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Comparing PRAs with Operating Experience 

Richard R. Picard and Harry F. Martz 
Los Alamos National Laboratory 

Los Alamos, NM 

Abstract 
Probabilistic Risk Assessment is widely used to estimate the 
frequencies of rare events, such as nuclear power plant accidents. 
An obvious question concerns the extent to which PRAs conform to 
operating experience -- that is, do PRAs agree with reality? We 
discuss a formal methodology to address this issue and examine its 
performance using plant-specific data. 

1 Introduction and Background 
Probabilistic Risk Assessment (PRA) is a well known procedure for estimating the 
reliability of complex systems. As with any assessment, evaluating its performance 
is important. One way to address this issue is to compare PRA results with relevant 
data not used in performing the PRA. If the data are inconsistent with what would 
be expected under the PRA, then this indicates possible shortcomings in the PRA 
or, possibly, shortcomings in the relevant data. 

The purpose of this paper is to present a method for quantifying the consistency 
between PRA results and subsequent demandfailure data, while simultaneously 
reflecting the underlying uncertainties. The method is based on Bayes p-values and 
is described in Section 2. In Section 3, we apply the method to data in Grant et al 
[l] on commercial nuclear reactors. Finally, a brief summary is given in Section 4. 

2 Predictive Distributions and Bayes p-values 
For clarity, consider the probability q associated with a system failure under 
prescribed conditions. We assume that the PRA analysis produces a posterior 
distribution for q given the information y considered in the PRA, denoted p(q I y). 
Typically, the PRA information y includes data accumulated prior to the PRA. 
Often, as for the high-pressure coolant injection (HPCI) system in Section 3 ,  
interest lies in comparing a PRA distribution with subsequent operating data. 

The philosophy here is in the vein of model validation. That is, if the validation 
indicates an inconsistency between PRA-based predictions and subsequent data, 
then the underlying premises of the PRA (such as the structure of their fault or 
event trees, or the uncertainty distributions on their constituent probabilities) would 
be reexamined and perhaps updated. While the concept of validation is by no means 
new, it has not been fully exploited for PRAs. 

Because such updating of the PRA does not strictly evolve via Bayes' theorem, it 
is not Bayesian, almost by definition. Moreover, Bayesian puritanism (e.g., 121) 
argues that Bayes' theorem is nothing more than the rational way to update 
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subjective belief, and need not have anything to do with whether that belief is 
consistent with reality. Frequentist checks of Bayesian predictions, the argument 
goes, are simply a part of an incoherent procedure. The importance of the PRA 
being credible to neutral observers, however, dictates a break from Bayesian 
puritanism and motivates consistency checks of the PRA. Indeed, a lack of 
consistency could also help identify problems (if they exist) in the validation data. 

To that end, consider a fault tree top event, such as a system failure. 
Corresponding (binomial) validation data consist of the number x, of Occurrences 
of the top event in n, trials, where q is the probability that the event occurs per trial. 
For the HPCI system example discussed later, x, is the number of failures to 
complete the mission in n, demands. 

The PRA distribution p(q I y) may be expressed in a variety of ways. It is 
common to obtain p(q I y) in histogram form, perhaps via Monte Carlo simulation. 
Sometimes, a parametric distribution, such as a beta or lognormal, is fitted to the 
empirical distribution and presented as p(q I y). In any case, we require that p(q I y) 
be given either (1) empirically (as either a histogram or empirical cumulative 
distribution function), or (2) parametrically (such as a beta distribution). 

The principle underlying the method is simple: if the PRA is valid (in the sense 
that it represents reality), then subsequent operating data should not differ 
statistically from what would be anticipated based on the PRA. Such an analysis 
follows from use of the predictive distribution [3,4,5,6], which allows inference 
about an observable quantity (usually, a future event of interest). Here, the PRA is 
assessed relative to subsequent validation data x,, distributed as p(x,l 4); where p(x, 
I q) is binomial with parameters n, and q. 

Based on the PRA-produced posterior p(q I y), the predictive distribution of the 
anticipated PRA validation data xm is 

where, given q, xpRA is independent of y. Thus, p(xP,, I y) is the average of the 
conditional predictions from the sampling distribution with respect to the PRA- 
based posterior of q. As noted above, the validation data x, must not be included in 
the information y used in the PRA; otherwise, there is not an independent 
assessment of conformance and Eq. (1) does not hold; such independence is 
essential to proper validation in more general settings [7]. 

Disagreement between the validation data and the predictive distribution is 
measured by the so-called Bayes p-value [51. The Bayes p-value, an idea presented 
by Guttman [8] for noninformative priors and later discussed by Rubin [9], is a tail- 
area probability. By analogy with classical p-values, the Bayes p-value is the 
probability that a test statistic T computed using predicted data x,, is more 
extreme than that calculated from the validation data x,. That is, 

Bayes p-value = Pr[T(x,,, q) 2 T(x,, q)] , 

where Pr[*] is the probability calculated with respect to the distribution of (x,,, q) 
given y and, per Bayesian doctrine, x, is considered fixed at its observed value. 

As noted, the procedure requires specifying a test statistic T. Because model 
validation is inherently two-sided (for example, if x, were either much too large or 



much too small, questions would be raised regarding the PRA), Eq. ( 2 )  is 
implemented using the test statistic T(x, q) = x in a two-sided vein, Le.: 

Bayes p-value: min [Pr(x, I xJ, Pr(x,, 2 x,)] ( 3 )  

where Pr[.] in Eq. (3) refers to the predictive distribution of xpRA and we condition 
on x,. For completeness, it is noted that other test statistics, such as the likelihood 
ratio and the usual chi-square have been proposed [3,5] for use in this setting, 
though care is sometimes needed in implementation (e.g., [3], pp. 106-107). 

Ideally, information used in a PRA would be perfect, so that the fault tree and 
constituent probabilities were completely free from error. In this case, the PRA 
distribution p(q I y) would be concentrated at a single point q,, the actual 
probability, The corresponding predictive distribution p(x, I y) would then be 
binomial with parameter qo, while validation data x, would consist of a single 
realization from the same distribution. In this limiting case, the Bayes p-value is 
equivalent to the frequentist hypothesis test that q = q,,. 

Of course, uncertainties do exist in PRA results, formally described by p(q I y), 
and the PRA-based predictive distribution p(x, I y) reflects these uncertainties. In 
most such cases it is impractical to calculate the Bayes p-value analytically. We 
can, however, estimate the Bayes p-value using simulation in a procedure similar to 
a parametric bootstrap. This is done as follows. First, suppose that we either already 
have available or can obtain a random sample from the posterior p(q I y). We then 
simulate one xm from the binomial distribution specific to each sampled q. The set 
of pairs ((q,, xpRA,), i = 1, ..., N) is a random sample from the joint conditional 
distribution p(q, xpRA I y), while the N values of xpRA represent a random sample 
from the predictive distribution of x,. The estimated Bayes p-value is then simply 
the proportion of the { xmj} that are more extreme than x,. 

3 Application to a Coolant Injection System 
Consider data presented in Grant et al [l] for the HPCI system at 23 U.S. 
commercial boiling water reactors. That study compared HPCI system 
unreliabilities based on operating experience from 1987 through 1993, reported in 
the Licensee Event Reports (LERs) and monthly operating reports as per the PRA- 
based Individual Plant Examinations (PRMIPEs) in [lo]. 

In [l], it was found that the mean HPCI system unreliability for a single 
injection (excluding recovery actions) differed by less than a factor of 2 from the 
mean PRA/IPE value in 12 of the 23 plants. Ten of the remaining 11 plants had 
observed mean unreliabilities at least a factor of 3 higher than the plant-specific 
PRA/IPE HPCI system unreliabilities. The one remaining plant had insufficient 
information in the PRA/IPE to permit a comparison. Note that none of these 
comparisons formally considers the uncertainties in the data. 

In practice, above validation frequently cannot be applied in a straightforward 
manner. This happens when the events actually observed do not map perfectly onto 
the events whose probabilities have been calculated in the PRA. For example, 
PRAs are likely to compute a failure probability for the HPCI system as a whole. In 
practice, however, we may not have observed a single, uncomplicated HPCI failure. 
Rather, the actual data generally include one or more of: "partial" failures (i.e., one 
or more trains fail, but not the entire system): nominal failures (Le., the system fails 



but is restored to service so quickly that the consequences postulated in the PRA do 
not occur); and events that would have been failures had they occurred when the 
plant was in a different configuration (e.g., operating versus shutdown). 

For the data in [ 11, neither the PRA results nor the validation data are in an ideal 
form. As described above, this is not unusual. Here, PRA results are expressed in 
terms of 90% credibility intervals for HPCI system unreliability q, as opposed to a 
complete posterior p(q I y). For each of the 1 1  plants, a beta distribution for p(q I y) 
was imputed by matching the 5th and 95th percentiles of each 90% credibility 
interval to those of a corresponding B(q; a, b) distribution (see Table 1). 

Table 1: Plant-specific Results 
Plant PRA/IPE Beta Distribution Equivalent Operating Bayes 

Data p-value 
a b X" n" 

Browns Ferry 2 
Brunswick 1 
Brunswick 2 

Cooper 
Fermi 2 

FitzPatrick 
Hatch 1 
Hatch 2 

Peach Bottom 2 
Peach Bottom 3 

Vermont Yankee 

3.46 
1.93 
2.16 
2.99 
3.54 
4.14 
12.27 
12.27 
1.43 
1.43 
8.73 

48.93 
7.55 
11.28 
29.95 
27.33 
66.72 
139.43 
139.43 
11.55 
11.55 
106.41 

3 
3 
2 
4 
4 
4 
6 
4 
3 
4 
4 

24 
24 
16 
41 
34 
22 
26 
42 
24 
27 
34 

0.23 
0.42 
0.56 
0.46 
0.50 
0.06 
0.02 
0.44 
0.42 
0.34 
0.27 

Validation data allowing for direct comparison with the PRA are not available. 
This is because most PRA/IPEs model recovery at the event tree rather than the 
fault tree level. Thus, the recovery basic events are ignored and plant-specific HPCI 
data are considered for only four basic failure modes: failure of the injection valve 
to open; failure to start due to components other than the injection valve; failure of 
the turbine-driven pump to run given that it started; and system-out-of-service due 
to testing/maintenance. Tables 2, C-3 and C-4 in El] provided plant-specific 
probabilities for each basic failure event in the form of a beta distribution 
determined using either Bayes or empirical Bayes methods. For present purposes, 
these LER-based failure probabilities are assumed independent of the 
corresponding plant-specific validation data. 

For each of the 11 plants, these four beta distributions are propagated through a 
simple "OR-gated" fault tree by means of Monte Carlo simulation to produce a 
plant-specific distribution on the HPCI system unreliability (the top event). A beta 
distribution is fitted to approximate the HPCI system unreliability by matching the 
first two moments. For each plant, the fitted beta distribution is in excellent 
agreement with the Monte Carlo-produced uncertainty distribution, and the beta- 
binomial is used to numerically obtain Bayes p-values. Alternatively, the simulated 
(4, ] could be used directly, as discussed above. 



The plant-specific beta distributions are converted to (roughly) equivalent HPCI 
validation data. It is well known that the beta parameters a and b can be loosely 
interpreted as "failures" and "successes", respectively, in a + b "demands". Thus, 
we interpret the beta parameters a and a + b as equivalent binomial HPCI system 
unreliability operating data with x, = a and n, = a + b (when rounded to integer 
values). Table 1 gives the equivalent operating data for each of the 11 plants. 

Thus, using an approximating beta distribution for p(q I y) to describe the PRA 
results and the "equivalent" validation data as if observed, an approximate Bayes p- 
value is obtained for each plant. The quality of these approximate p-values is 
dependent on the assumptions that PRA-based p(q I y) is in fact roughly beta 
distributed and that "equivalent" validation data are in fact equivalent. When 
information necessary for a clean comparison of PRA results to subsequent data 
does not exist, accommodations of this sort must be made. 

Table 1 gives Bayes p-values for all 11 plants. Note that the p-value for 
Brunswick 2 exceeds 0.5, which happens because the observed x, is equal to the 
median of the predictive distribution. Also note that Hatch 1 has the greatest 
individual inconsistency between its PRA results and equivalent operating data, 
although the corresponding p-value is not unusual for the extreme of 11 multiple 
comparisons. Consequently, the validation data are consistent with the PRA. 

Unreliability (4) 
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Figure 1. HPCI system unreliahilities from PRMPEs and Bayes p-values. 



The corresponding PRMPE and operating data HPCI system interval estimates 
are plotted in Fig. 1 for each of the 11 plants along with their corresponding Bayes 
p-values from Table 1. Although the qualitative comparisons in Fig. 1 are easy to 
display, such graphs can be misleading to the untrained eye. The probability that 
two independent intervals will overlap need not be strongly tied to the respective 
probability levels associated with the intervals. The significance level of a "visual 
hypothesis test" which looks for an overlap in the PRA-based credibility interval 
and the validation-based confidence interval is highly problem-dependent and may 
not be apparent to an analyst. When this problem is combined with the issue of 
multiple comparisons &e., what is the probability that none of 11 pairs of intervals 
will overlap?), the need for quantitative methods becomes even more apparent. 

4 Summary 
A procedure has been presented to quantify the consistency of PRA results with 
subsequent operating data. Use of the method requires the existence of either a 
specified posterior on the probability of interest or a random sample from same. 
The basis €or the method lies in Bayes p-values, which are easily calculated for 
demandfailure data and can be extended (as in the example) to other contexts. The 
end result is a formal measure of the predictive probability that validation data as 
extreme as that observed would have been produced by the PRA distribution. 
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