMPARISON PROBABILITIES:

	1	2	3	4	5
1 2 3 4 5	1.000 0.000 0.000 0.000 0.000	1.000 0.000 0.554 0.000	1.000 0.000 0.049	1.000 0.000	1.000

FRI 1/27/95 LEVELS ENCOL GROUPNO\$			ORWT\SORW ESSING AR				
IV	VII	XII		XV	XVI		
5 CASES	DELETED D	UE TO MIS	SING DATA				
DEP VAR:	РВ	N: 1	03 MULTI	PLE R: 0.6	18 SQUAR	RED MULTIPLE R	: 0.381
		ANALYSI	S OF VARI	ANCE			
SOURCE	SUM-OF-S	QUARES	DF MEAN-	SQUARE	F-RATIO	Р	
GROUPNO\$. 13132	5E+08	4 328311	4.895	15.108	0.000	
ERROR	.21296	6E+08 9	8 21731	2.653			
FRI 1/27/95 COL/ ROW GROUPNOS 1 IV 2 VII 3 XII 4 XV 5 XVI		PM D:∖S	ORWT\SORW	TDAT.SYS			
USING LEAST	SQUARES M	IEANS.					
POST HOC TES	T OF	PB					
USING MODEL MATRIX OF PA		217312.65 AN DIFFER		98. DF.	·		
		1	2	3	5	4	5
	1 2 3 4 5	0.000 1085.904 142.831 326.500 711.304	0.0 -943.0 -759.4 -374.6	74 0 04 183	0.000 669 8.474	0.000 384.804	0.000
TUKEY HSD MU MATRIX OF PA				TIES:			·
		1	2	3	3	4	5
	1 2 3 4 5	1.000 0.000 0.923 0.543 0.000	1.0 0.0 0.0 0.0	00 1 02 0	L.000).886).000	1.000 0.203	1.000

FRI 1/27/95 1:40:59 PM D:\SORWT\SORWTDAT.SYS LEVELS ENCOUNTERED DURING PROCESSING ARE: GROUPNO\$ IV VII XII XV XVI

5 CASES DELETED DUE TO MISSING DATA.

DEP VAR: SI N: 103 MULTIPLE R: 0.431 SQUARED MULTIPLE R: 0.186

ANALYSIS OF VARIANCE

SOURCE	SUM-OF-SQUARES	DF	MEAN - SQUARE	F-RATI0	Р
GROUPNO\$.169385E+10	4	.423462E+09	5.581	0.000
ERROR	.743582E+10	98	.758757E+08		

FRI 1/27/95 1:41:06 PM D:\SORWT\SORWTDAT.SYS COL/ ROW GROUPNO\$ 1 IV 2 VII 3 XII 4 XV 5 XVI

USING LEAST SQUARES MEANS.

POST HOC TEST OF SI

USING MODEL MSE OF 75875689.857 WITH 98. DF. MATRIX OF PAIRWISE MEAN DIFFERENCES:

5 1 2 3 4 1 0.000 2 14321.760 0.000 3 5606.361 -8715.399 0.000 4 4238.583 -10083.176 -1367.778 0.000 ~ 5 8846.979 -5474.781 3240.618 4608.396 0.000

TUKEY HSD MULTIPLE COMPARISONS. MATRIX OF PAIRWISE COMPARISON PROBABILITIES:

	1	2	3	4	5
1 2 3 4 5	1.000 0.000 0.422 0.823 0.018	1.000 0.031 0.061 0.179	1.000 0.996 0.663	1.000 0.638	1.000

FRI 1/27/95 1:41:25 PM D:\SORWT\SORWTDAT.SYS LEVELS ENCOUNTERED DURING PROCESSING ARE: GROUPNO\$ XVI IV VII XII XV 5 CASES DELETED DUE TO MISSING DATA. DEP VAR: ZR N: 103 MULTIPLE R: 0.365 SQUARED MULTIPLE R: 0.133 ANALYSIS OF VARIANCE SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO Ρ GROUPNO\$ 338155.908 4 84538.977 3.764 0.007 ERROR 2201118.624 98 22460.394 FRI 1/27/95 1:41:33 PM D:\SORWT\SORWTDAT.SYS COL/ ROW GROUPNO\$ 1 IV 2 VII 3 XII 4 XV 5 XVI USING LEAST SQUARES MEANS. POST HOC TEST OF ZR USING MODEL MSE OF 22460.394 WITH 98. DF. MATRIX OF PAIRWISE MEAN DIFFERENCES: 1 5 2 3 4 1 2 0.000 7.705 0.000 3 131.771 124.066 0.000 -148.982 0.000 4 -17.210 -24.916 5 104.837 -19.229 0.000 129.752 112.542

TUKEY HSD MULTIPLE COMPARISONS. MATRIX OF PAIRWISE COMPARISON PROBABILITIES:

	1	2	3	4	5
1 2 3 4 5	1.000 1.000 0.136 0.999 0.145	1.000 0.112 0.995 0.104	1.000 0.141 0.990	1.000 0.165	1.000

E.10

FRI 1/27/95 1:41:51 PM D:\SORWT\SORWTDAT.SYS LEVELS ENCOUNTERED DURING PROCESSING ARE: GROUPNO\$ I۷ VII XII XV XVI 8 CASES DELETED DUE TO MISSING DATA. DEP VAR: CS137 N: 100 MULTIPLE R: 0.486 SQUARED MULTIPLE R: 0.236 ANALYSIS OF VARIANCE SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO Ρ GROUPNO\$ 42611.220 4 10652.805 7.339 0.000 ERROR 137887.504 95 1451.447 FRI 1/27/95 1:41:59 PM D:\SORWT\SORWTDAT.SYS COL/ ROW GROUPNO\$ 1 IV 2 VII 3 XII 4 XV 5 XVI USING LEAST SQUARES MEANS. POST HOC TEST OF CS137 USING MODEL MSE OF 1451.447 WITH 95. DF. MATRIX OF PAIRWISE MEAN DIFFERENCES: 1 2 3 4 5 1 0.000 23 -61.905 0.000 18.130 0.000 -43.775 4 -62.142 -0.237 -18.367 0.000 5 40.235 40.472 0.000 -21.670 22.105 TUKEY HSD MULTIPLE COMPARISONS. MATRIX OF PAIRWISE COMPARISON PROBABILITIES: 1 2 3 4 5 1 2 1.000 0.000 1.000 3 0.022 0.612 1.000 4 0.005 1.000 0.788 1.000 5 0.240 0.411 0.052 1.000 0.003

E.11

FRI 1/27/95 1:42:20 PM D:\SORWT\SORWTDAT.SYS LEVELS ENCOUNTERED DURING PROCESSING ARE: GROUPNO\$ I۷ VII XII XV XVI 22 CASES DELETED DUE TO MISSING DATA. DEP VAR: SR90 86 MULTIPLE R: 0.872 SQUARED MULTIPLE R: 0.761 N: ANALYSIS OF VARIANCE F-RATIO SOURCE SUM-OF-SQUARES DF MEAN - SQUARE Ρ **GROUPNOS** 951095.029 4 237773.757 64.538 0.000 ERROR 298426.030 3684.272 81 FRI 1/27/95 1:42:32 PM D:\SORWT\SORWTDAT.SYS COL/ ROW GROUPNOS 1 IV 2 VII 3 XII 4 X۷ 5 XVI USING LEAST SQUARES MEANS. POST HOC TEST OF **SR90** USING MODEL MSE OF 3684.272 WITH 81. DF. MATRIX OF PAIRWISE MEAN DIFFERENCES: 1 2 3 4 5 1 0.000 23 0.000 -306.415 -302.395 4.020 0.000 -304.170 2.245 -1.775 0.000 4 -176.147 130.268 5 126.248 128.023 0.000 TUKEY HSD MULTIPLE COMPARISONS. MATRIX OF PAIRWISE COMPARISON PROBABILITIES: 5 1 2 3 4 1 1.000 2 0.000 1.000 0.000 1.000 1.000 3 1.000 4 0.000 1.000 1.000 5 0.000 0.000 0.000 0.000 1.000

FRI 1/27/95 1:43:01 PM D:\SORWT\SORWTDAT.SYS LEVELS ENCOUNTERED DURING PROCESSING ARE: GROUPNO\$ XV XVI I۷ VII XII 22 CASES DELETED DUE TO MISSING DATA. DEP VAR: PU23940 N: 86 MULTIPLE R: 0.638 SQUARED MULTIPLE R: 0.407 ANALYSIS OF VARIANCE SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO Ρ GROUPNO\$ 0.890 0.000 3.558 4 13.915 ERROR 5.178 0.064 81 FRI 1/27/95 1:43:07 PM D:\SORWT\SORWTDAT.SYS COL/ **ROW GROUPNO\$** 1 IV 2 VII 3 XII 4 XV 5 XVI USING LEAST SQUARES MEANS. POST HOC TEST OF PU23940 USING MODEL MSE OF .064 WITH 81. DF. MATRIX OF PAIRWISE MEAN DIFFERENCES: 1 2 3 4 5 0.000 1 2 3 0.324 0.000 -0.536 -0.212 0.000 4 -0.143 -0.467 0.069 0.000 5 -0.175 -0.499 0.037 -0.032 0.000

TUKEY HSD MULTIPLE COMPARISONS. MATRIX OF PAIRWISE COMPARISON PROBABILITIES:

.

	1	2	3	4	5
1 2 3 4 5	1.000 0.008 0.172 0.727 0.263	1.000 0.000 0.000 0.000	- 1.000 0.968 0.988	1.000 0.998	1.000

FRI 1/27/95 1:43:35 PM D:\SORWT\SORWTDAT.SYS LEVELS ENCOUNTERED DURING PROCESSING ARE: GROUPNO\$ IV VII XII XV XVI 18 CASES DELETED DUE TO MISSING DATA. DEP VAR: U N: 90 MULTIPLE R: 0.600 SQUARED MULTIPLE R: 0.360 ANALYSIS OF VARIANCE SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO Ρ GROUPNO\$.509678E+09 4 .127419E+09 11.945 0.000 ERROR 85 .106670E+08 .906692E+09 FRI 1/27/95 1:43:41 PM D:\SORWT\SORWTDAT.SYS COL/ ROW GROUPNO\$ 1 IV 2 VII 3 XII 4 XV 5 XVI USING LEAST SQUARES MEANS. POST HOC TEST OF U USING MODEL MSE OF 10666968.923 WITH 85. DF. MATRIX OF PAIRWISE MEAN DIFFERENCES: 1 2 3 4 5 0.000 1 2 -6271.056 0.000 0.000 3 -2436.500 3834.556 -1693.500 4 -4130.000 2141.056 0.000 5 -6475.971 -204.915 -4039.471 -2345.971 0.000 TUKEY HSD MULTIPLE COMPARISONS. MATRIX OF PAIRWISE COMPARISON PROBABILITIES: 5 1 2 3 4 1.000 1 2 0.000 1.000 3 0.274 0.006 1.000 1.000 4 0.052 0.538 0.740

•

5

0.000

1.000

£

E.14

0.001

0.365

FRI 1/27/95 1:44:02 PM D:\SORWT\SORWTDAT.SYS LEVELS ENCOUNTERED DURING PROCESSING ARE: GROUPNO\$ IV VII XII XV XVI 32 CASES DELETED DUE TO MISSING DATA. DEP VAR: P04 N: 76 MULTIPLE R: 0.878 SQUARED MULTIPLE R: 0.771 ANALYSIS OF VARIANCE SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO ·P GROUPNO\$.800097E+10 4 .200024E+10 59.629 0.000 ERROR 71 .335449E+08 .238169E+10 FRI 1/27/95 1:44:11 PM D:\SORWT\SORWTDAT.SYS COL/ ROW GROUPNOS 1 IV 2 VII 3 XII 4 X۷ 5 XVI USING LEAST SQUARES MEANS. POST HOC TEST OF P04 USING MODEL MSE OF 33544926.190 WITH 71. DF. MATRIX OF PAIRWISE MEAN DIFFERENCES: 1 2 4 5 3 1 0.000 395.722 0.000 2 20945.556 3 20549.833 0.000 4 14227.500 13831.778 -6718.056 0.000 5 9017.045 0.000 23244.545 2298.990 22848.823 TUKEY HSD MULTIPLE COMPARISONS. MATRIX OF PAIRWISE COMPARISON PROBABILITIES: 1 2 3 4 5 1.000 1 2 3 4 1.000 1.000 0.000 0.000 1.000 1.000 0.000 0.000 0.060

1.000

0.003

E.15

0.723

0.000

5

FRI 1/27/95 1:44:43 PM D:\SORWT\SORWTDAT.SYS LEVELS ENCOUNTERED DURING PROCESSING ARE: GROUPNO\$							
IV	VII	XII	XV	Х	IVI		
32 CASES	DELETED DU	E TO MISSING	G DATA.				
DEP VAR:	N03	N: 76	MULTIPLE R	R: 0.853 S	QUARED MULTIPLE	R: 0.727	
		ANALYSIS OF	VARIANCE				
SOURCE	SUM-OF-SQ	UARES DF	MEAN - SQUAR	RE F-RA	TIO P		
GROUPNO\$.175964	E+12 4	.439910E+11	47.3	80 0.000		
ERROR	.659208	E+11 71	.928463E+09)			
COL/ ROW GROUPNOS 1 IV 2 VII 3 XII 4 XV 5 XVI	ROW GROUPNO\$ 1 IV 2 VII 3 XII 4 XV						
POST HOC TES	T OF	N03					
USING MODEL MATRIX OF PA				DF.			
		1	2	3	4	5	
	3 -65 4 -145 5 -41	300.000 8		0.000 80023.611 23738.889	0.000 103762.500	0.000	
TUKEY HSD ML MATRIX OF PA	ILTIPLE COM AIRWISE COM	PARISONS. PARISON PRO	BABILITIES:	:			
		1	2	3	4	5	
	1 2 3 4 5	1.000 0.000 0.000 0.000 0.000 0.006	1.000 0.000 0.760 0.000	1.000 0.000 0.114	1.000 0.000	1.000	

E.16

FRI 1/27/95 1:45:07 PMD:\SORWT\SORWTDAT.SYSLEVELS ENCOUNTERED DURING PROCESSING ARE:
GROUPNO\$
IVVIIXIIXVXVIXIIXVXVI

32 CASES DELETED DUE TO MISSING DATA.

DEP VAR:	N02	N:	76	MULTIPLE	R: 0.739	SQUARED	MULTIPLE	R: 0.546	
	ANALYSIS OF VARIANCE								
SOURCE	SUM-OF	- SQUARES	DF	MEAN-SQUA	RE F	-RATIO	Р		
GROUP NO \$.812	2275E+10	4	.203069E+1	.0 2	1.381	0.000		
ERROR	.674	4339E+10	71	.949773E+0	8				
FRI 1/27/95 1:45:14 PM D:\SORWT\SORWTDAT.SYS COL/ ROW GROUPNO\$ 1 IV 2 VII 3 XII 4 XV 5 XVI USING LEAST SQUARES MEANS. POST HOC TEST OF NO2 USING MODEL MSE OF 94977326.797 WITH 71. DF.									
MATRIX OF PA		1		2	3		4	5	
	1 2 3 4 5	0.00 -25011.27 -18091.66 -24832.75 -2819.54	78 · 57 50	0.000 6919.611	0.0 -6741.0 15272.1	00 83 (0.000 3.205	0.000	

TUKEY HSD MULTIPLE COMPARISONS. MATRIX OF PAIRWISE COMPARISON PROBABILITIES:

ie P

	1	2	3	4	5
1 2 3 4 5	1.000 0.000 0.000 0.000 0.942	1.000 0.219 1.000 0.000	1.000 0.485 0.000	1.000 0.000	1.000

FRI 1/27/95 1:45:30 PM D:\SORWT\SORWTDAT.SYS LEVELS ENCOUNTERED DURING PROCESSING ARE: GROUPNO\$								
IV	VII	XII	XV	X۷	I			
32 CASES	DELETED D	UE TO MISSI	NG DATA.					
DEP VAR:	F	N: 76	MULTIPLE	R: 0.960 SQ	UARED MULTIPLE	R: 0.921		
ANALYSIS OF VARIANCE								
SOURCE	SUM-OF-S	QUARES DF	MEAN - SQUA	RE F-RAT	IO P			
GROUPNO\$.68927	0E+09 4	.172318E+0	9 206.38	5 0.000			
ERROR	. 59280	3E+08 71	834933.82	4				
FRI 1/27/95 1:45:43 PM D:\SORWT\SORWTDAT.SYS COL/ ROW GROUPNO\$ 1 IV 2 VII 3 XII 4 XV 5 XVI USING LEAST SQUARES MEANS.								
POST HOC TES	-	F						
USING MODEL MATRIX OF P/	MSE OF			. DF.				
		1	2	3	4	5		
	3		0.000 2126.111 -3833.194 -4373.081	0.000 •5959.306 •6499.192	0.000 -539.886	0.000		
TUKEY HSD M MATRIX OF P	JLTIPLE CO AIRWISE CO	MPARISONS. MPARISON PR	OBABILITIES	:				
		1	2	3	4	5		
	1 2 3 4 5	1.000 0.000 0.000 0.000 0.000	1.000 0.000 0.000 0.000	1.000 0.000 0.000	1.000 0.610	1.000		

FRI 1/27/95 1:46:02 PM D:\SORWT\SORWTDAT.SYS LEVELS ENCOUNTERED DURING PROCESSING ARE: GROUPNO\$								
IV	VII	X	II	XV		XVI		
32 CASES	DELETED I	DUE TO M	ISSIN	G DATA.				
DEP VAR:	CL	N:	76	MULTIPLE R	: 0.926	SQUARED	MULTIPLE	R: 0.857
		ANALYS	SIS O	F VARIANCE				
SOURCE	SUM-OF-S	SQUARES	DF	MEAN-SQUARI	E F-I	RATIO	Ρ	
GROUPNO\$.41440	09E+08	4	.103602E+08	106	.625	0.000	
ERROR	689870	01.915	71	97164.816				
FRI 1/27/95 1:46:06 PM D:\SORWT\SORWTDAT.SYS COL/ ROW GROUPNO\$ 1 IV 2 VII 3 XII 4 XV 5 XVI								
USING LEAST	SQUARES I	MEANS.		•				
POST HOC TES	ST OF	CL						
USING MODEL MATRIX OF PA					DF.			
		1		2	3		4	5
	3 4	0.000 - 1937.389 - 2045.550 - 2712.37! - 2009.409	5	0.000 -108.167 -774.986 -72.020	0.00 -666.81 36.14	9	0.000 2.966	0.000
TUKEY HSD MU MATRIX OF PA				BABILITIES:				
		1		2	3		4	5
	1 2 3 4 5	1.000 0.000 0.000 0.000 0.000	0 0 0	1.000 0.835 0.000 0.950	1.00 0.00 0.99	0	1.000 0.000	1.000

E.19

FRI 1/27/95 1:46:34 PM D:\SORWT\SORWTDAT.SYS LEVELS ENCOUNTERED DURING PROCESSING ARE: GROUPNO\$							
IV	VII	XII	XV XV)	(VI		
45 CASES	DELETED	DUE TO MIS	SING DATA.				
DEP VAR:	TOC	N:	63 MULTIPLE	R: 0.520 S	QUARED MULTIPLE	E R: 0.271	
ANALYSIS OF VARIANCE							
SOURCE	SUM-OF	SQUARES	DF MEAN-SQU	ARE F-RA	TIO P		
GROUPNO\$.5204	72E+09	4 .130118E+	09 5.3	81 0.001		
ERROR	.1402	262E+10 5	.241831E+	08			
FRI 1/27/95 1:46:45 PM D:\SORWT\SORWTDAT.SYS COL/ ROW GROUPNO\$ 1 IV 2 VII 3 XII 4 XV 5 XVI							
USING LEAST	SQUARES	MEANS.					
POST HOC TE	ST OF	тос					
USING MODEL MATRIX OF P				8. DF.			
		1	2	3	4	5	
	1 2 3 4 5	0.000 7162.000 -867.462 1512.750 -972.500	0.000 -8029.462 -5649.250 -8134.500	0.000 2380.212 -105.038	0.000 -2485.250	0.000	
TUKEY HSD M MATRIX OF P			S. PROBABILITIE	S:			
		1	2	3	4	5	
	1 2 3 4 5	1.000 0.016 0.993 0.966 0.985	1.000 0.003 0.124 0.001	1.000 0.818 1.000	1.000 0.738	1.000	

E.20

FRI 1/27/95 1:47:13 PM D:\SORWT\SORWTDAT.SYS LEVELS ENCOUNTERED DURING PROCESSING ARE: GROUPNO\$ I۷

XII XV XVI

70 CASES DELETED DUE TO MISSING DATA.

DEP VAR:	PH	N:	38	MULTIPLE R:	0.9 39	SQUARED	MULTIPLE	R: 0.882	
	ANALYSIS OF VARIANCE								
SOURCE	SUM-OF	-SQUARES	DF	MEAN-SQUARE	F۰	RATIO	Р		
GROUPNO\$		121.793	3	40.598	84	. 879	0.000		
ERROR		16.262	34	0.478					
FRI 1/27/99 COL/ ROW GROUPNOS 1 IV 2 XII 3 XV 4 XVI USING LEAST POST HOC TES	SQUARES		\SORW	IT\SORWTDAT.S'	YS				

USING MODEL MSE OF 34. DF. .478 WITH MATRIX OF PAIRWISE MEAN DIFFERENCES:

> 2 1 3 4 0.000 1 2 3 4 -2.172 -1.153 -4.582 0.000 1.019 0.000 -2.411 0.000 -3.429

TUKEY HSD MULTIPLE COMPARISONS. MATRIX OF PAIRWISE COMPARISON PROBABILITIES:

.

.

	1	2	3	4
1 2 3 4	1.000 0.000 0.398 0.000	1.000 0.494 0.000	1.000 0.000	1.000

MON 7/25/94 4:21:51 PM D:\SORWT\DENSITY.SYS LEVELS ENCOUNTERED DURING PROCESSING ARE: GROUPNO\$ XI XIV XV ۷ VI 16 CASES DELETED DUE TO MISSING DATA. DEP VAR: DENSITY N: 59 MULTIPLE R: 0.712 SQUARED MULTIPLE R: 0.507 ANALYSIS OF VARIANCE SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO Ρ GROUPNO\$ 0.645 4 0.161 13.893 0.000 ERROR 0.626 54 0.012 MON 7/25/94 4:21:59 PM D:\SORWT\DENSITY.SYS COL/ ROW GROUPNO\$ 1 V

2 VI 3 XI 4 XIV 5 XV

USING LEAST SQUARES MEANS.

POST HOC TEST OF DENSITY

USING MODEL MSE OF .012 WITH 54. DF. MATRIX OF PAIRWISE MEAN DIFFERENCES:

	1	2	3	4	5
1	0.000				
2	0.554	0.000			
3	0.289	-0.265	0.000		
4	0.149	-0.405	-0.140	0.000	
5	0.185	-0.369	-0.104	0.036	0.000

TUKEY HSD MULTIPLE COMPARISONS. MATRIX OF PAIRWISE COMPARISON PROBABILITIES:

	1	2	3	4	5
1 2 3 4 5	1.000 0.000 0.000 0.357 0.000	1.000 0.195 0.027 0.011	1.000 0.566 0.362	1.000 0.991	1.000

Appendix F

Descriptive Statistics of Core Sample Analytical Data Used in the SORWT Model Verification Study

.

۰ .

. .

FRI 1/27/95 2:10:58 PM D:\SORWT\SORWT_S.SYS

THE FOLLOWING RESULTS ARE FOR: GROUPNO\$ = IV

TOTAL OBSERVATIONS: 12

	AL	BI	CR	FE	LA
N OF CASES MINIMUM MAXIMUM RANGE MEAN VARIANCE STANDARD DEV STD. ERROR SKEWNESS(G1) KURTOSIS(G2) SUM C.V. MEDIAN	$\begin{array}{c} 12\\ 111000.000\\ 123000.000\\ 12000.000\\ 117000.000\\ .160000E+08\\ 4000.000\\ 1154.701\\ 0.151\\ .1.263\\ 1404000.000\\ 0.034\\ 116500.000\end{array}$	$\begin{array}{r} 12\\ 28.600\\ 45.700\\ 17.100\\ 38.775\\ 55.569\\ 7.454\\ 2.152\\ -0.604\\ -1.498\\ 465.300\\ 0.192\\ 42.150\end{array}$	$\begin{array}{c} 12\\ 2100.000\\ 2620.000\\ 520.000\\ 2353.333\\ 21515.152\\ 146.680\\ 42.343\\ 0.187\\ -0.620\\ 28240.000\\ 28240.000\\ 2300.000\\ \end{array}$	$\begin{array}{r} 12\\ 16.700\\ 1900.000\\ 1883.300\\ 1423.775\\ 446681.986\\ 668.343\\ 192.934\\ -1.655\\ 0.956\\ 17085.300\\ 0.469\\ 1675.000\end{array}$	12 7.890 10.500 2.610 9.413 1.217 1.103 0.318 -0.553 -1.495 112.950 0.117 9.840
	MN	NA	PB	SI	ZR
N OF CASES MINIMUM MAXIMUM RANGE MEAN VARIANCE STANDARD DEV STD. ERROR SKEWNESS(G1) KURTOSIS(G2) SUM C.V. MEDIAN	$\begin{array}{c} 12\\ 583.000\\ 1960.000\\ 1377.000\\ 1150.083\\ 149374.811\\ 386.490\\ 111.570\\ 0.449\\ -0.160\\ 13801.000\\ 0.336\\ 1110.000\\ \end{array}$	$\begin{array}{c} 12\\ 113000.000\\ 125000.000\\ 12000.000\\ 118250.000\\ .136591E+08\\ 3695.821\\ 1066.892\\ 0.425\\ -0.646\\ 1419000.000\\ 0.031\\ 119000.000\\ \end{array}$	$\begin{array}{r} 12\\ 35.000\\ 42.500\\ 7.500\\ 38.625\\ 8.682\\ 2.947\\ 0.851\\ 0.118\\ -1.486\\ 463.500\\ 0.076\\ 38.350\end{array}$	12 947.000 2310.000 1363.000 1326.417 139466.811 373.453 107.806 1.550 2.009 15917.000 0.282 1205.000	12 4.850 37.900 33.050 21.207 96.568 9.827 2.837 -0.127 -0.904 254.480 0.463 21.900
	CS137	SR90	PU23940	U	P04
N OF CASES MINIMUM MAXIMUM RANGE MEAN VARIANCE STANDARD DEV STD. ERROR SKEWNESS(G1) KURTOSIS(G2) SUM C.V. MEDIAN	$\begin{array}{c} 12\\ 55.700\\ 67.500\\ 11.800\\ 62.308\\ 10.783\\ 3.284\\ 0.948\\ -0.434\\ -0.307\\ 747.700\\ 0.053\\ 62.850\end{array}$	$\begin{array}{c} 12\\ 272.000\\ 356.000\\ 84.000\\ 309.583\\ 634.992\\ 25.199\\ 7.274\\ 0.522\\ 0.615\\ 3715.000\\ 0.081\\ 304.000\end{array}$	12 0.136 0.404 0.268 0.282 0.011 0.105 0.030 -0.457 -1.483 3.385 0.373 0.312	12 5150.000 7530.000 2380.000 6685.000 469627.273 685.294 197.827 -0.721 0.081 80220.000 0.103 6710.000	$\begin{array}{c} 10\\ 1080.000\\ 2190.000\\ 1110.000\\ 1310.000\\ 212733.333\\ 461.230\\ 145.854\\ 1.499\\ 0.249\\ 13100.000\\ 0.352\\ 1095.000\\ \end{array}$
	N03	N02	F	CL	TOC
N OF CASES MINIMUM MAXIMUM RANGE MEAN VARIANCE STANDARD DEV STD. ERROR SKEWNESS(G1) KURTOSIS(G2) SUM C.V.	10 157000.000 200000.000 43000.000 186300.000 .198456E+09 14087.425 4454.835 -1.003 -0.216 1863000.000 0.076	$\begin{array}{c} 10\\ 20400.000\\ 29800.000\\ 9400.000\\ 25730.000\\ 9857888.889\\ 3139.728\\ 992.869\\ -0.414\\ -0.793\\ 257300.000\\ 0.122\end{array}$	$\begin{array}{c} 10\\ 108.000\\ 219.000\\ 111.000\\ 132.000\\ 2090.667\\ 45.724\\ 14.459\\ 1.479\\ 0.219\\ 1320.000\\ 0.346\end{array}$	$\begin{array}{c} 10\\ 2950.000\\ 3520.000\\ 570.000\\ 3162.000\\ 25306.667\\ 159.081\\ 50.306\\ 0.948\\ 0.723\\ 31620.000\\ 0.050\end{array}$	$10 \\ 1090.000 \\ 2380.000 \\ 1290.000 \\ 1606.000 \\ 315382.222 \\ 561.589 \\ 177.590 \\ 0.425 \\ -1.667 \\ 16060.000 \\ 0.350 \\ \end{array}$

F.1

THE FOLLOWING RESULTS ARE FOR: GROUPNO\$ = VII

TOTAL OBSERVATIONS: 22

	AL	BI	CR	FE	LA
N OF CASES MINIMUM MAXIMUM RANGE MEAN VARIANCE STANDARD DEV STD. ERROR SKEWNESS(G1) KURTOSIS(G2) SUM C.V. MEDIAN	$\begin{array}{c} 17\\ 195.000\\ 13071.000\\ 12876.000\\ 3490.000\\ .220602E+08\\ 4696.825\\ 1139.147\\ 1.265\\ -0.268\\ 59330.000\\ 1.346\\ 1168.000\end{array}$	17 27189.000 105375.000 78186.000 61753.471 .106507E+10 32635.396 7915.246 0.156 -1.888 1049809.000 0.528 36591.000	17 1875.000 3875.000 2835.000 390714.625 625.072 151.602 0.130 -1.146 48195.000 0.220 2787.000	17 3630.000 18712.000 15082.000 10155.647 .244163E+08 4941.290 1198.439 0.344 -1.001 172646.000 0.487 10138.000	$\begin{array}{c} 17\\ 11424.000\\ 15599.000\\ 4175.000\\ 13591.529\\ 1562411.890\\ 1249.965\\ 303.161\\ -0.002\\ -1.043\\ 231056.000\\ 0.092\\ 13170.000\\ \end{array}$
	MN	NA	PB	SI	ZR
N OF CASES MINIMUM MAXIMUM RANGE MEAN VARIANCE STANDARD DEV STD. ERROR SKEWNESS(G1) KURTOSIS(G2) SUM C.V. MEDIAN	17 800.000 25880.000 25080.000 14508.471 .694385E+08 8332.975 2021.043 -0.251 -1.113 246644.000 0.574 12800.000	17 33576.000 58510.000 24934.000 41364.059 .722929E+08 8502.523 2062.165 1.128 -0.419 703189.000 0.206 37896.000	$\begin{array}{r} 17\\ 334.000\\ 2244.000\\ 1910.000\\ 1124.529\\ 416589.015\\ 645.437\\ 156.541\\ 0.406\\ -1.119\\ 19117.000\\ 0.574\\ 833.000\end{array}$	17 1130.000 59723.000 58593.000 15648.176 .442815E+09 21043.163 5103.717 1.281 -0.196 266019.000 1.345 5849.000	$\begin{array}{r} 17\\ 3.900\\ 82.400\\ 78.500\\ 28.912\\ 768.351\\ 27.719\\ 6.723\\ 0.582\\ -1.050\\ 491.500\\ 0.959\\ 7.000\end{array}$
	CS137	SR90	PU23 94 0	U	P04
N OF CASES MINIMUM MAXIMUM RANGE MEAN VARIANCE STANDARD DEV STD. ERROR SKEWNESS(G1) KURTOSIS(G2) SUM C.V. MEDIAN	18 0.011 1.610 1.599 0.403 0.200 0.447 0.105 1.169 0.849 7.260 1.109 0.300	18 0.830 7.370 6.540 3.168 3.555 1.886 0.444 0.747 -0.340 57.030 0.595 2.740	18 0.118 1.560 1.442 0.606 0.296 0.544 0.128 0.719 -1.070 10.908 0.897 0.285	$\begin{array}{r} 18\\ 119.000\\ 860.000\\ 741.000\\ 413.944\\ 53980.173\\ 232.336\\ 54.762\\ 0.567\\ -1.094\\ 7451.000\\ 0.561\\ 322.000\\ \end{array}$	18 1000.000 2730.000 1730.000 1705.722 243377.624 493.333 116.280 0.266 -0.812 30703.000 0.289 1730.000
	N03	NO2	F	CL	TOC
N OF CASES MINIMUM MAXIMUM RANGE MEAN VARIANCE STANDARD DEV STD. ERROR SKEWNESS(G1) KURTOSIS(G2) SUM C.V. MEDIAN	18 47000.000 71300.000 24300.000 56588.889 .547446E+08 7398.958 1743.951 0.361 -1.060 1018600.000 0.131 56850.000	18 439.000 1100.000 661.000 718.722 42388.095 205.884 48.527 0.090 -0.934 12937.000 0.286 747.000	$\begin{array}{r} 18\\ 5200.000\\ 7200.000\\ 2000.000\\ 6134.444\\ 198802.614\\ 445.873\\ 105.093\\ 0.338\\ 0.662\\ 110420.000\\ 0.073\\ 6090.000\\ \end{array}$	18646.0002000.0001354.0001224.611216320.958465.103109.6260.088-1.46122043.0000.3801240.000	10 1900.000 33200.000 31300.000 8768.000 .154537E+09 12431.308 3931.125 1.491 0.253 87680.000 1.418 3505.000

F.2

THE FOLLOWING RESULTS ARE FOR: GROUPNO\$ = XII

TOTAL OBSERVATIONS: 18

ŧ

	AL	BI	CR	FE	LA
N OF CASES MINIMUM MAXIMUM RANGE MEAN VARIANCE STANDARD DEV STD. ERROR SKEWNESS(G1) KURTOSIS(G2) SUM C.V. MEDIAN	$\begin{array}{c} 18\\ 11200.000\\ 17300.000\\ 6100.000\\ 14322.566\\ 1998942.011\\ 1413.839\\ 333.245\\ 0.318\\ 0.908\\ 257806.190\\ 0.099\\ 14300.000\\ \end{array}$	$\begin{array}{r} 18\\ 10200.000\\ 28200.000\\ 18000.000\\ 17355.556\\ .281097E+08\\ 5301.856\\ 1249.659\\ 0.773\\ -0.410\\ 312400.000\\ 0.305\\ 15400.000\\ \end{array}$	$\begin{array}{c} 18\\ 413.000\\ 1080.000\\ 667.000\\ 685.000\\ 72523.882\\ 269.303\\ 63.475\\ 0.349\\ -1.693\\ 12330.000\\ 0.393\\ 495.500\\ \end{array}$	18 8350.000 13400.000 5050.000 10811.667 1977720.588 1406.315 331.472 0.032 -0.706 194610.000 0.130 11200.000	$\begin{array}{c} 18\\ 7.890\\ 8.000\\ 0.110\\ 7.967\\ 0.001\\ 0.029\\ 0.007\\ -1.312\\ 1.262\\ 143.410\\ 0.004\\ 7.980\end{array}$
	MN	NA	РВ	SI	ZR
N OF CASES MINIMUM MAXIMUM RANGE MEAN VARIANCE STANDARD DEV STD. ERROR SKEWNESS(G1) KURTOSIS(G2) SUM C.V. MEDIAN	$\begin{array}{c} 18\\ 31.000\\ 93.400\\ 62.400\\ 58.111\\ 299.810\\ 17.315\\ 4.081\\ 0.299\\ 0.482\\ 1046.000\\ 0.298\\ 57.450\end{array}$	18 73900.000 106000.000 32100.000 91133.333 .914647E+08 9563.718 2254.190 -0.004 -1.205 1640400.000 -0.105 88450.000	$\begin{array}{r} 18\\ 35.400\\ 461.000\\ 425.600\\ 181.456\\ 22577.901\\ 150.259\\ 35.416\\ 1.039\\ -0.570\\ 3266.200\\ 0.828\\ 120.500\end{array}$	$\begin{array}{c} 18\\ 5630.000\\ 7990.000\\ 2360.000\\ 6932.778\\ 531574.183\\ 729.091\\ 171.848\\ 0.066\\ -1.280\\ 124790.000\\ 0.105\\ 6870.000\end{array}$	$\begin{array}{r} 18\\ 53.400\\ 201.000\\ 147.600\\ 152.978\\ 2032.682\\ 45.085\\ 10.627\\ -1.031\\ .0.042\\ 2753.600\\ 0.295\\ 169.500\\ \end{array}$
	CS137	SR90	PU23940	U	P04
N OF CASES MINIMUM MAXIMUM RANGE MEAN VARIANCE STANDARD DEV STD. ERROR SKEWNESS(G1) KURTOSIS(G2) SUM C.V. MEDIAN	$18 \\ 10.900 \\ 25.100 \\ 14.200 \\ 18.533 \\ 23.805 \\ 4.879 \\ 1.150 \\ -0.087 \\ -1.481 \\ 333.600 \\ 0.263 \\ 19.550 \\ 19.550 \\ 10.900 \\ -0.00$	18 2.590 12.000 9.410 7.188 8.643 2.940 0.693 0.034 -1.166 129.390 0.409 7.180	18 0.035 0.153 0.118 0.070 0.001 0.030 0.007 1.695 2.096 1.258 0.432 0.057	18 943.000 25200.000 24257.000 4248.500 .523516E+08 7235.439 1705.409 2.462 4.147 76473.000 1.703 1970.000	18 13400.000 49300.000 35900.000 22255.556 .135458E+09 11638.639 2743.253 1.160 -0.178 400600.000 0.523 15950.000
	N03	NO2	F	CL	TOC
N OF CASES MINIMUM MAXIMUM RANGE MEAN VARIANCE STANDARD DEV STD. ERROR STD. ERROR SKEWNESS(G1) KURTOSIS(G2) SUM C.V. MEDIAN	18 91400.000 153000.000 61600.000 121261.111 .329647E+09 18156.190 4279.455 -0.064 -0.837 2182700.000 0.150 122000.000	$\begin{array}{r} 18\\ 1180.000\\ 13500.000\\ 12320.000\\ 7638.333\\ .211695E+08\\ 4601.031\\ 1084.473\\ .0.131\\ .1.610\\ 137490.000\\ 0.602\\ 9145.000\end{array}$	$18\\4330.000\\11000.000\\6670.000\\8260.556\\2894146.732\\1701.219\\400.981\\-0.779\\0.625\\148690.000\\0.206\\8550.000$	18 661.000 2020.000 1359.000 1116.444 137326.967 370.577 87.346 1.467 1.706 20096.000 0.332 1105.000	$\begin{array}{c} 13\\ 500.000\\ 1090.000\\ 590.000\\ 738.538\\ 56825.103\\ 238.380\\ 66.115\\ 0.498\\ -1.417\\ 9601.000\\ 0.323\\ 700.000\\ \end{array}$

THE FOLLOWING RESULTS ARE FOR: GROUPNO\$ = XV

TOTAL OBSERVATIONS: 8

	AL	BI	CR	FE	LA
N OF CASES MINIMUM MAXIMUM RANGE MEAN VARIANCE STANDARD DEV STD. ERROR SKEWNESS(G1) KURTOSIS(G2) SUM C.V. MEDIAN	8 459.000 706.000 247.000 570.000 11610.286 107.751 38.096 0.087 -1.824 4560.000 0.189 558.500	8 20100.000 27300.000 23562.500 .106398E+08 3261.874 1153.247 -0.006 -1.905 188500.000 0.138 23750.000	8 1670.000 1920.000 250.000 1798.750 6041.071 77.724 27.480 -0.158 -0.629 14390.000 0.043 1815.000	8 15700.000 20800.000 5100.000 18037.500 4794107.143 2189.545 774.121 0.078 -1.851 144300.000 0.121 17850.000	$\begin{array}{r} 8\\ 3380.000\\ 4840.000\\ 1460.000\\ 4107.500\\ 378107.143\\ 614.904\\ 217.401\\ 0.012\\ -1.754\\ 32860.000\\ 0.150\\ 4100.000\\ \end{array}$
	MN	NA	РВ	SI	ZR
N OF CASES MINIMUM MAXIMUM RANGE MEAN VARIANCE STANDARD DEV STD. ERROR SKEWNESS(G1) KURTOSIS(G2) SUM C.V. MEDIAN	8 5860.000 6590.000 730.000 6282.500 69907.143 264.400 93.479 -0.257 -1.128 50260.000 0.042 6290.000	8 33600.000 40100.000 6500.000 36950.000 7311428.571 2703.965 955.996 -0.032 -1.770 295600.000 0.073 36850.000	8 262.000 486.000 224.000 365.125 11061.268 105.173 37.184 0.082 -1.892 2921.000 0.288 349.500	8 5090.000 6040.000 950.000 5565.000 96771.429 311.081 109.984 0.144 0.980 44520.000 0.056 5465.000	8 3.990 4.010 0.020 3.996 0.000 0.007 0.003 0.660 -0.739 31.970 0.002 3.995
	CS137	SR90	PU23940	U	P04 、
N OF CASES MINIMUM MAXIMUM RANGE MEAN VARIANCE STANDARD DEV STD. ERROR SKEWNESS(G1) KURTOSIS(G2) SUM C.V. MEDIAN	8 0.103 0.238 0.135 0.166 0.004 0.063 0.022 0.059 -1.893 1.331 0.377 0.163	8 3.370 7.550 4.180 5.414 4.067 2.017 0.713 0.012 -1.969 43.310 0.372 5.320	8 0.129 0.153 0.024 0.139 0.000 0.007 0.003 0.786 0.273 1.110 0.051 0.138	- 8 240.000 4000.000 3760.000 2555.000 1513285.714 1230.157 434.926 -0.628 -0.440 20440.000 0.481 2610.000	$\begin{array}{r} 8\\13500.000\\17700.000\\4200.000\\15537.500\\2408392.857\\1551.900\\548.679\\-0.019\\-1.280\\124300.000\\0.100\\15350.000\end{array}$
	N03	N02	F	CL	TOC
N OF CASES MINIMUM MAXIMUM RANGE MEAN VARIANCE STANDARD DEV STD. ERROR SKEWNESS(G1) KURTOSIS(G2) SUM C.V. MEDIAN	8 36100.000 44500.000 41237.500 .105827E+08 3253.103 1150.146 -0.432 -1.340 329900.000 0.079 41950.000	8 704.000 1100.000 396.000 897.250 31437.071 177.305 62.687 0.205 -1.651 7178.000 0.198 856.500	8 1260.000 3160.000 2301.250 753383.929 867.977 306.876 -0.050 -1.914 18410.000 0.377 2350.000	8 362.000 518.000 156.000 449.625 2100.839 45.835 16.205 -0.540 0.038 3597.000 0.102 453.000	$\begin{array}{r} 8\\ 2000.000\\ 4120.000\\ 2120.000\\ 3118.750\\ 630926.786\\ 794.309\\ 280.831\\ -0.374\\ -1.144\\ 24950.000\\ 0.255\\ 3150.000\\ \end{array}$

THE FOLLOWING RESULTS ARE FOR: GROUPNO\$ = XVI

TOTAL OBSERVATIONS: 48

۰.

	AL	BI	CR	FE	LA
N OF CASES MINIMUM MAXIMUM RANGE MEAN VARIANCE STANDARD DEV STD. ERROR SKEWNESS(G1) KURTOSIS(G2) SUM C.V. MEDIAN	48 339.000 5860.000 5521.000 1424.771 971945.712 985.873 142.299 2.658 8.235 68389.000 0.692 1218.000	48 14093.000 23643.000 9550.000 19353.792 6088799.445 2467.549 356.160 -0.351 -0.508 928982.000 0.127 19852.500	48 730.000 1193.000 463.000 853.896 19302.819 138.935 20.053 1.501 0.785 40987.000 0.163 803.500	48 1890.000 28417.000 26527.000 17486.104 .108591E+08 3295.318 475.638 -1.906 11.650 839333.000 0.188 17984.500	48 28.400 129.800 101.400 73.602 494.616 22.240 3.210 0.398 0.666 3532.900 0.302 71.800
	MN	NA	РВ	SI	ZR
N OF CASES MINIMUM MAXIMUM RANGE MEAN VARIANCE STANDARD DEV STD. ERROR SKEWNESS(G1) KURTOSIS(G2) SUM C.V. MEDIAN	48 57.000 176.000 97.229 640.946 25.317 3.654 0.782 0.762 4667.000 0.260 95.000	48 88030.000 117806.000 29776.000 96358.813 .340031E+08 5831.216 841.664 1.530 2.608 4625223.000 0.061 94877.500	48 43.200 1927.000 1883.800 749.929 301486.533 549.078 79.253 1.012 -0.051 35996.600 0.732 544.500	48 8171.000 23916.000 15745.000 10173.396 7224131.648 2687.774 387.947 3.584 13.898 488323.000 0.264 9467.500	48 17.100 829.000 811.900 133.749 45812.918 214.040 30.894 2.058 2.853 6419.940 1.600 49.250
	CS137	SR90	PU23940	U	P04
N OF CASES MINIMUM MAXIMUM RANGE MEAN VARIANCE STANDARD DEV STD. ERROR SKEWNESS(G1) KURTOSIS(G2) SUM C.V. MEDIAN	44 13.050 190.000 176.950 40.638 3194.437 56.519 8.521 1.710 1.040 1788.090 1.391 14.685	$\begin{array}{r} 30\\ 6.441\\ 337.000\\ 330.559\\ 133.436\\ 10041.561\\ 100.208\\ 18.295\\ 0.418\\ -1.102\\ 4003.088\\ 0.751\\ 117.550\end{array}$	30 0.069 0.158 0.089 0.107 0.000 0.020 0.004 0.297 0.448 3.215 0.185 0.109	34 136.000 283.000 147.000 209.029 1181.423 34.372 5.895 0.289 -0.100 7107.000 0.164 205.500	$\begin{array}{c} 22\\ 21800.000\\ 28500.000\\ 6700.000\\ 24554.545\\ 2666406.926\\ 1632.914\\ 348.138\\ 0.719\\ 0.133\\ 540200.000\\ 0.067\\ 24200.000\\ \end{array}$
	NO3	N02	F	CL	TOC
N OF CASES MINIMUM MAXIMUM RANGE MEAN VARIANCE STANDARD DEV STD. ERROR SKEWNESS(G1) KURTOSIS(G2) SUM C.V. MEDIAN	22 75000.000 235000.000 160000.000 145000.000 .273933E+10 52338.641 11158.636 -0.141 -1.284 3190000.000 0.361 164500.000	22 8870.000 50000.000 41130.000 22910.455 .299707E+09 17312.048 3690.941 0.632 -1.499 504030.000 0.756 11050.000	$\begin{array}{c} 22\\ 1360.000\\ 2290.000\\ 930.000\\ 1761.364\\ 67031.385\\ 258.904\\ 55.199\\ 0.533\\ -0.850\\ 38750.000\\ 0.147\\ 1650.000\end{array}$	22 987.000 1500.000 513.000 1152.591 30677.206 175.149 37.342 0.811 -0.851 25357.000 0.152 1065.000	22 298.000 1620.000 1322.000 633.500 183095.595 427.897 91.228 1.402 0.473 13937.000 0.675 447.500

ALL Groups

TOTAL OBSERVATIONS: 108

	AL	BI	CR	FE	LA
N OF CASES MINIMUM MAXIMUM RANGE MEAN VARIANCE STANDARD DEV STD. ERROR SKEWNESS(G1) KURTOSIS(G2) SUM C.V. MEDIAN	103 195.000 123000.000 122805.000 17418.303 .134928E+10 36732.517 3619.362 2.307 3.500 1794085.190 2.109 1492.000	$\begin{array}{c} 103\\ 28.600\\ 105375.000\\ 105346.400\\ 24079.187\\ .498349E+09\\ 22323.726\\ 2199.622\\ 2.418\\ 5.583\\ 2480156.300\\ 0.927\\ 20001.000\\ \end{array}$	$103 \\ 413.000 \\ 3875.000 \\ 3462.000 \\ 1399.437 \\ 778162.190 \\ 882.135 \\ 86.919 \\ 1.022 \\ -0.026 \\ 144142.000 \\ 0.630 \\ 899.000 \\ \end{array}$	103 16.700 28417.000 28400.300 13281.304 .388808E+08 6235.448 614.397 -0.653 -0.496 1367974.300 0.469 16100.000	103 7.890 15599.000 15591.110 2599.080 .255639E+08 5056.078 498.190 1.688 1.087 267705.260 1.945 68.700
	MN	NA	PB	SI	ZR
N OF CASES MINIMUM MAXIMUM RANGE MEAN VARIANCE STANDARD DEV STD. ERROR SKEWNESS(G1) KURTOSIS(G2) SUM C.V. MEDIAN	103 31.000 25880.000 3072.019 .397227E+08 6302.593 621.013 2.350 4.547 316418.000 2.052 111.000	$\begin{array}{c} 103\\ 33576.000\\ 125000.000\\ 91424.000\\ 84304.971\\ .739592E+09\\ 27195.444\\ 2679.647\\ 0.814\\ -0.629\\ 8683412.000\\ 0.323\\ 93685.000\\ \end{array}$	$\begin{array}{r} 103\\ 35.000\\ 2244.000\\ 2209.000\\ 599.653\\ 337540.192\\ 580.982\\ 57.246\\ 1.255\\ 0.637\\ 61764.300\\ 0.969\\ 460.000\\ \end{array}$	103 947.000 59723.000 58776.000 9122.029 .895065E+08 9460.789 932.199 3.801 15.609 939569.000 1.037 8171.000	$\begin{array}{r} 103\\ 3.900\\ 829.000\\ 825.100\\ 96.616\\ 24894.848\\ 157.781\\ 15.547\\ 2.932\\ 8.581\\ 9951.490\\ 1.633\\ 45.000\\ \end{array}$
	CS137	SR90	PU23940	U	P04
N OF CASES MINIMUM MAXIMUM RANGE MEAN VARIANCE STANDARD DEV STD. ERROR SKEWNESS(G1) KURTOSIS(G2) SUM C.V. MEDIAN	$\begin{array}{c} 100\\ 0.011\\ 190.000\\ 189.989\\ 28.780\\ 1823.219\\ 42.699\\ 4.270\\ 2.337\\ 4.690\\ 2877.981\\ 1.484\\ 14.490\end{array}$	86 0.830 356.000 355.170 92.416 14700.248 121.245 13.074 0.984 -0.705 7947.818 1.312 10.080	86 0.035 1.560 1.525 0.231 0.103 0.321 0.035 3.010 8.493 19.875 1.387 0.128	90 119.000 25200.000 25081.000 2129.900 .159143E+08 3989.269 420.506 3.934 18.347 191691.000 1.873 330.000	76 1000.000 49300.000 14590.829 .138435E+09 11765.860 1349.637 0.434 -0.393 1108903.000 0.806 14900.000
	NO3	N02	F	CL	TOC
N OF CASES MINIMUM MAXIMUM RANGE MEAN VARIANCE STANDARD DEV STD. ERROR SKEWNESS(G1) KURTOSIS(G2) SUM C.V. MEDIAN	76 36100.000 235000.000 198900.000 112950.000 .322513E+10 56790.219 6514.285 0.290 -1.256 8584200.000 0.503 103450.000	76 439.000 50000.000 49561.000 12091.250 198215E+09 14078.890 1614.959 1.366 0.874 918935.000 1.164 9170.000	76 108.000 11000.000 10892.000 4178.816 9980675.326 3159.221 362.387 0.362 -1.181 317590.000 0.756 3115.000	76 362.000 3520.000 3158.000 1351.487 644527.906 802.825 92.090 1.357 0.911 102713.000 0.594 1100.000	63 298.000 33200.000 2416.317 .310176E+08 5569.344 701.671 5.018 24.326 152228.000 2.305 1090.000

THE	FOLLOWING RESULTS	ARE	FOR:
	GROUPNO\$	= I\	1

TOTAL OBSERVATIONS: 1

DENSITY

N OF CASES MINIMUM	1 1.640
MAXIMUM	1.640
RANGE	0.000
MEAN	1.640
VARIANCE	•
STANDARD DEV	
STD. ERROR	•
SKEWNESS(G1)	•
KURTOSIS(G2)	. •
SUM	1.640
C.V.	0.000
MEDIAN	1.640

THE FOLLOWING RESULTS ARE FOR: GROUPNO\$ = VII

TOTAL OBSERVATIONS: 32

DENSITY

N OF CASES MINIMUM MAXIMUM RANGE MEAN VARIANCE STANDARD DEV STD. ERROR SKEWNESS(G1) KURTOSIS(G2) SUM	32 0.870 1.400 0.530 1.171 0.018 0.133 0.024 -0.474 -0.552 37.470
C.V.	0.114
MEDIAN	1.200

THE FOLLOWING RESULTS ARE FOR: GROUPNO\$ = XII

TOTAL OBSERVATIONS: 8

DENSITY

N OF CASES	8
MINIMUM	1.000
MAXIMUM	1.470
RANGE	0.470
MEAN	1.286
VARIANCE	0.025
STANDARD DEV	0.159
STD. ERROR	0.056
SKEWNESS(G1)	-0.490
KURTOSIS(G2)	-0.739
SUM	10.290
C.V.	0.124
MEDIAN	1.290

THE FOLLOWING RESULTS ARE FOR: GROUPNO\$ = XV

TOTAL OBSERVATIONS: 2

DENSITY

N OF CASES	2
MINIMUM	1.190
MAXIMUM	1.280
RANGE	0.090
MEAN	1.235
VARIANCE	0.004
STANDARD DEV	0.064
STD. ERROR	0.045
SKEWNESS(G1)	0.000
KURTOSIS (G2)	-2.000
SUM	2.470
C.V.	0.052
MEDIAN	1.235

THE FOLLOWING RESULTS ARE FOR: GROUPNO\$ = XVI

TOTAL OBSERVATIONS: 36

DENSITY

N OF CASES	36
MINIMUM	0.900
MAXIMUM	1.470
RANGE	0.570
MEAN	1.271
VARIANCE	0.009
STANDARD DEV	0.094
STD. ERROR	0.016
SKEWNESS (G1)	-2.149
KURTOSIS(G2)	6.643
SUM	45.740
C.V.	0.074
MEDIAN	1.300

THE FOLLOWING RESULTS ARE FOR: ALL GROUPS

TOTAL OBSERVATIONS: 79

DENSITY

N OF CASES	79
MINIMUM	0.870
MAXIMUM	1.640
RANGE	0.770
MEAN	1.236
VARIANCE	0.018
STANDARD DEV	0.134
STD. ERROR	0.015
SKEWNESS (G1)	-0.513
KURTOSÍS(G2)	1.073
SUM	97.610
C.V.	0.109
MEDIAN	1.280

FRI 1/	27/95	2:10:58 PM	D:\SORWT	\SORWT S.SYS

FRI 1/27/95 2:10:58 PM	D:\SORWT\SORWT_S.SYS		
THE FOLLOWING RESULTS GROUPNO\$		THE FOLLOWING RESULTS GROUPNO\$	
TOTAL OBSERVATIONS:	12	TOTAL OBSERVATIONS:	8
	РН		PH
MEAN VARIANCE STANDARD DEV STD. ERROR SKEWNESS(G1) KURTOSIS(G2) SUM C.V.	10 10.170 13.380 3.210 12.803 0.903 0.950 0.300 -2.420 4.322 128.030 0.074 13.085	N OF CASES MINIMUM MAXIMUM RANGE MEAN VARIANCE STANDARD DEV STD. ERROR SKEWNESS(G1) KURTOSIS(G2) SUM C.V. MEDIAN	1 11.650 0.000 11.650
THE FOLLOWING RESULTS GROUPNO\$	ARE FOR:	THE FOLLOWING RESULTS GROUPNOS	
TOTAL OBSERVATIONS:	22	TOTAL OBSERVATIONS:	48
	РН		PH
N OF CASES MINIMUM MAXIMUM RANGE MEAN VARIANCE STANDARD DEV STD. ERROR SKEWNESS(G1) KURTOSIS(G2) SUM C.V. MEDIAN	0	MEAN	13 7.570 8.990 1.420 8.221 0.197 0.444 0.123 0.574 -0.778 106.870 0.054 8.120
THE FOLLOWING RESULTS GROUPNO\$	ARE FOR: = XII	THE FOLLOWING RESULTS ALL GROUPS	ARE FOR:
TOTAL OBSERVATIONS:	18	TOTAL OBSERVATIONS:	108
	РН		PH
N OF CASES MINIMUM MAXIMUM RANGE MEAN VARIANCE STANDARD DEV STD. ERROR SKEWNESS(G1) KURTOSIS(G2) SUM C.V. MEDIAN	14 9.580 11.330 1.750 10.631 0.444 0.666 0.178 -0.760 -1.135 148.840 0.063 10.880	N OF CASES MINIMUM MAXIMUM RANGE MEAN VARIANCE STANDARD DEV STD. ERROR SKEWNESS(G1) KURTOSIS(G2) SUM C.V. MEDIAN	38 7.570 13.380 5.810 10.405 3.731 1.932 0.313 0.119 -1.296 395.390 0.186 10.780

PNL-9814 Rev. 2

٩.

Distribution

No. of Copies

<u>OFFSITE</u>

12 DOE/Office of Scientific and Technical Information

> D. Wynne EM-361, Trevion II U.S. Department of Energy 12800 Middlebrook Road Germantown, MD 20874

S. F. Agnew Chemical Science & Technology Division Los Alamos National Laboratory Los Alamos, NM 87545

E. C. Beahm Martin Marietta Energy Systems, Inc. P.O. Box 2008 Oak Ridge, TN 37831-6223

B. Z. EganMartin Marietta Energy Systems, Inc.P.O. Box 2008Oak Ridge, TN 37831-6223

R. King Washington Department of Ecology P.O. Box 47600 Olympia, WA 98594-7600

<u>ONSITE</u>

3 DOE Richland Operations

S. T. Burnum, R3-74 R. A. Gilbert, R3-74 P. E. Lamont, R3-74 No. of <u>Copies</u>

29 Westinghouse Hanford Company

J. N. Appel, L6-29 H. Babad, S7-30 S. A. Barker, L6-29 W. B. Barton, L4-75 A. L. Boldt, H5-49 K. D. Boomer, H5-49 T. M. Brown, R2-12 S. J. Eberline, R2-12 K. A. Gasper, L6-29 L. Jensen, T6-07 R. A. Kirkbride, S4-58 M. J. Kupfer, H5-49 D. J. McCain, R2-12 G. T. McLean, S4-58 R. M. Orme, S4-58 R. S. Popielarczyk, R1-30 I. E. Reep, L6-29 L. W. Shelton, Jr., H5-49 B. C. Simpson, R2-12 (10) D. J. Washenfelder, L4-75 Pacific Northwest Laboratory G. S. Anderson, K7-94 (5)

G. S. Anderson, K7-94 (3)
E. G. Baker, P8-38
D. L. Blanchard, Jr., P7-25
B. C. Bunker, K2-45
N. G. Colton, K3-75 (5)
J. M. Creer, K9-80
A. R. Felmy, K9-77
S. R. Gano, P8-38
S. T. Hartley, K5-12
P. G. Heasler, K5-12
J. G. Hill, K7-94 (5)

50

No. of <u>Copies</u>

> L. K. Holton, P7-43 (5) B. M. Johnson, K1-78 W. L. Kuhn, K2-21 D. E. Kurath, P7-43 J. P. LaFemina, K2-25 (5) J. Liu, K2-44 G. J. Lumetta, P7-25

No. of <u>Copies</u>

B. M. Rapko, P7-25
K. M. Remund, K5-12
B. A. Reynolds, P7-19
L. J. Sealock, Jr., K2-10
J. T. Slankas, K9-81
J. L. Swanson, P7-25
Publishing Coordination
Technical Report Files (5)