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1. Summary 

Paper presents basic first order results of nonlinear elastic theory by Mumaghan for elastic wave 

propagation in isotropic solids. We especially address to the problem of monant scattering of two wl- 

h a t e d  beams and present analytical solutions for amplitudes of all possible types of resonant interac- 

tions for elastic plane waves. For estimation of nonlinear scattered waves we use meas& elastic 

parameters for sandstone. The most profound nonlinear effect is expected for interactions of two SH 

waves generating compressional P wave at sum frequency. Our estimations show that nonlinear 

phenomena is likely to be observed in seismic data. Basic equations of nonlinear five-constant theory 

by Murnaghan are also presented. 

Key words: nonlinear, interaction, elastic, wave propagation. 

2. Introduction 

Nonlinearity is any deviation from the linear law of the transformation of the input signal due to 

its propagation through a carrying system. Nonlinearity may appear in the signal .at all stages starting 

from elastic waves excitation , then during propagation of waves through elastic material, in regismtion 

device and also in the stage of numerical data processing. We consider in this paper nonlinearity arising 

due to properties of elastic material. 

As is well known the complete form of the strain tensor contains squared terms and assumptions 

about the smallness of strains are needed to get a linear equation of elastic motion. Nonlinear systems 

of differential equations result if other physical phenomena associated with elastic deformation, such as 

heat conduction, electromagnetic field generation, dislocations, material flow, viscosity, and strain-stress 
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hysteresis, are also taken into account. Microcracks in rock may close due to transient stress imposed 

by propagating elastic waves. In this case the boundary conditions for the wave propagation problem 

become dependent upon the amplitude of the wave. Elastic nonlinearity of different materials, includ- 

ing rock samples has been observed for ultrasonic frequencies by many authors ( Breazeale and Thomp- 

son, 1963; Carr , 1964.1966 ; Ermilin at al., 1970; Gedroits and Krasil’nikov, 1963; Moriamez et. al., 

1968; Thery et. al. , 1969, Johnson et. al.,1993). In particular it has been shown that velocity of elastic 

waves changes with static deformation and hydrostatic pressure. Waves of mixed frequencies as a result 

of nonlinear wave interaction have also been reported (Rollins et. aL.1964; Zarembo and Krasil’nikov, 

1971; Johnson et. aL.1987; Johnson and Shankland, 1989). The fundamental equations of nonlinear 

elastic theory by Murnaghan effectively describe such classical nonlinear phenomena as harmonics gen- 

emtion and resonant wave scattering. Results of this theory are well known among solid state physi- 

cists, but most of the information is scattered. Probably the most comprehensive description of the 

theory can be found in the monograph of Zarembo and Krasil’nikov (1966), published in Russian. Evi- 

dence of nonlinearity is reported in many experimental publications for solid materials and crystals. 

Some estimates for rocks (Megan et al, 1993) show large levels of nonlinearity, which has lead to a 

growing interest to this phenomena among seismologists. Besides basic equations this paper presents 

c a t  solutions for all possible types of nonlinear interactions of collimated beams in the volume of 

nonlinear elastic material. These solutions in combination with background theory of plane wave pro- 

pagation in nonlinear media may help to design an experimental research in nonlinear seismology. 

3. Basic equations of the five-constant theory of elastic nonlinearity 

The general problem of finite deformations in elastic solids was developed by Novozhilov (1948) 

and Murnaghan (1951), who derived stress-strain relations considering conditions of equilibrium and the 

virtual work of any virtual deformation inside the elastic medium. These results were used for exwri- 

mental laboratory measurements of nonlinear elastic constants for a set of isotropic and crystalline 

materials by Hughes and Kelly, 1953. Later Landau and Lifshitz (1954) suggested the way of deriva- 

tion of nonlinear equations of motion using the internal elastic energy function and its relation with the 
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stress tensor. This derivation was made by Goldberg (1961) and described most completely in the book 

of Zarembo and Krasil'nikov (1966). It has been used by most authors and is the basis for the follow- 

ing. 

Assuming elastic deformation in a solid, and that the displacement vector, 

is continuous together with its spatial partial derivatives, the corresponding strain tensor is defined as: 

which has three invariants: 

3J 1 3  = ] u l l  = - -u*u, 3 2  + T U s s  
2 

(Here and later repeated index means summation.) 

If it is assumed that the strain components are small, it is possible to show (Landau and Lifshitz, 

1953) that in the coordinate system of undeformed solid the stress tensor is defined by: 

au 
b. = (3) 

where U is the internal elastic energy for adiabatic deformations. The internal energy of the isotropic 

solid is invariant under coordinate transformation. Since it is a function only of the deformation of the 

body (dissipative processes are neglected and deformations are assumed to be ideally elastic), the inter- 

nal energy must depend only on the invariants of the strain tensor: 

u = U(1I 9 Z 2 , 1 3 )  

Representing this function by the first terms of a Taylor expansion we get 
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u = U(O,O,O) + 

I , I z  + - - I :  
1. a2u 
2 a1,ai2 6 a3u al: 1 

with the accuracy of cubic degree in the strain tensor components. All partial derivations in (5 )  are 

assumed to be calculated in the undeformed state, where U(O,O,O) = 0. EquiIibrium in the undefomed 

state also gives 

"he other partial derivations in (5)  can be expressed as: 

- au = -2p , - au = n = A ,  - -  a2u - x + 2 p  
312 313 ar t  

-- a2u - a m  = -2A - 4 B  
a1,ai2 

-- a3u - 4m + 21 = 2A + 6B + 2C ar : 
where h , p are Lame Constants, 1 ,m ,n are nonlinear elastic constants of the third order introduced by 

Murnaghan and A ,B ,C are the constants introduced by Landau and Lifshitz. The constants 1, m, n, A, 

B, C will heretofore be called simply nonlinear constanfs 

The constants 1 ,n and A ,B ,C are related in the following way: 

l = B + C ,  A = n ,  (7) 

A m = - + B ,  
2 

n B = m - -  
2 

n C = 1 - m + -  2 n = A ,  

Following previous papers of Gol'dberg (1961),Kobett and Jones (1963) we will use the constants 

A ,B,C.  The internal elastic energy can therefore be written as: 
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Substituting components of the strain tensor (1) into (8) it is possible to obtain: 

where all components of degree higher than 3 have been neglected. 

The equation of motion in an perfectly elastic solid is given by: 

where at are components of the stress tensor (3). 

Using (9) and (3) it is possible to obtain the relation between stress and strain components: 

+ 
2 

which is a generalized Hook's law. 

Considering the presence of dissipative forces by introducing coefficients q and < for shear and 

volume viscosities, respectively ( Landau and Lifshitz, 1953), and substituting (11) in (10) we have the 

equation of motion in ,the form: 

where F, ,  the iith component of F, has a value of the second order in smallness and is given by: 
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where the following notation is used: 

A 
4 

C3 = - + B  A 
4 

C2 = h + p + - + B ,  A 
c1 = P + x ,  

C4 = B  +2C , Cs = h + B  (14) 

The equation of motion (12) together with expression (13) is the basic result of so-called fiveconstant 

nonlinear eIastic theory by Mumagban. From (13) it is seen that components Fi do not become zero 

when the nonlinear constants are zero. This is a result of nonlinearity of the strain tensor (l), and 

means that, in general, nonlinear elastic solutjons approach linear elastic solutions only when the strain 

components go to zero. On the other hand, for most solids, values of the nonlinear constants (A,B,C) 

are significantly larger than those of Lame constants h,p which usually may be neglected in coefficients 

(14). 

If the next terms of the fourth order in expression (5) for elastic energy are considered it is neces- 

sary to introduce another four nonlinear constants, and so on. Some theoretical (Zabolotskaya, 1986) 

and experimental (Meegan et al, 1993) papers indicate that the fourth order terms in (5) could be 

important. However in this study the five-constant theory is used, assuming also that the strain com- 

ponents are small enough to provide Fi much smaller than any of components from left hand side of 

(12). 

The relative smallness of F; allows one to assume displacements can be written in the following 

form: 

where uo is a solution of homogeneous equation (12) when Fi equals zero. Putting (15) into (12) and 

get a linear equation for u1 where the left hand side contains com- 



- 7 -  

ponents of u1 and the right hand side, Fi, depends on the previously determined function Q, only. In 

the next section this method will be applied to the problem of propagation of harmonic elastic plane 

waves in an isotropic homogeneous nonlinear medium. 

4. Nonlinear propagation of the plane elastic waves 

The basic ideas of the phenomena of elastic wave propagation in nonlinear medium may be found 

in Landau and Lifshitz, (1953), where the phenomena of generation of waves of multiple frequencies 

are described. DetaiIs of nonlinear propagation of originally single elastic waves can be found in 

papers of (Gol’dberg, 1960, Polyakova, 1964; Zarembo and Krasil’nikov, 1966,1970, McCall, 1993), 

from which the next generai results were obtained. 

P-plane wave propagation. In this case the equation for determination of u1 is an inhomogeneous 

resonance equation and we must include attenuation to obtain a finite solution. The solution to the 

homogeneous equation for an incident plane p-wave propagation along the x-axis is: 

-a x 
u, = uoexp cos(kpx - of) 2 

where 

is the attenuation coefficient. Medium nonlinearity causes generation of the second compressional har- 

monic u, which has the form 

where the following notation is used 

3(h + 2p) + 2(2m + I )  
2(h + W) k P = - ,  0 vp = d F  , Po = 

VP 

At a distance x = In 2/2a the second harmonic (17) reaches a maximum and then decreases. 
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S-plane - wave propagation. This wave excites secondary p-waves, but does not generate any s- 

waves. Taking uo as the plane s-wave: 

uo = uoexp-a'x cos(k,x - w )  9 

the secondary pwave polarized in x- direction has the form: 

[exp-kpx sin2(kpx - at) - exp2arx sin2(ksx - a[)] 2 u1 = UoZ"lOaV,2 

4v,(v,2 - VP") 

where 

is the attenuation coefficient of the shear waves and 

When a,x , a,x a1 expression (20) reduces to: 

+ k,)x - 2 0 t )  fi 1 0" YOOV,2 
2vs(v,2 - v i )  

u1 = 

The wave represented by (21) evidentially has spatial modulation with period 

This period has the order of the wavelength in the medium. The second harmonic given by eq. (21) is 

small because the length of wave interaction is small (of order one wavelength), and nonlinear effects 

do not accumulate. The resonant accumulation of the second harmonic for S wave may still occur if 

one considers fourth order terms in ( 5 )  due to interaction of the third harmonic with prim,ary wave 

(Zabolotskaya, 1986). 

Propagation of the secondary waves causes generation of harmonics of higher orders. Amplitudes 

of these multiple harmonics decrease rapidly with increasing harmonic number. As discussed in the next 

section, however, the chance to observe the nonlinearity of the elastic medium appears to improve for 
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the case of nonlinear interaction of elastic waves of different primary frequencies. 

5. Nonlinear interaction of elastic waves 

Under some circumstances elastic waves of different frequencies w1 and w2 propagating in a solid 

may interact and produce secondary waves of mixed ( sum or difference) frequencies 0,. Theoretically 

this problem is similar to phonon-phonon interactions, a subject of quantum mechanics. The conditions 

when such resonant interactions may exist are: 

0, = 0 1  f 0 2  (23') 

k, = k1 k k2 (23") 

where (23") includes the corresponding wave vectors. The + sign in (23) corresponds to the case of sum 

resonant frequencies and the - sign corresponds to the case of difference resonant frequencies. There- 

fore condition (23') defines the frequencies of scattered waves, and condition (23") defines their direc- 

tion of propagation. In the case of a liquid medium without dispersion, condition (23") means that 

interaction is possible for collinear waves only. For solids, due to the existence of two velocities of 

propagation, a variety of different resonance interactions become possible. The geometry of sum reso- 

nance interaction is illustrated in Fig.1, and for difference interaction is in Fig.2. The angle a of 

interactions is given by: 

which is the result of (23"). Velocities vr,vI,v2 might be equal to either vp or v, depending on the type 

of interaction. Equation (24) together with conditions 

cannot be satisfied for all possible combinations of waves and frequencies, which means that some 

types of interactions do not exist. 

Angle w of.propagation of the resonant wave defined by geometry in Fig. 1,2 can be found from: 
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where 

Basic results of the interaction c.  elastic waves in an isotropic solid were obtaine y Jones and 

Kobett (1%3), Taylor and Rollings (1964), Zarembo and Krasil'nikov (1971). The displacement field 

of the sum of two incident plane waves: 

u, = 4') + d2) = &cos(wlf - klr) + B&o.s(*t - k2r) (28) 

with amplitudes A .  and Bo respectively, are substituted into the equation of motion (12) assuming no 

presence of attenuation. Denoting by p that part of F from (13) which describes the interaction of 

waves, (28) can be written in the form 

p(r,t) = I+sin[(ol + q ) t  - (kl + k2)r1 + I-sin[(wl - o2)t - (kl - k2)rl 

where 

Expressions of the form (xy) in (30) denote scalar products. 

If there is a volume V inside the medium where the primary beams are well collimated, and if it 

is assumed that waves interact only in this volume it is possible to obtain a solution for the scattered 

secondary field in the far field: 

sin (I+^)? ul(r,t) = - 
4xvp2pr 

dV -t 
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P - kl + k2 er' - (aI - w2) 1 

where r = r F  ; IPI = 1 is the.radius-vector from the center point of the interaction region and observa- 

tion point; r' is the radius-vector of integration inside the volume V (geometry shown on Fig.3) . 

The first and second terms in (31) are compressional waves with the sum frequency w1 + 0~ and 

the difference frequency oI-w2 , respectively. The third and fourth terms are shear waves with the sum 

and difference frequencies. respectively. As we integrate over r' all the integrands in (31) oscillate with 

frequencies determined by the coefficients of r' and the results of any integration will depend on just 

how the waves fit into the region V. Scattered waves have natural polarizations: parallel to r for p- 

waves and orthogonal to r for s-waves. Integrals in (31) are referred to as volume factors. 

If we satisfy resonant conditions (23) by chosing an appropriate direction P = P, the 

corresponding coefficient of r' becomes equal to zero and the amplitude of the scattered wave in this 

direction becomes proportional to the volume, V, of integration. 

From (31) it also follows that amplitudes of the scattered waves are proportional to their p j e c -  

tions in the direction n, where n is the unit vector of the natural polarization of the wave. For P-waves 

n is parallel to i-. and for S-waves it is perpendicular. This means that the resonant scattering amplitude 

may be zero even if resonant conditions (23) are satisfied. A zero scattering amplitude due to polariza- 

tion will be referred to as polarization restriction. 

All of the types of elastic wave resonant interactions are shown in Table 1, where sign " x " 

means that interaction is possible and sign " + " means that interaction is possible only when interact- 

ing waves are collinear. All other types of interactions are forbidden. Sign " 0 " marks interactions 

which are forbidden because of polarization restrictions; all others are forbidden because resonant 
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conditions (23) for them can not be satisfied. Only 10 of 54 interactions are possible. Sum frequency 

resonance exists only for compressional scattered waves for the following interactions: 

P ( 0 l )  + P(w2) = P ( 0 1 + 0 2 )  

P ( 0 1 )  + S V ( 0 , )  = P(Wl+W2) 

S V t O l )  + P ( 0 2 )  = P(Wl+*)  

S V ( 0 , )  + S V ( q )  = P ( W l + 0 2 )  

SH(W1) + SHtOz) = P(@l+Oz) 

Interactions 2 and 3 in (32) are reciprocal. We regard them here as two different interactions keeping 

the structure of Tab. 1. 

Difference frequency resonance is possible for the following interactions: 

(33) 

A similar table for forbidden and allowed scattering processes for an isotropic soIid published in the 

paper of Zarembo and Krasil'nikov (1971) contained 18 possible interactions. We believe their results 

are partly in error. Taylor and Rollins (1964) present five possible interactions omitting the problem of 

separation of SV and SH polarization for shear waves. 

If resonant conditions (23) are satisfied for any one type of interaction the scattered field from 

(31) may be rewritten in the form 

ul(r,t) = Gt sin (34) 

where g = p or g = s depending from the type of the scattering wave and n is the unit vector of the 

. 
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natural polarization for this wave. Function G: is the resonant scattering amplitude, which may be cal- 

culated using the expressions 

with nondimensional nonlinear amplitude coefficient 

Analytical expressions for Wg of all ten possible scattering interactions are shown in Table 2 together 

with expressions for interacting angle, a, and limits, d h n  , d-, of the frequency ratio d = - . In 4 
0 1  

addition the following notation is used: 

d D =  4n(h + 2p) ' (37) 

Approximate expressions for scattering amplitudes in Table 2 are derived from exact formulas 

using the assumption that we may neglect Lame constants h , p in tern in Ci (eq. 13) containing non- 

linear constants A ,B ,C. The results in Table 2 reveal rather simple dependence of scattering ampli- 

tudes on the nonlinear elastic constants. Amplitudes of two collinear PP interactions are proportional to 

2m + I; six interactions are pmportional to m and not dependent on other constants. The remaining 

two interactions, where SH waves are involved, have more complicated dependence on constants m-and 

n .  

Calculations were done for a set of nonlinear elastic parameters representative of a typical rock 

(sandstone) as follows: ' 

h = 4.14 GPa , 

p = 7.36 GPa ., 

p = 2.3 g l m 3  , 

m = -3.66.lO3GPa 

I = -1.11.104GPa 

n = 8.71.104GPn 
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These nonlinear parameters were derived from laboratory P- and S-wave velocity measurements 

on core as described in Appendix I. 

w2 

a1 
Plots of the functions Wg?(d) , where d = - are presented in Fig. 4.1 - 4.7 together with 

interaction angle a and absolute value of the scattered angle y~. We don’t show here results for col- 

linear P- waves propagation as having trivial dependence on frequency, as well as for mentioned above 

interaction SV( w1 ) + P (  o, ) = P (  w1 + w2 ) since it is reciprocal with interaction 

P (  w1 ) + SV( w2 ) = P (  w1 + o, ) . Results based on the formulas in Table 2 revealed coin- 

cidence with those obtained by direct computations using vector form (30). 

As seen in the figures there are several values of d for which Wg = 0. These roots do not depend 

on nonlinear constants. For the interaction P (  o1 ) + P (  o2 ) = SV( o1 - o2 ) there is one root 

given by: 

The curve for interaction P (  w1 ) + SV( o2 ) = P (  w1 - o2 ) has a root 

Roots for other curves may be found as a solutions of relevant equations , which are polynomials of the 

fourth order. Two interactions containing SH waves theoretically may have roots for some combinations 

of nonlinear constants. 

For most interactions there are bounds on the value of d for the existence of interactions. Only 

collinear interaction of P- waves for sum frequency gives infinite growth as frequency ratio d increases. 

All other interactions are limited for the whole range dd,, 5. d 5 d,, of its allowed variation. Except 

two collinear interactions and interaction P (a1) + P (a2) = SV(wI-q) (Fig. 4.4) scattering may occur 

for the whole range of angles y . Two P-waves generate scattered P-waves with sum and difference 

frequencies only if the interacting waves are collinear. 
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The conditions under which the amplitude of the scattered waves are maxima are of practical 

interest in planning experiments to observe nonlinear phenomena. The figures show that these condi- 

tions are particular to each type of interaction. The amplitudes of the scattered waves at sum frequen- 

cies are, however, generally greater than those at difference frequencies. The greatest value of W, for a 

difference frequency is about 95 for the interaction P (  o1 ) + SH( @ ) + SH( o1 - @ ) while 

other maxima are less than 20. On the other hand, only one of the maxima for sum frequencies has a 

value as low as 95. All other maxima for sum frequencies are greater than 450 and, as noted above, 

two are unbounded. Though sum frequencies generally result in larger nonlinear amplitudes it should 

be noted that the effects of attenuation have not been considered in this analysis. Attenuations would 

preferentially tend to lessen the amplitudes of the sum frequencies. Attenuation would also result in 

bounds on the amplitudes of interactions such as P ( ) + P ( 02 ) -+ P ( w1 - o2 ). 

6. Scattering beamwidth 

The scattered waves given by (31) appear in the form of conical beams with vertexes at the 

interaction zone and maximum intensity in the direction rr, the unit vector in the direction of k, (Eq. 

23). To investigate the amplitudes of the scattering beams as a function of observation position let us 

assume that the interaction volume has the shape of a sphere of radius R . Any volume factor from 

(31) may then be reduced to the form: 

27cR R 

Vf = I sin[a*(Fr’) - A dV = -sinA cos(acos0r)sin0d8r2drd$ 
-. 0 0 0  

1 
aR 

4 
3 

where V = -nR ’, the volume of the sphere, j I(x) are spherical bessel functions of the first order, and 

A, which represents phase components of the volume factors, is given by: 
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If 8 is the angle between resonant scattering direction r, and observation direction f we can write 

f = case P + sine p 

where p is a unit vector orthogonal to P . Substituting (40) in (39) and using resonant conditions (23) 

we finally have: 

where h, is a wavelength of the scattered wave. Assuming the interaction volume is spherical, this 

analysis shows that the volume factor, V, is proportional to the volume of the sphere. 

Using the asymptotic approximation: 

. . .J x4 
j l ( X )  = - 1 - - + - - .I 3 2.5 x2 . 2-4-57 

for spherical bessel functions in (38) we may estimate the total beamwidth, e,, of the scattering beam 

where the amplitude of the scattering beam is not less than a half of its maximum. The result is 

For small angles ( 8, c 0.1 ) Eq. (42) reduces to 

x r  e, = - R (43) 

R Scattering diagrams for ratios - = 0.5, 2.0 are shown in Fig. 5.1S.2. Assuming a spherical 

interaction volume, Figures 5.1-5.2 show that the scattering pattern becomes sharper with growth of the 

ratio - , where A, is the wavelength of the secondary scattered field. That is, for a given size of 

interaction volume, the width of the conical beam decreases as the wavelength of the scattered energy 

h, 

R 
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increases. Numerical approach of interaction volume estimation for spherical waves was developed in 

(Beresnev, 1993). 

7. Discussion 

The results of elastic plane wave interactions provide a basis for studying the nonlinear behavior 

of real elastic materials. Nonlinear elastic effects are proportional to the nonlinear elastic constants and 

the appropriate frequency band does not depend at all on these constants. Thus there may be opportuni- 

ties to create universal observation systems for study of nonlinearity of the real elastic media. An 

exception may arise in consideration of two possible interactions involving SH waves, for which non- 

linear effects have more complicated dependence on the nonlinear constants. It is, of course, assumed 

that absolute values of the nonelastic constants are much more than those of the Lame constants, which 

is commonly observed in experimental studies on rock samples. Otherwise, nonlinear effects are very 

small and unlikely to be observed. 

While there is no question that earth materials exhibit nonlinearity over a wide range of condi- 

tions, it is appropriate to ask whether it is likely that this nonlinearity in elastic properties is large 

enough to produce observable effects in geophysical activities such as exploration and engineering 

seismology. The intent of this discussion is not to provide an exhaustive analysis of this quesfion, but 

rather a preliminary assessment of the potential for observable effects. To simplify our analysis we 

introduce strain levels of primary waves: 

s, = ldivuol (44) 

for P- waves , and 

s, = lrotuol (45) 

for S- waves. In the preceding sections theory is presented for two cases: propagation of plane waves 

in a nonlinear material, and interaction of two plane waves in a nonlinear volume. The former case 

will be addressed first. 
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Single plane wave propagation nonlinearity has been reported in many papers ( Breazeale and 

Thompson, 1963; Can , 1964,1966 ; Ermilin at al., 1970; Gedroits and Krasil’nikov, 1963; Moriamez 

et. al., 1968; Thery et. al. , 1969, Johnson et. aL.1993) concerned ultrasonic laboratory studies. Our 

goal here is to get an estimation of nonlinear effect for seismic waves. From section 4 it is seen that 

elastic nonlinearity gives rise to secondary harmonic in one dimensional P- plane wave propagation. 

This harmonic would imxease in amplitude indefinitely with distance were it not for attenuation. 

The relative amplitude of the primary and secondary harmonics can be studied by calculating the 

ratio, referred to as the nonlinear ratio: 

where the bar signifies a time averaged value, u1 and q, are given by (16) and (17), and nonlinear 

coefficient has a form 

When propagation distance x is not very large for dissipation processes to dominate , the nonlinear 

coefficient is 

Boa w, = - 
4% 

and is proportional to x . 
For S-waves, using eq. (17) and eq. (20) , the ratio becomes: 

where nonlinear coefficient 

has a spatid modulation. For small distances (50) can be reduced to the form 
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Plots of W,, for P-waves and W, for S-waves are given in Figures 6.1 and 6.2. Calculations were 

carried out for o = 100 Hz and the values of nonlinear elastic constants for sandstone given in section 

5. The various curves comespond to values of ap and as ranging from lo4 to lod. Figure 6.1 shows 

that the value of Wp, and hence the amplitude of the secondary harmonics, for P-waves, increases for 

some distance and then decreases. The value of a,, determines the distance at which the amplitudes of 

the secondary harmonics begin to decrease. At smaller distances the amplitude of the harmonics is 

largely independent of the value of c$, . 

The second harmonics generated by S-waves have only P-wave particle motion. Figure 6.2 shows 

that these harmonics exhibit spatial modulation. The amplitude of this modulation varies with attenua- 

tion, being smaller for large values of a, ; it also decreases with distance as attenuation damps out the 

effect of the nonlinear properties. Contrary to behavior for the P-wave, the second harmonies of the S -  

wave reach maxima which are relatively insensitive to the value of attenuation. For any value of 

attenuation it is also seen that the magnitude of the S-wave harmonic amplitude ratio is smaller than 

that of the P-wave. 

Using values of W, from Figure 6.1 values of the relative amplitude of the secondary harmonics 

can be calculated for a 100 Hz wave propagating through sandstone with the nonlinear properties dis- 

cussed previously. For example, at lo00 m the amplitude of the secondary harmonic would approach 

1% of the primary assuming a strain level in the primary of lod and an ap of 5 x lo4. If a, were 

only 5 x or greater, the relative amplitude of the secondary harmonics would drop to less than 

0.01% of the primary wave amplitude. If the strain level of the primary is lod, the secondary harmon- 

ics produced by an S-wave would not exceed 0.005% of the primary for any value of a, at any dis- 

tance. 

These calculations imply that the nonlinear elastic properties of sandstone will result in only 

minor perturbations in the seismic signature under many situations of practical interest in seismic 

exploration geophysics. However, it should be noted that there are earth materials (such as soils) which 

are likely to be much more nonlinear than sandstone and there are situations (earthquakes, explosions) 

in which larger strains may be expected, so that much larger effects than noted above may be possible. 
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Nonlinear interaction of intersecting -- elastic waves has been detected in solids (Rollins et. 

al.,1964; Zarembo and Krasil'nikov, 1971) and in the rock (Johnson et. aL.1987; Johnson and Shank- 

land, 1989). Based on the discussion in section 5 the size of the nonlinear effects arising from interac- 

tion of waves in a nonlinear volume can be assessed using the same material parameters as for the 

plane wave case just discussed. Making an assumption that amplitudes of primary waves are equal so 

that A. = Bo = uo we may use the functions WE to find the ratio of resonant scattering amplitude to 

primary wave amplitude. Tbis ratio, 48f. called the "nonlinear amplitude ratio", is given as: 

Eq. (52) can be rewritten in the form: 

2 

qp = w [3] Vp I sp  r 

for P-waves, and 

(53) 

for S-waves. As an example consider a case in which u1 is 2~(40) radsec., Vp = 3300 dsec,  V, = 

2000 dsec,  V = 1 x lo7 m3 and r = 200 m. Eqs (53) and (54) become: 

qp = (289)W S, 

q, = (175) W S, 

For each of the scattering interactions shown in Figures 4.1 to 4.10 the magnitude of W varies as a 

function of d. For purposes of this discussion it is appropriate to pick maximum values of W. For 

example, for the interaction SH( q) + SH(w2) + P(wl + 02), it is seen from Figure 4.5 that 

W,, = 970 for d = 3.1. Hence, equation (56) yields, 

For a strain rate of lod, S, = 0.28. Thus, though counter-intuitive, the theory predicts that two SH 

waves, one at 40 Hz and the other at 124 Hz, intersecting at an angle of about 135 O will generate a P- 
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wave at 164 Hz with an amplitude 0.28 times as large as the primary wave at a strain level of lod. If 

an experiment were performed at the frequencies of 40 and 124 Hz otber permissible interactions 

include SV(ol) + SV(@) -+ P ( q +  a*), P(ol) + S V ( y )  -+ P ( o l  + a*). SV(wJ + P(o2) -+ 

P(o, + @) and P ( q )  + P(@) + P(ol + s). Of these only the collinear P-wave scattering produces 

an effect of comparable magnitude. 

There are questions about the practicality of achieving strain levels of lad in exploration 

seismology. Estimation of the actual interaction volume for an observation system with point sources is 

also a problem. Nonetheless, the results of these analyses indicate that observable nonlinear effects 

arising fkom the interaction of intersecting seismic waves are plausible, and field experiments designed 

to detect such effects appear feasible. 

7. Conclusions 

Solutions have been presented for plane wave propagation and interaction of collimated beams in 

a media characterized by nonlinear elastic constants of the third order. Plane waves propagating 

through a nonlinear material generate secondary harmonics which incxease in amplitude with distance. 

For P-waves a maximum value is reached while in sensitively related to the amount of attenuation in 

the medium. For S-waves secondary harmonics are spatially modulated and attain maximum values 

which are much less sensitive to attenuation. Example calculations for seismolog case indicate that 

large strain rates are necessary before nonlinearity will be detected in most rocks. 

If collimated beams intersect in a spherical volume, there are 54 possible combinations of which 

only 10 result in resonant scattering. Except for the interactions of SH waves, the amplitudes of the 

scattered waves are directly proportional to the nonlinear elastic constants. The scattered waves form 

conical beams at specific scattering angles. The width of the beams is directly proportional to the size 

of the interaction volume and inversely proportional to the scattered wavelength. Though attenuation 

has not been included in the analyses, example calculations suggest that scattered waves with ampli- 

tudes which are a significant proportion of the primary wave amplitude, may arise at moderate strain 

levels in rock. In addition to the effects of attenuation, further work is required to evaluate the 
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interaction volume for the more realistic case of point sources in nonlinear media. In this case, the 

effects of coincident generation of both P- and S- waves by the source must be considered. 
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Appendix I 

Nonlinear constants were derived from laboratory velocity measurements on Berea sandstone 

(Nihei 1991). Hughes and Kelly (1953) derived expressions for velocities assuming third order elastic 

constants under uniaxial (Q # 0, o2 = o3 = 0) and hydrostatic (a = c2 = a3 ;to stress conditions: 

P 1 pv:=p-2- [3m--nn+3h+6pl  3K 2 

T pv;z = h + 2p - -[21 + h + +4m + 4h + lop)] 
3K P 

where subscript o refers to hydrostatic and z refers to uniaxial conditions, and P and T are the magni- 

2 
3 tude of hydrostatic and uniaxial stresses, respectively, and K = h + - p. As a consequence of assum- 

ing second order nonlinear constants, these equations predict a linear dependence of v2 on P or T. 

Figures A.l and A.2 present the laboratory data for Berea sandstone. It is seen that the plots are 

quite nonlinear, meaning that higher order nonlinear constants would be required to describe this 

behavior. However, since small strains are assumed, it is appropriate to tangent values of the curves at 

values of mean stresses appropriate to the problem being addressed. For this study both the linear and 

nonlinear constants were evaluated for low mean stress conditions. Specifically, values of these 
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constants were derived from the slopes and intercept of the tangent lines shown in the Figures, yielding 

the values given in section 5. 
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Figure Captions 

Figure 1 Resonant conditions and angle definitions for nonlinear interaction 
of elastic waves for sum frequency generation. 

Figure 2 Resonant conditions and angle definitions for nonlinear interaction 
of elastic waves for difference frequency generation. 

Figure 3 Interaction of two plane waves in a volume of nonlinear elastic 
material. 

Figure 4.1 Nonlinear amplitude coefficient and interaction angles for interac- 
tion P(ol) + SV(%) = P(ol+oz). 

Figure 4.2 Nonlinear amplitude coefficient and interaction angles for interac- 
tion SV(ol) + W(%) = P(ol+q) . 
Figure 4 3  Nonlinear amplitude coefficient and interaction angles for interac- 
tion SH(wl) + SH(q) = P(w,+w2) . 

Figure 4.4 Nonlinear amplitude coefficient and interaction angles for interac- 
tion P ( o l )  + P(%) = SV(ol-oz) . 

Figure 4.5 Nonlinear amplitude coefficient and interaction angles for interac- 
tion P(ol) + SV(o2) = P(o1-o-J . 

Figure 4.6 Nonlinear amplitude coefficient and interaction angles for interac- 
tion P(oJ + SV(02) = S V ( o l - ~ ) .  

Figure 4.7 Nonlinear amplitude coefficient and interaction angles for interac- 
tion P ( o J  + SEI(%) = SH(ol-02) . 

Figure 5.1 Normalized scattering amplitude for spherical interaction volume, 
when RA, = 0.5 . 

Figure 5.2 Normalized scattering amplitude for spherical interaction volume, 
when RA, = 2.0 . 
Figure 6.1 Nonlinear amplitude coefficient vs propagation distance for single 
P- wave propagation for attenuation coefficient 
ap = la-4(a),5.10-5(b),ld(c),5. lad(d),106(e)[cm-'] . 
Figure 6.2 Nonlinear amplitude coefficient vs propagation distance for single 
S- wave propagation for attenuation coefficient 
us = 10-4(u),~1~5(b),105(c),5~10-6(d),106(e)[cm-1] . 

Figure A.1 Velocity of P-wave in prestressed sandstone. 

Figure A 3  Velocity of S-wave in prestressed sandstone. 
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Table 1 

Forbidden and allowed scattering processes for an isotropic solid 
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Table 2 (continued) 
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