el AT

ERNEST ORLAN
BERKELEY NATI

LAWRENGCE
NAL LA RATL

HERKELEY LAB)

Two- and Three-Dimensional Natural
and Mixed Convection Simulation
Using Modular Zonal Models

E. Wurtz, J.-M. Nataf, and F. Winkelmann
Energy and Environment Division

July 1996

T Al

PR AN VR W'Y

7}

|
x

S

.
o

~y




DISCLAIMER

This document was prepared as an account of work sponsored by the
United States Government. While this document is believed to contain
correct information, neither the United States Government nor any
agency thereof, nor The Regents of the University of California, nor any
of their employees, makes any warranty, express or implied, or assumes
any legal responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or
service by its trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or any agency thereof, or
The Regents of the University of California. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof, or The Regents of the
University of California.

Available to DOE and DOE Contractors
from the Office of Scientific and Technical Information
P.O. Box 62, Oak Ridge, TN 37831
Prices available from (615) 576-8401

Available to the public from the
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road, Springfield, VA 22161

Emest Orlando Lawrence Berkeley National Laboratory
is an equal opportunity employer.

.



LBNL-39098
UC-1600

TWO- AND THREE-DIMENSIONAL NATURAL
AND MIXED CONVECTION SIMULATION
USING MODULAR ZONAL MODELS

by

Etienne Wurtz
Laboratoire d'Etudes Pour la Thermique Appliquee au Batiment
Université de la Rochelle
Rochelle, France

and

Jean-Michel Nataf and Frederick Winkelmann
Energy and Environment Division
Lawrence Berkeley National Laboratory

University of California
Berkeley, California 94720, USA

July 1996

This work was partially supported by the Assistant Secretary for Energy Efficiency and Renewable
Energy, Office of Building Technologies, Building Systems and Materials Division of the U.S. Dept.

of Energy, under Contract No. DE-AC03-76SF00098. A L ﬁ
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED% Rf@ U~% ] B

T




DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.




Two- and Three-Dimensional Natural and Mixed
Convection Simulation Using Modular Zonal Models

Etienne Wurtz
L.E.P.T.A.B, Université de La Rochelle, La Rochelle, France
Jean-Michel Nataf and Frederick Winkelmann
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

July 1996

Abstract

Ve demonstrate the use of the zonal model approach, which is a simplified method for
calculating natural and mixed convection in rooms. Zonal models use a coarse grid and
use balance equations. state equations, hydrostatic pressure drop equations and power
law equations of the form m = C'A". The advantages of the zonal approach and its
modular implementation are discussed. The zonal model resolution of nonlinear equation
systems is demonstrated for three cases: a 2-D room. a 3-D room and a pair of 3-D rooms
separated by a partition with an opening. A sensitivity analysis with respect to physical
parameters and grid coarseness is presented. Results are compared to computational fluid
dynamics (CFD) calculations and experimental data.

1 Introduction

The study of air flow in buildings is important for the evaluation of energy consumption,
moisture and pollutant transport, and comfort. The physical phenomenona at work are
natural or forced convection. .

Natural convection has been extensively studied from theoretical, numerical and ex-
perimental points of view. The theory considers laminar boundary layer similarity or non-
similarity solutions, as for example in [Bej84]. [SY71], [CE76] and [KJHS87]. Many results
have been obtained on standard problems. such as the “window problem”, in which natu-
ral convective flow occurs in 2 room with both hot and cold surfaces ( [BGI\GSO] [Dav82],
[Dav83], [MP83], [MP84]). Variations in geometry have been addressed ( [SGT81], [TGS2]).
Real rooms. with or without forced convection, have for the most part been analyzed using
CFD. as in [Gad80], [SM91}, [NvdK93], and, with obstacles, in [GAC91]. CFD has also
been used for large rooms and whole buildings ( [LYT93], [BN1S91], [SS93]).

The major difficulty with CFD, especially in three dimensions, is that the calculations
are very slow and require large amounts of memory. Some methods, like the multi-
grid method [LHF93], mitigate the problem but still require significant computational
resources. Furthermore, the sheer size of the output requires considerable effort in post-
processing and visualization.




Other methods bypass the fluid mechanics equations. An example is the one-air-node
approach. which is often used for multizone air flow calculations ( [FA89]. [HC91]). The
main drawback of this approach is the coarseness of the results. This method. when
coupled with CED as is sometimes done ( [SM91], {CCN93]), suffers from the inherent
difficulties of the CFD approach.

An intermediate approach is needed that allows the flow pattern inside a room to
be determined without the computational investment of CFD. One such approach is the
"zonal method."”

2 The Zonal Method
2.1 Previous Work

The zonal method. which is not new. is based on heat and mass balance equations in
macroscopic volumes. Added to this is a relationship between mass flow and pressure
difference. The zonal method should not be confused with models used to calculate air
flow between rooms ([Wal84]. [Oku87]. [FA89]. [HCI1]. [TS93]).

Initial work on the zonal method emphasized how to partition the computational
domain in two dimensions ([LN87]. [How83], [Ina88]). A systematic attempt to use the
zonal method with power law equations on arbitrary geometries in two dimensions is
described in [BD91]. in which convergence problems were encountered and the results did
not agree well with measurements.

The present work treats the 3-D simulation case, with natural or mixed convection.
Results were validated against CFD calculations and measurements. In addition we cou-
pled 3-D zonal models with models for thermal comfort, wall conduction and directed
flow. Other studies ([RAC93]. [RAC94]) have considered the 3-D case. but did not couple
to other models and were not validated.

2.2 Presentation of the method

In the 3-D zonal method the room air is partitioned into 3-D zones. Adjacent zones
exchange mass and energy. The following mass and energy balance equations apply to
each zone:

Z Im + Gsource — Ysink =0

Z ®+ @source - q)sink =0

where 3 ¢, is the sum of mass flows across the interfaces of the zones, ¢soyrce is the
mass flow from sources in the zone, gsink is the mass flow to sinks in the zone, ) ® is the
sum of heat transfers through the interfaces of the zone, @;,urce is the heat transfer from
sources in the zone and ®,;,s. is the heat transfer to sinks in the zone.

We assume that a zone has uniform temperature and density and that the pressure at
the middle of a zone obevs the perfect gas law:

R
Proiddle = PﬁT

where p is the density, R the perfect gas constant. 1 the molar mass and 7' the
absolute temperature.



The pressure at height = above the bottom of a zone is given by
P =Py - pg=

where P is the pressure at the bottom of the zone.

Assuming that the zones are rectangular parallelopipeds with edges oriented along the
coordinate axes. the gist of the zonal model lies in the following equations:

for horizontal interfaces.

qmvert = CPS(P— Bop)"

for vertical interfaces.
AP =APy— Apg=

AR
T Apg
_ n (h - 371)n+l
Ymeup = Clp(Apg) B
Gring = C‘I/J(L\pg)”-(z"—)nJr—lL
inf n+ 1

Im = Gmeup + Gming

Here P, is the pressure at the top of the zomne. ¢, are mass flows, C' is an empirical
constant equal to 0.83 ms~1Pu¢™™ [Ina88], I is the width of a zone, h is the height of
a zone. n is a fractional exponent, A is a difference operator between two horizontally
adjacent zones, z, is the height of the neutral point (the point at which pressures on
either side of the interface between two zones are equal), p is the volumetric mass, vert is
an index for vertical mass flow, m,p an index for horizontal mass flow above the neutral
point and m;,y is an index for horizontal mass flow below the neutral point. It is assumed
that flow is incompressible and pressure drop is hydrostatic.

Energy fluxes are calculated using the following equations. which are valid for temper-
atures typically found in buildings and which, for now. neglect humidity:

¢
Bhori- = Qm,.Cst + chcpTe

Drert = am ,,-,,-tcpTvert

where @ denotes a heat flux, horiz stands for horizontal and vert for vertical. Here gy,,
denotes mass flow leaving the zone and g,,, denotes mass flow entering the zone. T is the
temperature of the air leaving the zone, which is the same as the zone temperature, and
T, the temperature of the air entering the zone. Ty, is the zone temperature for vertical
flow out of the zone and is the adjacent zone temperature for vertical flow into the zone.
We use a sign convention such that a mass flow is positive when the flow is in the positive
direction of an z, y or = axis, and negative when in the negative direction of an axis.




2.3 Physical Considerations

Several remarks can be made about the validity of the model. (1) Coarse grids and high
temperature gradients may make uniform temperature in a zone a poor assumption. (2)
Temperature and velocity boundary layers are not accounted for. (3) The hydrostatic
pressure approximation is valid only for flows with parallel streamlines. (4) Only one
neutral point per vertical interface between zones is allowed, which, depending on the
gridding. affects the qualitative behavior of the solution. (5) Along the lines of [BD91],
the Bernoulli equation used amounts to assuming that kinetic energy is fully dissipated
within the bounds of a single zone. and so does not apply to plumes or jets that span two
or more zones. as rediscovered in [RAC93]. '

2.4 Numerical Considerations

An obvious property of the above equations is their nonlinearity. The n = 0.5 expo-
nent is a source of particular numerical difficulty since it is well known that standard
Newton-Raphson iteration (without relaxation) does not converge when there are square-
root dependencies. An additional source of trouble is that. because they depend on flow
direction. the equations must be piecewise defined, even if they are formally unified. as
in [HvdMR93]. Finally. 3-D problems generally lead to a fairly large number of equa-
tions. This ~dimensional curse™ also exists for zonal models. For example, some problems
analyzed with zonal methods require resolving more than 2000 equations.

2.5 Insight on a Simplified Case: the Window Problem
2.5.1 Two-Zone Case

We consider now the application of the zonal model to the well-known "window" problem
in which a two-dimensional rectangular cavity is heated by a warm isothermal wall on
the left and cooled by a cold window (in our case, actually a cold isothermal wall) on
the right. The ceiling and floor are assumed to be adiabatic. For this configuration the
room air density will. on average, be smaller on the left, and the resulting circulation will
be clockwise. We divide the room into fwo zones, one on the left and one on the right.
Because of buoyancy effects we expect the air to flow from left to right at the top of the
room and from right to left at the bottom. We assume that there are no mass sources or
sinks. that the convection at the walls is Newtonian and that n = 0.5. The solution will
be given in terms of the widths, /3 and /. of the left and right zones, respectively, the
height. h of the zones, the convective heat transfer coefficients, hp and k., of the hot and
cold walls. respectively. the hot and cold wall temperatures, ¢; and t., respectively, and
the total room air mass. m.

2.5.2 Algebraic Simplification in the Two-Zone Case

Simplification by substitution produces a nonlinear system of two equations and two
unknowns. The simplification was done automatically using the MACSYMA computer
algebra program [MIT83]. The simplification algorithm that was used is described in
[Nat92]. Basically. the algorithm transforms the equation system into a graph and then
uses graph theory to find a small number of iteration variables.

v



During the simplification process MACSYMA asks questions. such as whether the
neutra] point is located above the height of a zone or not. which zone has the higher
specific air mass, p, etc. The answers to these questions are unique. even though. in some
cases. an intermediate calculation of the sign of expressions is required (such as whether
he(t:—t1) 4+ hp(tp —t1) > 0). The resulting simplified system of equations is also unique.

The unknowns remaining after simplification by MACSYMA are ¢, and ps. the air
temperature and density. respectively, of the right-hand zone. However, this simplifica-
tion is not complete. due to the presence of fractional powers. which lead to alternative
solutions that MACSYMA cannot resolve. Further simplification can be carried out, pro-
ducing one (very nonlinear) equation in p, that can be solved numerically. Note that if
fractional power simplification is turned on in MACSYMA, two equations, in py and z,.
result.

Results from the computer algebra reduction agree with numerical results obtained
with an independent numerical solver ., called SPARK, which is described in section 3.
However. the final equations are too unwieldy to use, and there are two of them, in terms of
moderately interesting variables. We would be more interested in only one final equation
(since resolution of one nonlinear equation, however complicated, can be done efficiently
and safely). possibly in terms of one mass flow, ¢, for example (since what we are mainly
interested in is the heat transfer and the mass circulation). The conclusion of interest of
this model is the global heat transfer, from the left wall to the right wall.

Reordering the set of equations and reforrmulating the pressure power law equations to
express them with the p’s solved for. one can actually get down to one equation with resid-
ual unknown po. The (large) surviving equation given by the MACSYMA implementation
of the reduction algorithm is:

H/2 = i
(SQRT(G) *SQRT(H)*SQRT(L1)*SQRT ((L2+L1) *RHO2+(-L2-L1)*RHO)* ( ((2*SQRT (2) *C#
PxHHOT*K*L2+2*SQRT (2) *CP*HHOT#K+L1) *R+RHO*RHO2+ (-2%SQRT (2) *CP*HHOT*K+L2-2%SQRT#
(2) *CP+HHOT*K*L1) *R*RHO~2) #*THOT+( (2*%SQRT (2) *CP*HCOLD*K*L2+2%SQRT (2) *CP*HCOLD*K#
*L1)*R*RHO*RHO2+ (-2*SQRT (2) *CP*HCOLD#K*L2-2+SQRT(2) *CP*HCOLD*K#L1) *R*RH0O~2) *TC#
OLD+( (SQRT (2) *CP*G*H*HHOT+SQRT (2) *CP*G+H*HCOLD) *K*L2+ (SQRT (2) *CP*G*H+xHHOT+SQRT#
(2) #CP*G#H+HCOLD) ¥*K*L1) *MATR*RHO*RHO2+ ( (-SQRT (2) *CP*G*H*HHOT-SQRT (2) *CP*G*H*HC#
OLD) *K*L2+(-SQRT (2) *CP*G*H*HHOT-SQRT (2) *CP*G*H*HCOLD) #*K*L1) *MAIR+*RHO~2) + (12*HC#
OLD*HHOT*L1+L2%R*RHO2+ (- 12+#HCOLD*HHOT*L1xL2-12+HCOLD*HHOT*L1~2) *R*RHO) *THOT+12#
*HCOLD*HHOT*L1~2*R*RHO2+TCOLD+ (64G*H*HCOLD*HHOT*L1*L2+6+G+H*HCOLD*HHOT*L1~2) *M#
ATR#RH02+(-6%G*H*HCOLD*HHOT*L1*L2-6%G¥H+¥HCOLD*HHOT*L1~2) *MATR+RHO) / (SQRT(G) #SQ#
RT(H)*#SQRT(L1)*SQRT ((L2+L1)*RH02+(-L2-L1)*RHO) * (( (2*#SQRT (2) *CP*GxHHOT+2*SQRT (2#
) #CP*G*HCOLD ) *K*L2+ (2*+SQRT (2) #CP*G*xHHOT+2+SQRT (2) *CP*G*HCOLD) *K*L1) *MAIR*RHO*R#
HO2+( (-2%SQRT (2) #*CP*G+HHOT-2*SQRT (2) *CP*G*HCOLD) *K*L2+(-2%SQRT (2) #CP*G*HHOT- 2+
SQRT(2) *CP*G+HCOLD) *K#L1) *MATR*RHO~2) + (12*G+¥HCOLD*HBHOT*L 1*L2+12*G*HCOLD*HHOT*L#
1~2) *MAIR*RHO2+ (- 12*G*HCOLD*HHOT*L1%L2- 12%G*HCOLD*HHOT*L1~2) *MAIR*RHO)

In the above, the previous notations are capitalized. Thus H is the zone height h, G
the acceleration of gravity g, L1 the length of the left zone, etc...

This equation can be simplified by invoking of various simplifiers from the MACSYMA
functions. After simplification, the output is:
SQRT(2) #CP*SQRT (G) #SQRT (H) #*K*SQRT (L1) * (L2+L1) ~ (3/2) *R*RHO* (RHO2-RHO) ~(3/2)

* (HHOT*THOT+HCOLD*TCOLD) +6*HCOLD+#HHOT*L 1#R* (L2*¥RHO2-L2*+RHO-L1*RHO) *THOT
+6*HCOLD+HHOT*L1~2*R*RHO2%TCOLD=0



which leads to the third order polynomial equation:

2%CP~2%G*H*xK~25L 1% (L2+L1) ~3%RHO~2% (RHO2-RHO) ~3% (HHOT*THOT+HCOLD*TCOLD) ~2-
(6+HCOLD*HHOT*L1* (L2*RHO2-L2%RHO-L1%RHO) *THOT+6+HCOLD*HHOT*L 1~2*RHO2*TCOLD) ~2

This equation has the form az® = (2 ~ ¢)% where @ and c are positive, where x is pp— p
the reduced cold zone air density, where

— ll(Thot - Tcold)
lchold + 12Thot

is proportional to the temperature difference. and where

a= 2¢,2ghk*(11 + 15)°p*(hnotThot + heotdTeotd)’
36hzoldh%otllz (lchold + 12Thot)2

The order of magnitude of ¢ is 535. and of « is 510°.
It can be shown graphically that this 3rd order equation has a real solution between
0 and X. where :

X = Li{Thot — Tcold)p
i lchoId + [2Thot

Furthermore, we know that the solution can be expressed in closed form by radi-
cals (since we are dealing with a 3rd order polynomial). Solving the equation using the
following input values

[hhot=4, hcold=4., h=3., 1=2., 11=3., 12=3., mair=0.029, r=8.314,
tho=1.205, cp=1004., g=9.81, k=0.83, thot=303., tcold=283.];

gives 1.2062449-18-128609 as the value of the only one of three roots that is real. This is
acceptable and expected (the air is denser on the cold side). Numerical back propagation
(or substitution) of this symbolic solution to the other variables of interest leads to:

RHO2 = 1.206244948428609
RHO1 = 1.203755051571391
T1 = 293.3027135161184

T2 = 292.6972864838816
QMLOW = 0.3828828788442727
PHI = 232.7348756131578

Pi = 101219.9750313746

P2 = 101219.9750902376

P10 = 101237.6882869585
P20 = 101237.7249846537

By inspection we see that these results are reasonable. In particular, the middle pressures
are equal, which is expected from the finding that the neutral point is exactly at mid
height. -

Comparison with a numerical solution of the same problem in slightly different units
(degrees Celsius and reduced pressures instead of degrees Kelvin and absolute pressures),
using zonal models and the SPARK environment. yields



RHO2 = 1.206010E+00
RHO1 = 1.203521E+00

T1 = 2.030105E+01 # 273 = 293.3
T2 = 1.969943E+01 + 273 = 292.7

QMLOW = 3.827173E-01

PHI = 2.326966E+02

P1 = -6.948886E+01 + 101325 = 101255
P2 = -6.948892E+01 + 101325 = 101285
P20 = -5.173599E+01 + 101325 = 101374
P10 = -5.177318E+01 + 101325 = 101374

1]

The agreement is uneven. The pressures differ by about 35 pascals. However, the symbolic
simulation assumes a perfectly tight room, which the numerical simulation does not.
Another (small) cause of discrepancy is that the power law used in the symbolic
simulation is multiplied by a default density, whereas the numerical simulation uses the
upstream density.
On the other hand, the temperatures, the mass flows and the heat transfers agree
almost perfectly.

2.5.3 Qualitative Observations in the Two-Zone case

Qualitatively. we see that p, decreases when « increases (i.e., when the height or perme-
ability coefficient increases. or when the convective heat transfer at the wall decreases).
On the other hand. p, increases when ¢ increases.

Also. we see that ps increases when the wall-to-wall temperature difference. Thoi— Teold:
increases. This is because c is proportional to T, — Teo1g and « is slowly varying since it
is the square of a homographic function.

Finally. since « is large, it can be shown graphically that the physical root of az® =
(x — ¢)? is close to the root of az® = ¢2, or # = ¢2/3a~1/3. This trend confirms and
sharpens the above statements. For example. py — p varies like A~1/3,

2.5.4 Global heat transfer in the two-zone case

With computer algebra we automatically obtain the set of substitutions needed to calcu-
late the other unknowns. The variable of interest. the global heat transfer, @, is obtained
from the following sequence of substitutions:

PHI = H*HHOT#L*THOT-H*HHOT#L*T1
qmsup QMLOW
= (HHOT*THOT+HCOLD*TCOLD-HCOLD#T2) /HHOT

= (CP*HHOT*QMLOW*THOT+(CP+HCOLD*QMLOW+H*HCOLD*HEOTL)*TCOLD) /  (CP*HHOT+CP*Hz
COLD) *QMLOW+H*HCOLD*HHOTL)
QMLOW = - (2#SQRT (G)*K+L*RHO*SQRT (RHO2-RHO1) *SQRT (H-ZN) *ZN~-2%SQRT (G) *H*K+*L*RHO*#
SQRT (RHO2-RHO1)*SQRT (H-ZN))/3

= H/2
RHO1 = -(L2#RH02+(-L2-L1)*RHO) /L1

We note that the neutral point for this simple case is al\\avs at mid height. The final
equation for o is:

-1




PHI = H+HHOT*L*THOT-H*L#(-HCOLD*(CP*SQRT (G)*H~(3/2) *HHOT*K+L*RHO*SQRT( (#
L2%RHO2+(-L2-L1)*RHO) /L1+RH02) *THOT/ (3*SQRT(2) )+ (CP*SQRT (G) *H~(3/2) *HCOLD*K+Lx#
RHO*SQRT ((L2#RH02+(-L2-L1)*RHO) /L1+RH02)/(3*SQRT(2) ) +H*HCOLD*HHOT*L)*TCOLD) / (S#
QRT(G)*H~(3/2)* (CP*HHOT+CP+HCOLD) *K+L*RHO*SQRT ( (L2*¥RHO2+ (-L2-L1) *RHO) /L1+RHO2) #
/(3*SQRT(2) ) +H*HCOLD*HHOT*L) +HHOT*THOT+HCOLD*TCOLD)

The ratio .V u (Nusselt number) of ¢ to the purely conductive flux
$h 1 k_{airy \frac{T.{hot}-T_{cold}}{1_1+1_2}$
is
SQRT(G) SQRT(H) (CP HCOLD HHOT K L2 + CP HCOLD HHOT K Li) RHO
SQRT((L2 + L1) RHO2 + (- L2 - L1) RHQ)

/(SQRT(G) SQRT(H) (CP HHOT + CP HCOLD) K KAIR RHO
SQRT((L2 + L1) RHO2 + (- L2 - L1) RHO) + 3 SQRT(2) HCOLD HHOT KAIR SQRT(L1))

This is a rational function in /p2 — p. Further simplification leads to:

L+

air

o]
3v2 {1 +12

1 1
e )+
( hpot hcold) cp\/ﬁz—k > ,._._Plz_p

Nu=

For the problem under consideration we obtain

1

= : 0.0000023
0.0021+ V1.0

Nu

which is about 465.
We see that the larger value of p; (due. for example. to an increase in temperature
difference). produces a larger value of iV u.

2.5.5 Comparison of the Two-Zone Case with Theory

In laminar natural convection (see [Bej84], for example). N u depends on the Rayleigh
number. Rap. according to Nu = 0.364-’-’—‘,%’2}2%1/ 4. A rough evaluation using Raj, =
107000000~3AT = 57780000000, an approximation valid at those temperatures, yields
Nu = 356. Thus. Nu increases as 3/ and as AT!/?, For turbulent natural convection
N u varies as ATY/3 since Nu = 0.065G7,/ 3(11"712)_1/ ® according to the Jakob correlation.
Numerical application to our problem yields iV u = 304. )

Thus. the coarse-grained two-zone zonal model overestimates the ratio of convective
to conductive heat transfer by 30 to 50%. c

The zonal model applied to two continuous zones exhibits a qualitatively appropriate
behavior: an increase in A or AT does increase Nu if the other parameters are held
constant.

We should also take into account the temperature dependence of the wall heat transfer
coefficients. hp,; and hggrq. to better account for the temperature dependence of Nu. Nu
depends on the harmonic mean of the wall heat transfer coefficients, which, in turn, go
as Ra'/%. Thus. the qualitative behavior of the zonal model. even in the simple two-zone
case. is consistent with the theoretical and experimental natural convection if the wall
heat transfer coefficients are chosen appropriately.

8



2.5.6 Two-Zone Case with Inlet Air

A generalization of the two-zone problem is to allow air to flow in (at the left. for ex-
ample) at a specified rate. Assuming that circulation still exists. i.e., that the inlet flow
is small enough not to disturb the flow pattern. we can again reduce the overall system
to two equations in unknowns p, and z,. One equation is a second-order polynomial in
v/p2 — p that can be eliminated by solving for p,. leaving a single equation in z,. However.
this equation contains large, nonpolynomial expressions. Thus little can be said on the
parameter dependency of its solutions, unlike in the previous case.

3 Numerical Implementation: the SPARK Envi-
ronment

3.1 Presé’ntation and History

The Simulation Problem Analysis and Research Kernel (SPARK) is a modular environ-
ment that automates writing code for systems of nonlinear equations. It was developed
for building science but is applicable to other fields. It is related to simulation environ-
ments like TI!Solver [KJ85], TRNSYS [Sol88]. CLINI2000 [BCGR89]. IDA [Sah88]. and
Allan.Simulation [Fra92].

Some key features of SPARK are:

e It has a front end that allows the user to build complex simulations by connect-
ing smaller elements that are objects (single equations) or macro-objects (equation
subsystems). It shares this feature with TRNSYS, CLIM2000 and Allan.Simulation.

e Using graph-theoretic techniques, it reduces the size of the equation system by auto-
matically determining a small set of iteration variables for which the other unknowns
can be solved. This step can be viewed as “smart” elimination of variables. SPARK’s
Newton-Raphson solver works on the reduced equation set and, after convergence.
the remaining unknowns are solved for. This is a unique feature. Allan.Simulation.
for example. generates code that inverts the full Jacobian matrix.

o Itsoutput is a C program that is automatically compiled and executed. This program
accepts user-specified input at run time and is calculationally efficient because it
iterates on a reduced set of variables.

e Passing from a simulation problem to a design problem (i.e., having unknowns be-
come inputs and inputs become unknowns) is simply a matter of keyword exchange
in SPARK. ! .
Originally written in 1986 for steady state problems [And87], it was extended in 1989
to handle transient problems by adding time integrator objects [SBN89]. Recent enhance-
ments include

e Automatic generation of objects from equations expressed symbolically ( [SNW90].
[NW94] ).

e Strong component decomposition to reduce execution time [BEN*93].

e User control of solution method to enhance convergence.




3.2 Implementation of the Zonal Model

Implementation of zonal models in SPARK is straightforward. The main object classes
correspond to the zones and to the interfuces between zones. A zone class consists of the
balance equations for the zone, the pressure drop equation and the perfect gas law. An
interface class consists of the neutral point calculation and the relationship between mass
flow and pressure difference.

These classes are instantiated as many times as needed to define the simulation. For
example. if a 3-D room is divided into eight parallelopipeds (two in each of the x, y and
z directions). there will be eight zone objects and 36 interface objects (12 zone-to-zone
interfaces and 24 zone-to-surface interfaces). In the general 3-D case, if the z. y and =
axes are divided into L. A and .V sections. respectively. there will be LA\ zone objects
and 3(LA[+ AIN 4 L.N) interface objects. In 2-D there will be LM zone objects and LM
zone-to-zone interface objects and 2L A/ zone-to-surface interface objects.

After instantiation. the objects are linked, i.e.. the variables shared by objects are
indentified. Then the objects and their linked variables are stored in a file that specifies
the overall problem and its inputs.

3.3 Efficiency

The efficiency of a simulation environment depends on the time and resources needed to
solve a simulation problem. SPARK obtains a near-optimal simplification of the problem.
without loss of precision. by automatically reducing the number of iteration variables. The
reduction can be more than 10-fold. which corresponds to a roughly 1000-fold decrease in
Jacobian inversion time. SPARK also makes it easy to create a simulation from scratch by
using symbolic processing to create the simulation building blocks (equation objects) from
equations written by the user [NW94]. In the present work even the linking of objects
was automated ([NW93].[Wur95]).

To facilitate interpretation of results, a graphical postprocessor was written to visualize
temperatures and air flows.

4 The 2-D "window" Problem

4.1 Description

A 2-D. 6m x 2.4m shallow enclosure has its left wall maintained at 12C, its right wall at
20C. and its floor and ceiling at 15C. The surface heat transfer is assumed to be linear in
surface-to-air temperature difference, with convective heat transfer coefficient, A, of 4.1.
1.0 and 5.7 Wm™1K ! at the walls, floor and ceiling, respectively [Ina88]).

Two different grids were used for the zonal model, 3 x 3 and 6 X 6, which yield 108 and
132 equations. respectively. After reduction in SPARK, there were 18 and 72 equations,
respectively. The iteration variables chosen were the temperature and midpoint pressure
of each zone.

4.2 Numerical Validation

The calculated flow field is shown qualitatively in Figure 1. The expected circulation
pattern is observed, i.e., downward flow across the cold wall and upward flow across the

10
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Figure 1: Natural convective flow in the 2-D "window" model

warm wall. The results were compared to runs using the CFD code Fluent [Ina88], which
is based on the finite volume method and uses uniform gridding. logarithmic velocity
profiles near surfaces. and the k& — ¢ turbulence model.

Figures 2 and 3 show that the air temperatures for the zonal and CFD models are
similar. The maximum difference between the models is 8% along the mid-room horizontal
axis and 10% along the mid-room vertical axis.

The zonal model’s temperature distribution is more "conductive" than the CFD distri-
bution because the zonal model is diffusive (assumes perfect mixing) and ignores thermal
houndary layers.

The agreement between the air flow velocity results (Figures 4 and 5) is less satisfactory
than for the tempratures but still acceptable.

The error is above 10% close to the floor and ceiling. Again. the zonal model does less
well close to the walls since it does not account for boundary layer effects.

4.3 Sensitivity Analysis

We see that changing the grid from 3x3 to 6x6 in the window problem barely changes the
results. which indicates that a coarse grid is adequate.

We also tested the sensitivity of the model to the permeability coefficient. C'. and to
the wall heat transfer coefficients, h. The results are given in Figures 6 and 7. which show
how the temperature distribution changes with C. and in Figure 8, which shows how the
velocity- distribution changes with C. We see that air temperature and velocity are fairly
insensitive to C' and that the best results are obtained with the commonly accepted value
of 0.83 [FGG8Y). g

We also found that the results are insensitive to h (not shown). We conclude that
a zonal model with coarse gridding gives acceptable results for the 2-D window problem
even with uncertainties in the values of permeability and surface heat transfer coefficients.

11
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Figure 2: 2-D "window" problem: horizontal distribution of air temperature at mid-height
predicted by the zonal model (for 3x3 and 6x6 gridding) and the Fluent CFD calculation.
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Figure 3: 2-D "window" problem: vertical distribution of air temperature at mid-room pre-
dicted by the zonal model (for 3x3 and 6x6 gridding) and the Fluent CFD calculation
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the zonal model (for 3x3 and 6x6 gridding) and the Fluent CFD calculation
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13




18 L) L] L L] 1]
- “fluent® —
'zona:_g:g.;‘ -----
"zonal_C=0.5" ««---
175+ *zonal_C=0.7" T
“2onal_C=0.83" —-—
“zonal_C=1.0" -~ -
17 - E
o 165} e
uw
«©
2
< 16 o
o<
i
-9
=
B oissf 4
15 F -
145 | d
14 1 1 1 1 1
0 1 6

2 3 4
DISTANCE FROM LEFT WALL (m)
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5 The 3-D Parallelopiped
5.1 Description

A 3-D. 2.6m x 3.6m x 2.55m, cell has the left wall maintained at 25.5C, the right wall
at 32C. the ceiling at 26C and the other walls at 24.5C. The convective heat transfer
coefficients at the walls are the same as in the 2-D case.

We chose a grid that was 4 x4 x4, which produced 2240 equations. With an exponent of
1in the mass flow equations. SPARK reduced this to 128 equations (a 16 to 1 reduction).
Convergence was achieved with a Newton-Raphson relaxation coefficient of 0.5, and by
choosing initials values that were close to the final solution.

5.2 Validation

The zonal model results were validated numerically and by comparing with experimental
results. Numerical validation was done using the Fluent CFD code. A temperature
comparison is shown in Figures 9 and 10 and a velocity comparison in Figure 11. The
zonal model temperatures are close to the CFD results, and lie between the CFD and
measured values. The largest difference between zonal model and measurements, which
is about 2C, occurs near the floor, where the air is cooler and diffusion is smaller. As
expected, the difference between the zonal model and measured air velocity is largest near
the walls. We found better agreement (not shown) by using smaller zones near the walls.
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Figure 9: Comparison of the measured horizontal distribution of the air temperature at mid-
height with the predictions of the 3-D zonal model and the Fluent CFD calculation.
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Figure 11: Comparison of the measured horizontal distribution of the vertical air velocity at
mid-height with predictions of the zonal model and the Fluent CFD calculation.

6 The Minibat Cell
6.1 Presentation of the Problem

To test the zonal approach on a more complex problem. we modeled the "Ainibat Cell."
a test structure at INSA (Institut National des Sciences Appliquées) in Toulouse. France.
This 6.2m x 3.1m x 2.5m cell is divided into a warm room and a cold room by a partition
that has a 0.77m wide by 1.83m high open doorway. The left wall is maintained at 28.0C.
the right wall at 22.5C'. the ceiling at 25.0C on the warm side and 24.81C on the cold side.
the floor at 24.58C and the other walls at 24.63C.

We used a 6 X 3 x 6 grid, which led to 3744 equations. SPARK reduced this to 216
equations (a 17 7o 1 reuction). '

6.2 Validation

The air temperature distributions calculated by the zonal model on the warm and cold
sides are shown in Figures 12 and 13. The air velocity distibution in the doorway is shown
in Figure 14. For comparison. these figures also show measured data and the predictions
of the StarC'D CFD program, which is based on a finite-volume method.

The zonal model’s temperature results are satisfactory. They fall, for the most part.
between the measured and the CFD values. As in the previous test case, the highest
discrepancy occurs near the floor. The overall agreement with measured and CFD results
is somewhat better on the warm side of the cell.

The zonal model correctly predicts the qualitative behavior of the air flow in the
doorway. but. quantitatively, there are differences up to 25% relative to the measurements.
Flows are generally overestimated in the doorway. although the neutral point is correctly
calculated. This indicates that better agreement would be obtained by reducing the
permeability coefficient in the opening [LIA91]
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Figure 12: Comparison of the measured vertical distribution of air temperature on the cold
side of the Minibat cell with predictions of the zonal model and the StarCD CFD calculation.
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Figure 13: Comparison of the measured vertical distribution of air temperature on the warm
side of the Minibat cell with predictions of the zonal model and the StarCD CFD calculation.
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7 Coupling to External Models

Having demonstrated the overall reliability of zonal models, at least for simple rectangular
geomotries. we demonstrate in this section modularity and reusability in object-based
simulation by coupling the zonal model with a comfort model.

7.1 Comfort model

We consider a simple. classic comfort model-the Fanger model [Fan73]- which is expressed
as

CT=H-E~-R-C
PMV = [0.303¢=%9%4 1 0,028] x CT

Here. C'T is the state of thermal comfort, which is determined by occupant activity level.
H. evaporation rate, E. radiative heat loss, R. and convective heat loss, C. PMYV is the
predicted mean vote, for which a zero value of 0 corresponds to feeling comfortable, a
positive value to feeling too warm and a negative value to feeling too cold.

Because of the modularity of the SPARK environment, all that was needed to couple
the comfort and zonal models was to add the Fanger equations to the zone equations. The
results of solving the resulting equation sét for the Minibat Cell are shown in Figure 15.

7.2 Wall-to-Air coupling

Air flow models should be coupled to realistic wall models. The modularity of the SPARK
object-based approach allows wall models to be easily created using the "modal" method
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Figure 15: Comfort analysis based on coupling of Fanger model and zonal model: Predicted
Mean Vote in vertical-midplane zones of the Minibat Cell. The arrows show air flow between
zones.

[FBSXN91]. In this method the conduction equations for complex geometries are solved in
full and the significant modes are determined. This reduces the complexity of the model
with little loss of accuracy.

We incorporated the wall conduction flux from the modal approach into the gen-
eral energy balance equation for the air zones adjacent to the walls. Given the external
conditions. the SPARK solver then determined the surface temperatures as well as the
distributions of inside air temperature and air flow.

7.3 Coupling to a Hydronic Cooling System

The zonal model was also coupled to an independently developed SPARK simulation of a
hydronic radiant cooling system in which the heat transfer to the room air was originally
modeled assuming a single air node, i.e., assuming a uniform air temperature [CSW93].
This coupling was accomplished in a straightforward fashion and led to a more accurate
model in which the heat transfer from the cooled surfaces to the air took into account the
spatial variation of air temperature.

7.4 Coupling to Plumes and Jets

The main weakness of zonal models is that they cannot properly represent air jets (from
diffusers. for example) or plumes (which are common around heaters), since in these
models jets and plumes are (incorrectly) assumed to be fully dissipated in the zone in
which they originate. One way around this limitation is to replace zones that contain
a jet or plume with a specific jet or plume object. To investigate this possibility we
considered the case of a 3-D 4.75m X 3m x 2.5m room that had a heater next to a cold
wall. A 6 x 6 x 4 grid was used in which the zonal models for the three zones above the
heater were replaced with a plume object. We found in this case that a pure zonal model
without ‘a plume object gave unacceptable results (for example, there was an unphysical
horizontal diffusion immediately above the heater). However, when a plume object was
used a physically reasonable air flow pattern was observed.



.8 Conclusion and Perspectives

We have shown that. for simple rectangular geometries, the zonal method gives reasonably
accurate air flow and air temperature results even in 3-D cases (for which convergence
problems are usually encountered when other methods are used). Zonal models are easier
to incorporate in modular simulation environments than are CDF models and are much
faster executing. However. further work is needed to establish guidelines for optimal par-
titioning of rooms into zones. In particular, it should be determined whether partitioning
can or should be based on the expected flow pattern. Additional effort is also needed to
improve the modeling of jets and plumes. It would also be of interest to extend the zonal
method to consider moisture and pollutant transport.
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