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Abstract 

Hybrid permanent magnets provide an economical source of 

fixed-strength magnets. The field shape is controlled by the shape and 

position of iron poletips while the strength is determined by geometry 

and the quantity and quality of the permanent magnetic materials. We 

will derive here simple formulas for calculating the strength of simple 

hybrid magnets when driven by materials with linear B-H curves in the 

region of interest (CSEiLI). W e will also show how to tune the strength 

by shunting flux with iron shims to change gap heights. The same 

calculational techniques will allow design of temperature compensa- 

tion based on shunting flux in a temperature dependent fashion using 

ferromagnetic materials with a low Curie temperature’. 

1 Magnet Strengths - An Introduction 

For most simple accelerator elect,romagnets, one separates the design 

problem into a body field calculation which can be carried out very accu- 

rately with a two dimensional code and a small end contribution. The body 

field strength can be easily determined analytically to at least 0.1% from ex- 

amination of the design geometry (for intermediate currents where neither 

remanent field nor iron saturation are important). The situation for per- 

manent magnets is different. If only the simplest portions of the geometry 

are considered, the field strength will not be known with even a few percent 

accuracy. But a careful analysis of the problem for important simple geome- 

tries allow a complete design of the strength, including end effects, to a useful 

precision. In its simplest form, such an analysis will assume that all iron in 

the problem creates magnetic equipotentials. CTsing CSEM 2 to excite the 

poles, one can determine the magnetic potential and the resulting magnetic 

fields from the strength of the CSEM materials and t,he geometric proper- 

ties of the magnet. We will consider cases in which the dominant effects are 

‘This work expands upon a presentation at the DPB Mini Symposium:Permanent 

Magnets, Meeting of the Am. Phys. Society at Indianapolis, Indiana, May 2-5, 1996[1] 
2With CSEM we denote either Current Sheet Equivalent Materials or Charge Sheet 

Equivalent Materials. These are permanent magnetic materials whose differential per- 
meability is small (nearly 1) and quite constant at various excitation levels. One can 

represent these materials quite accurately with either a current sheet or a charge sheet 

on the appropriate boundary. Materials which are described well as CSEhl include hard 

ferrites such as those of Sr and Ba, samarium-cobalt (SmCos) and neodymium-iron-boron 
(Nd2Fei4B). Information on commercial grades of these materials and their properties is 

available from the Magnetic Materials Producers Association[2]. 
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due to the rectangular regions for the permanent magnet materials and ei- 

ther rectangular (dipole) or simple multipole (quadrupole, sextupole...) pole 

tips. Gradient magnets can be calculated as minor perturbations from the 

geometry of dipoles. 

Simple extensions of these ideas provide the formulas which will al- 

low us to provide strength tuning shunts and temperature compensation 

shunts. Related results will provide guidance on the effects of geometrical 

defects such as gaps or CSEM materials which drive direct fields. An exact 

calculation3 of a rectangular dipole is considered in the next section. The 

calculational techniques are introduced in the Appendix. 

This work is motivated by the current Fermilab effort in permanent 

magnets[3]. This includes an 8 GeV transfer line from the Fermilab Booster 

to the Main Injector. Dipoles for this line are currently under construction. 

A design has been proposed for the Recycler Ring[4]: a storage and cooling 

ring for anti-protons to be built in the same tunnel as the Main Injector. 

2 Strength Calculation for a Rectangular Dipole 

Dipole magnets which are constructed in the form shown in Figure 1 provide 

a bending field which is vertical in the gap shown at the bottom of the figure. 

We derive relationships which are assumed to apply along a length Lmag of 

the pole. Assuming that the poletip is an equipotential surface, we find the 

field in a gap of half height gh is given by B, = povm/gh . We calculate the 

magnetic scalar potential r/;, using Ampere’s Law and the conservation of 

flux (4). We first apply flux conservation to the surface of the poletip. We 

describe the magnetic fields in each flux bundle as positive when directed 

into the iron surfaces of the pole. We divide the surface into a number of 

separate areas, iii. and observe that 

c $5; = 0. (1) 

On the rectangular (in three dimensions) surfaces: we assume that there 

is a uniform transverse field, B; so that 4; = A;B; with iii = wiL,,g. 

Additional flux which goes to regions beyond the corners is associated with 

each edge, j: of these rectangular surfaces. It is added separately and labeled 

3We will use SI units for all calculations. For convenience of those used to CGS 

(Gaussian) units, we will frequently quote numerical results and measurements in both 

units. In addition, we will avoid the confusion of the SI units for H by quoting both B 
and poH in Tesla. These are converted to CGS units by multiplying by 104. 
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Figure 1: Schematic end view (upper half) of a permanent magnet hybrid 

dipole. Iron is shown in black. CSEM is cross-hatched grey. Arrows indicate 

the direction of magnetization of the material. The useful volume is in the 

gap above the centerline (shown at the bottom of the illustration). A beam 

pipe is shown to draw attention to this working gap where a vertical field 

is produced. The pole tip is the iron block above the gap. Top, bottom, 

and side plates are iron for flux return. Field is driven by bricks of CSEM 

(ferrite) material placed between the flux return plates and the pole tip. In 

the beam direction (direction of view), the magnet has length Lmag. (To 

facilitate a general notation in the equations we show two dimensions with 

different labels. wg = ~1: ws = ~2.) 
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“excess” flux, d,j. The excess flux is proportional to the pole potential and 

the length, Lj of the edge to which it applies, #ej = EjLjpoVm, where Ej 

is called the excess flux coefficient. If permanent magnet materials are used 

to drive flux at the ends of the magnet, they are added in the same fashion 

while the flux directed from the end covers can be separated into “ideal” 

and “excess” flux in the same fashion as in other portions of the magnet. 

Thus 

We use Ampere’s Law to relate the H in each gap to the pole potential. 

B,gh 
- - hiHi = 0, 

PO 

where we have assumed the H = 0 in the iron. 

The additional constraints required to solve the above equations are 

provided by the B-H relations (constitutive equations) for the materials in 

each region of the magnet assembly. In the air (or vacuum) gaps, we have 

B = poH. For CSEM we assume B = B, + p,poH. Data for a strontium 

ferrite sample is shown in Figure 2. If we solve for Hi in E.quation 3 and 

substitute the result into the constitutive equation for the material in each 

gap we have a formula for the Bi. 

%gh 
Bt = Bvt + PriPoHi = Bri + /LPO- 

pohi 

which can be substituted back into the flux conservation formula. 

c ‘icBri + FBggh) + c E3LjpoVm = 0. z 

We will separate the equation into source terms and flux transport terms: 

c AiBTi t c +Bggh + c Ej~,po~j; = o z (6) 

Po~brl = Bggh = - C AiBr; 
pp + c CiL, 

In a following section we examine excess flux coefficients which apply to 

this geometry. In general, one can evaluate the “excess flux” terms by 

0 analytic calculations 
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Figure 2: Measured B-H curve for sample of oriented strontium ferrite (Ce- 

ramic 8) CSEM. Measurement by KJS Associates, Inc. Fitted results in- 

clude B, = O.dT(d.OOkG), FoHci = 0.27T(H,; = 2.74Oe), /QBH,,, = 

3.83 x 10-2T2(BH,,, = 3.83MGOe). 
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l 2-D Calculation using magnet analysis code (POISSON or PE2D or...). 

The terms of form p,;A,/h, are called the permeance (P) of the gap i (cf. 

McCaig[5], page 197) h w ereas h;/pTiA; is called reluctance4(R). Note that 

the effect of pr is to modify the effect of the space between equipotentials, 

creating an effective height h’ = h/pLT. Since we have several permeances in 

parallel, we add them as shown. This geometrical property determines the 

distribution of flux. 

We find useful analogs for these calculations in the more familiar calcu- 

lations for electrical quantities. In the analog resistive circuit, we represent 

the permeance with a conductance. The analog of the voltage is the mag- 

netic potential (or magneto-motive force) and the current is the analog of 

the flux. In the electrical analog. this dipole is equivalent to a parallel resis- 

tive network driven by a current source where the voltage achieved depends 

upon the net conductance of the attached network. Hybrid magnets with 

no electric coils have a fixed flux available given by C A;B,;. The magnetic 

potential (or magneto-motive force) is determined by the flux available and 

the permeance of the circuit. 

An even more useful electrical analog is provided by observing the anal- 

ogy between Equation 7 and the familiar formula for the voltage of a set of 

capacitors in parallel, 

1’ = c Q; 
Ci ’ (8) 

Capacitance (C) a good analog for permeance (P) in this application. In 

more complex applications with additional magnetic equipotentials, the anal- 

ogy is especially valuable. 

3 Formulation to Solve General Permanent Mag- 

net Fields 

To formulate a general solution to the problem of the magnetic fields pro- 

duced by an array of iron surfaces and a collection of CSEM materials, we 

consider CSEM as charge sheet equivalent material. Following Halbach (In- 

sertion Device Design[G]. page 4.13) we consider an approach which guides 

“Most authors define reluctance with respect to the average p (in the sense of I? = pH) 
whereas, for calculations using CSEM and iron which is not in saturation, we see that using 
linear approximations to the B-H curve and using the differential or recoil p is more useful. 
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Figure 3: General Geometry for Hybrid Magnet with two surfaces and one 

magnetic charge. Even when we represent the effects of a CSEM material 

by magnetic charges. we will not find isolated charges when the full problem 

is considered. 

the general solution for problems of permanent magnet design. We assume 

the general constitutive equation for the CSEM to be 

l? = lg + pc)fi x I?. (9) 

where b is a tensor ivhich is diagonal when one axis is chosen parallel to the 

easy axis of magnetization. IVe denote the magnetic easy axis by 11. 

v.B=Od.B,+V.pofix~ (10) 

v . ,ll(gi x I? = -v . lfT = pm (11) 

We observe that the CSEY determines the value of 2 through ~II,P~ and 

the charge density pm. LVhen B, is uniform in the volume of the CSEM, 

then pm will be non-zero only at the surfaces. 

We will construct two solutions whose difference is the desired general 

solution outside the iron. By linear superposition: we may consider a point 

charge and 2 iron surfaces as shown in Figure 3 and generalize from that 

solution. 

l Solution 1 has fields created directly by the charges (p, # 0) but 

has potential I’, = 0 on all surfaces. The solution is represented by a 
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scalar potential r/;( ?) and a magnetic field flq( F) = VT/, . The resulting 

flux emanating from surface 1 is Oq = Jr pOgq. dZ = crq, where cl is a 

constant to be determined. We call these the direct fields from charge 

9. 

0 Solution 2 has potential r/,u on surface 1 but V . B, = 0 (no magnetic 

charge) everywhere outside the iron. The solution is represented by a 

scalar potential I>( ?) and a magnetic field gs( rJ = Vv,. The resulting 

flux emanating from surface 1 is Q~ = Jr pOI?$. &i = c~LSO, where c2 is 

another constant to be determined. We call these the indirect fields. 

l We construct the desired solution from these by demanding that the 

flux created by the charges in solution 1 be canceled on the surface of 

body 1 by the flux created by solution 2. For this single charge, the 

solution is 1’ = & - T/;. I?(?‘) = gq(7) - gs(q. The net flux from 

surface 1 is Q = 0 = f$g - ds = qcl - Vsoc2. 

3.1 Solution to Direct Fields: Point Magnetic Charge 

We will demonstrate here that the constant cl = vs(F)/1/19e. Consider 

I= 
s All s 

(Vsc/,B, - v&)dZ 02) 

where the integral is over the surface of all iron in the problem. On surface 

0 (the potential reference) V, = IT3 = 0. On surface 1, r/b = 0, b< = V,,. 

On the surface at x, I/B goes to zero faster than the area goes to ‘XI, thus 

giving no contribution to the integral. We are thus left with (for the problem 

with two iron surfaces) 

I= 
s 

r/,&G = v&o,. (13) 
Sl 

Consider now 

v. (v-J& - r;&) = T$V. tiq - v,v. & + I&. IIFs - IITs. R’,. 

\iWe note that 

(141 

v.lTq =/I& ,V~& =o, (1.5) 

the first by definition. the second by our assumption about the second solu- 

tion. 
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By symmetry. we see that 

1 O/25/96 11 

allowing us to cancel the final terms in Equation 14. Returning to Equa- 

tion 12: we convert the surface integral of the argument to a volume integral 

over the divergence of that argument, 

I= 
J’ 

( vsB; - Ti,B+&a’ = 
J 

vs( %n(r’) 
.A11 s I’01 

(18) 

Taking advantage here of the fact that we are considering only a point 

charge: we find 

I = V#)q (19) 

Since 

We thus have 

I = V-J F)q = v&h,. 

o 
4 

= I,‘:( 3 
J/>, q: 

(20) 

(21) 

proving the hypothesis of this subsection. 

3.2 Constructing Useful Solutions 

Since no real magnetic charges exist, the solution above is only useful when 

combined by linear superposition to provide the solution when there is a 

set of charges. For each set of charges. the resulting potentials, Vsu3 define 

the indirect fields. These need to be calculated by solving for Vs(F) and 

calculating c2 = $$. 

When considering the entire surface of body 1, we know that for any 

solution of magnetostatic hlaxwell’s Equations, the next flux will be zero. 

Although we have demonstrated a mathematical separation into direct and 

indirect fields, the resulting understanding comes with a pair of added ob- 

servations. 

l We often will place CSEM so that the surface touches the iron. In 

fact in the examples above, all CSEM was so placed. By examining 

regions which include part of the CSEM and the adjacent iron, we find 

an apparent charge “on the surface” of the iron. 

l Useful calculating tools will not always consider the entire volume 

of a problem but instead will use inner boundaries and appropriate 

boundary conditions. 



FERn~IL~B/C’onf-96/2;.3 1.1 1 O/25/96 12 

By dividing problems into regions with the considerations mentioned above, 

we are ready to find general solutions. One further consideration makes 

most problems not only possible but quite tractable: In regions far from the 

sources, the direct fields decay exponentially with a characteristic length 

governed by the spacing between iron surfaces. 

4 Formulas for Excess Flux Coefficients 

Calculation of indirect field contributions is simplified considerably by the 

concept of excess flux coefficients introduced above. In the portion of the ge- 

ometry where the equipotential surfaces are parallel, the dominant field con- 

I A 

hl 

t 
C 

- 

B 

h2 - 

v=o 

Figure 4: Illustration of geometry at corner of a magnet pole for calculation 

of “excess” flux. The iron at potential r/b is a pole for the magnet. The 

line CD is a symmetry plane of the magnet and is at potential V = 0. We 

assume that this is a cross section for a portion of magnet of length L in 

the direction of view where L is large compared to hr or h2, such that a two 

dimensional calculation is appropriate. 
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tribution is a uniform transverse field. -4 non-uniform contribution, which 

is largest at the corner, dies exponentially with the distance into the gap. 

Beyond the corner, the field is governed by the same potentials but is quite 

non-uniform. We present here the formulas for the flux contribution of these 

fields. 

Consider a two dimensional view of a dipole magnet as shown in Figure 4. 

We see the right upper portion of the cross section with the dashed horizontal 

line marking the vertical (top-bottom) symmetry plane. The upper half of 

the gap is of height hr with the half pole extending from A to B and having 

width x1. The return yoke is shown along the right side and is separated 

from the poletip by a gap hz. The calculation’ sums contributions of flux 

from the uniform field (vertical) which exits from the pole between A and 

B, and a term which accounts for the flux which exits the pole from that 

side but passes to the right, either at a wider point on the mid-plane C-D 

or into the return yoke iron to the right. 

We assume that the magnetic potential of the pole is V = 5; where we 

have assigned the potential 0 to the return yoke. The potential along the 

horizontal mid-plane (line from C to D) will also be \’ = 0. 

We require the flux OAB (excess flux at the pole)6 which passes through 

the lower boundary of the pole between points A and B. It is given by 

d/m = p&@ + E.423) 
h 

w 

E.AB = i(ln ---CL 
1++ 

77 4 
+ 2a arctan k), 

with 

(23) 

where a = hl /hz. 

The flux which passes through the gap between C and D (excess flux at 

the symmetry plane) is governed by similar equations 

OCD = poVo( 3 + ECD) 
hl 

(24) 

where 
2 

ECD = EAB $ - ln a. 
ii 

(2.5) 

‘The results reported in this section are given without derivation. They were provided 

from class notes distributed by Dr. Klaus Halbach at the US Particle Accelerator School 

classes on magnet design. I thank Dr. Ross Schlueter for help in obtaining this material 
and Dr. Halbach for reviewing my presentation of it. 

GB e sure to note that the flux calculated in this section is for the two dimensional case. 

To obtain a ‘real’ fiux in T-m2 one must multiply by the magnet length, Lmag. 
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Excess Flux at Dipole Pole Corner 
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a = h-l/h-2 

Figure .5: Excess Flux Factor is shown as a function of the ratio of gap over 

side spacing. 

We identify the term xl/h1 as the ‘ideal’ flux coefficient and E.AB (Eco) 

as the ‘excess’ flux coefficient. 

Note that the flux passing through the right side of the pole above point 

B is governed by an ‘ideal’ flux coefficient plus an ‘excess’ flux coefficient 

given by EAB with the substitution a’ = l/a. In Figure .5 we have plotted 

the values of EAB and END as a function of a. 

The case where hl = h2 (u = 1) provides an instructive example. 

E.AB = i(ln i + 2 arctan 1) = .2793 (26) 
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OX? = /L&(2 + .2;93) (27) 

Note that this excess flux is equivalent to the contribution of a portion of 

the pole of width .279.3hl. Xote that E.~B = END. 

5 Temperature Compensation 

The properties of ferromagnetic materials are temperature dependent: 

l The saturation magnetization, -21, at temperature T is described by a 

Curie Law. 
x = tanll M /M() 

MO T/O, . 

where 0, is the Curie Temperature and Me is the saturation magneti- 

zation at zero temperature. 

l The magnetization at fixed high H (above the “knee” of the M-H 

curve, where the slope drops to near 0) is still well described by the 

the Curie Law. 

l Upon examination, one will find that as a consequence: at a fixed 

temperature the value of 
1 dM -- 

M dT 
(29) 

is almost uniquely determined by the Curie temperature. 

l The Curie temperature of strontium ferrite is about 4.50° C. This gives 

a room temperature value of 

(30) 

We wish to use temperature compensation alloy to cancel the strength 

reduction caused by the lower flux produced by the ferrite when the tem- 

perature rises. IVe choose an alloy for which the temperature coefficient is 

much larger than the one for ferrite (one with lower Curie Temperature). 

LVe place it in the magnet structure so that it subtracts from the flux on 

the pole. When the temperature rises, the compensator will steal less flux 

as the ferrite produces less flux. 

As an example geometry, Figure 6 is a side view of the upper portion 

of a magnet. W e install temperature compensation materials periodically 
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Figure 6: AIagnet Assembly side view with temperature compensator alloy 

installed as sheets between permanent magnet material bricks. 

between the bricks. Since Iifii is continuous across a boundary, we expect the 

same H but we expect to provide a flux of B with the ferrite and subtract 

flux with the compensator. The geometry has been employed to compensate 

the gradient magnet designed for the 8 GeV transfer line. 

Following Halbach[;]. we calculate the compensation effects with the 

same formalism as above. 

B,y = - 
C -4B,i 

m= + C Ej L,p&n 

We justify this based on the linearity of the measured B-H curves for the 

compensator shown in Figure 7. We operate with H of about 1.500 Oe 

(poH = 0.15 T). H owever, the sign of H places the ferrite in the second 

quadrant of its B-H curve. It places the compensator in the third quadrant 

of its B-H curve. Since we will use data measured in the first quadrant! 

vve will replace B, - -B, for the compensator data. We will also add a 

subscript at this point to distinguish the compensator (c) and ferrite (pm) 

properties. 

B 
3 

y = _ C -4pmiBrpm - C Act Brc 
pp t c EjLj/&li;, 

Temperature effects of the geometry are small (- lo-“/” C). We assume 

(and have measured) that dpL,/dT is small. We will set t,he temperature 

derivative d(B,y)/dT = 0. LVith the assumptions above. the denominator 

is temperature independent. yielding 

(33) 



FERMILAB/Conf-96/27.3 1.1 1 O/25/96 17 

Temperature Compensator Test - B-H Curve 

Telcon -- Sample 9 
_~ I I”’ ‘I”’ 

8 0.7 L 

;i; 
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0 30 Degree C 

A 40 Degree C 
a 52 Degree C 
V 39 Degree C 
> 29 Degree C 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

mu-0 t-i (Tesla) 

Figure 7: Measured B-H Curves for XiFe C’ompensator at various tempera- 

t ures 
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Note that 

l it is $$ not k% which establishes the compensator area. 7 

l compensation is set by area ratios, not volume ratios, though the re- 

luctance effects of the compensator gaps require consideration of the 

thickness to achieve a specified field strength. 

l Calculations of requirements for ferrite (or other CSEM) or compen- 

sator will probably be carried out using Equation 32. However, when 

one has determined the proper ratios for the materials to be used, one 

can return to Equation 7, applying the property of the mixed material 

when continuing the design problem. 

Using Equations 32 and 33 we can design a compensation system for 

temperature stabilization of the field strength. If the magnet has only 

indirect fields (all flux through the working portion of the gap emerges 

from iron): then the normalized field shape is temperature independent 

(even without compensation). From the NiFe temperature compensation 

alloy which is commercially available, we have selected one which provides 

1/M dM/dT ry -2L%/0C and B,, N 0.25T. We expect to provide a temper- 

ature compensation to w 10p4/“C using these techniques. For many designs, 

We will mix ferrite bricks and compensator in a regular array along back 

side of the poletip. The fi will be uniform, but the 8 will reverse at each 

boundary between ferrite and compensator. We have no precise measure- 

ments of compensator properties. Instead. we use a successive refinement 

approach to achieve precise field strength and temperature compensation 

based on measurement and tuning. 

6 Trimming Magnet Strength 

The integrated strength of storage ring magnets will need to be established 

with a relative accuracy of 10e3 - lop4 depending on other details of the 

accelerator system design. For a fixed magnet geometry, we have shown that 

the strength is set by C AiB,i. The 0.15 T magnets which we are building 

are about 4 m long and use about -50 ferrite bricks (-I” by 6”) per pole. At 

fixed B,, one creates strength changes of 2% by adding one brick. 

Control at the 10m3 level can be achieved by fractional brick areas (A;) or 

by careful control of B, on some or all bricks (precision demagnetization). 

To achieve finer control of the pole strength to match the poles and to 

set the precise magnet strength will require further adjustment. Positive 
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Figure 8: -Arrangement of materials for an adjustable field strength trim 

using a flux shunting variable gap. For small shim one ignores the fact that 

non-perpendicular fields are introduced. 

adjustment using movable (rotatable) ferrite pieces is an alternative which 

has not been pursued. Adjusting the permeance with a variable gap flux 

shunt is a straightforward solution, however. 

Figure 8 illustrates a useful tuning geometry. 1Ve calculate with the 

same formula (Equation32). identifying separately the space (AT) set aside 

for variable gap (h = hT - 0) trimming. 

pc)r;;, = B,y = - 
C -4iByi 

-f= -I- 6 +cEJ,’ 

Note that this is an approximation which assumes that all fields are trans- 

verse. We apply it to determine the magnitude of the area required for tun- 

ing. A more accurate analytical calculation is possible in the 2-dimensional 

approximation, but we will not pursue it here. 

Identifying 1,; as the value of I;;, when 5 = 0 we have 

(3.5) 
r,irl 1 
-II 
I,, *-p 

T T 

(l+ c Q-=+s+p,L, 
1 

h, 

1-m 1 1 
r/,= = 1+ 

&(* 
(36) - 

8, 
1 + 

$yI’T(;T-F)) 
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where pe is the permeance with the initial tuning position. Let pi = AT/~T 

be the initial permeance of the trim location and let us expand, keeping 

terms up to first order in 6, giving 

p_l-EL 1-m 
1,; PO h’ 

Multiplying the potential by the permeance gives the fiux through that 

permeance. Since the tuning area sees the pole potential. we can understand 

the tuning range by relating it to the total flux entering the pole. 

--l-OT-. r/l, 6 

I/, dtotal h- 
(38) 

One achieves a tuning range of 10m3 while varying the tuning gap by 

2.5% if the fraction of flux shunted via the tuning gap is 4 x lo-“. Flux 

compensation and strength tuning can use the same gap region. 

7 Effects of Gaps in CSEM 

The above calculations are easily extended to the case in which the space 

available for CSEM is not filled. Of greatest interest is the case in which a 

pole area Ai faces a gap whose total height is hi but for which the portion 

adjacent to the pole has material 1 with height hl and the balance of the gap 

is filled with material 2 of height hz. (A2 = Al). We again apply Ampere’s 

Law but now we find 

B,yh - - hIHI - h2H2 = 0. 
PO 

(39) 

By flux conservation. we know B1 = Bz = B. Using B = B, + ,uL,p,,H for 

each material, and substituting in the above equation for HI and Hz we 

have 
BgYh - - &(B - K-1 I- (30) 

PO T 
&CB - &2) = 0. 

T 

Before solving for B. let us simplify manipulations by expressing the heights 

as effective heights. 

B.dJh ___ - s( B - BT1) - z(B - Br2) = 0. 
PO PO 
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Solving for B we find 

B = Bggh t h:&l t h:&;! 

h; + h; 

1 O/2.5/96 21 

(421 

Substituting this result into the flux conservation equation gives 

c ot = c AB, t AI Bggh t h; 81 t h; Br2 

h; + h; 
t -&bi = 0. (43) 

We will neglect the excess flux terms in the following steps. 

&%(B,;+ ~~+A~~ggh+;)U;$-h:Br~ =o. (44) 
I 1 2 

c A;B,; + ill 
W&l + h;Br2 

h’, t h; 
(4.5) 

At this point we will use the symbols Pi for the permeance and Ri = F’r’ 

for the reluctance of the region filled wit,h material i. We solve for B,gh , 

&It, = 
c k&i t Al& h;I;I’h; + AzBi-2 h;yh; 

x$+h;:lh; 

(46) 

B,gh = 
C -4iBTi + ArB,r RIR;R2 + A2Br2 nlR+2n, 

CR;‘+& 
(47) 

We observe that the modified material changes the result in two ways. The 

permeance is changed. but this change is expected to be small. The driving 

flux is modified much like the change observed with a voltage divider circuit. 

If one of the materials is air, then we would obtain the correct result by 

adding a charge to the pole of the amount provided by the CSEM but also 

adding a sheet of charge with opposite sign on the other face of the CSEM. 

It subtracts from the net flux in proportion to the potential on the surface 

where it is placed. 

These equations can be applied simply to some situations which are use- 

ful. When the CSE51 is supplied in thicknesses which are half of the desired 

gap to the pole. one can use two pieces stacked in depth and average their 

properties. If less material is needed, a single piece provides half of the flux. 

For compensation, rather than filling an available gap with compensator 

material, one can reduce the total gap with iron shims, which will increase 
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the field, but leave an air gap between the iron and the compensator, to in- 

crease reluctance and thereby reduce the field and the compensation. This 

compensator design alternative permits one to optimize the cost of CSEM 

and compensator. For present efforts, neither ferrite nor compensator is a 

dominating cost so simpler designs have been selected. 

8 Example Calculation: PDD Dipole 

To illustrate these calculations, we will examine the design and performance 

of a dipole magnet series which will serve in the 8 GeV Transfer line from 

the Fermilab Booster to the Fermilab Main Injector (under construction). 

This magnet is designated PDD. It is required to provide a higher field 

strength to match the bend requirements of the tunnel. It achieves this 

with a “double-double” brick arrangement - two layers of bricks above the 

pole and two layers of bricks beside the pole. Figure 9 illustrates an end 

view of the design. In addition to the indirect fields which dominate the 

strength of this magnet, ferrite is employed to create direct fields in the gap. 

This ferrite is below the pole at the edge of the gap. It is used to shape the 

field in the gap. These %ide” bricks add less flux to the pole than those 

in the positions above and below the pole which add in the fashion which 

was calculated above. The field uniformity requirements are not stringent 

so the space for compensator was selected where it bridges the gap, which 

much increases its effectiveness while leaving more space for ferrite bricks 

than is possible with the design illustrated in Figure 6. It is built with a 97 

inch long pole tip iron and 101 inch long flux return iron. We will engage 

in a several step process to compare the calculations above to the observed 

performance of a series of these magnets. 

8.1 Permeance Calculation 

We begin with a calculation of the permeance. This is shown in Table 1. De- 

tails are presented for the purpose of letting the symmetry of the calculation 

assist in making the structure of the calculation apparent. The “ideal” flux 

is calculated with one term for each of six faces of the pole. The “excess” flux 

calculation produces two terms for each of the 12 edges of the pole. Only a 

few det.ails are not treated fully. The ends are calculated as if there were a 

solid end plate. .A plate with a hole for the beam is used. .A permeability 

correction to excess flux on the sides is ignored. The ferrite bricks extend 

over much of the area considered for the excess flux calculation. This will 
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Table 1: Calculation of permeance of the magnetic structure of Fermilab 

PDD dipoles for the Booster to Main Injector 8 GeV transfer line. The 

calculation applies to the upper half of the magnet. hlultiply by two to get 

the total permeance. 
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increase the permeance of those regions by 4.4%. If this applied to the full 

excess flux it would increase the permeance by less than 1Yc. The permeance 

;,\__- -- 
.‘ , 

Figure 9: Schematic end view of the PDD magnet design. Items 1 & 2 

are the flux return iron, Item 4 is the pole tip assembly. consisting of two 

pole tips, spacers. and compensator strips of 2” high by 0.050” wide NiFe 

temperature compensation material. Item 6 is a 6” wide by 1” high by 4” 

deep ferrite (top or bottom) brick. Item 7 is a 3” high by 1” wide by 4” deep 

ferrite side brick. rlrro\vs indicate the direction of ferrite magnetization. 

Items 3, 12. si 22 are spacers. 
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Probe LD1404 Effective Width 

Int Capacitor (MTFIN210) lE-06 

Measurement Time Constant 0.10064.5 

PDD Design Properties 

farad 

set 

Compensator \$‘idth 0.050 inches 

Compensator Length 9’7 inches 

Compensator Strip Count 26 

PDD Pole (& Effective) Length 97 inches 

PDD Half Gap 1.01.5 inches 

PDD Permeance 62.8792 m 

Table 2: Calibration constant and geometry for Calculation of Strengths 

for PDDO19. Effective width of Flipcoil LD1404 is based on nominal 0.25” 

aluminum form and 10 turns of 0.010” wire. 

of the region which contains compensator material has been accounted for 

above. The compensator permeability correction is larger (pu, z 1.2); the 

net effect would be to increase the PDD permeance by about 1Yc. 

We have measured the flux provided by each brick in the assembly of 

these magnets. The compensator is not measured. We evaluate the strength 

of these magnets with a simple flipcoil system in the assembly facility at 

Fermilab Building MP9 and compare the results? with predictions above. 

After completing the assembly, the magnets are shipped to the Magnet Test 

Facility at IB#l where the strength is confirmed with a well calibrated 

system. JVe will examine various contributions to the strength of PDD 

dipoles. Tables 2 and 3 provide the details. 

‘The measured integrator voltage (after drift correction) is assumed to be due to a flux 

change such that d = I,-RC’ where RC is the time constant of the measurement system. 
The integrator calibration is made with low coil resistance. One adds to the calibration 

RC the product C,,tR,,,~. The value of s Bdl is given by s Bdl = $/i’:Vw. where the 2 

is due to flipping from positive to negative flux (1800). 
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Results with no side bricks or compensator 

Brick Strength (top + bottom) .596i4.8 “gauss” 

Brick Strength (top + bottom) 0.5.5065 T-m2 

Flip Coil integrator Voltage Oo5.529796 Volts 

J Bdl 0.421370.5 T-m 

B (in body) .1710247 T 

Pole Potential (~01’,) 0.0044092 T-m 

Measured Permeance 62.4436 m 

Table 3: Calculation of Strengths for PDDO19. Potentials are p,,,V,. 

26 
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8.2 Strength Contributions of Top and Bottom Bricks 

Xs an initial step in evaluating these calculations, we assembled magnet 

PDDO19 with only its top and bottom bricks installed. We evaluate the 

strength from a measurement of the J Bdl wit,h a flip coil. For a permanent 

magnet. the effective length, Lmag is the same as the pole tip length (97”). 

The ferrite bricks Were evaluated using the MTF Brick Tester[8] which was 

calibrated using the results from bricks which were measured by the supplier. 

The flus created by the top and bottom bricks is fully captured by the 

magnet pole so the contribution which they make is directly calculable from 

Equation 32. Each brick is measured individually. They are stacked two 

bricks high in the PDD design so the calculation averages the results for two 

bricks (the summed flux is divided by two). 

We choose to compare measurement and calculation by measuring a 

permeance for the PDD design as a ratio of the flux from the bricks to the 

pole potential which they create (as measured by the integrated field). We 

find that the measured permeance is 0.7% lower than that calculated in 

Table 1. Xs noted above: the calculation fails to include small effects which 

would further increase the discrepancy by a further one or more percent. 

Random uncertainties in the measurement of J Bdl and of the bricks are 

thought to be of order 0.1 - 0.2%. Possible systematic and calibration errors 

in the brick tester are under evaluation at this time. For the balance of t.his 

calculation. we lvill use the permeance measured with the top and bottom 

bricks. 

8.3 Strength Contributions of the Compensator 

Figure 7 is based on additional measurements in the system described by 

Chen et. a1.[9]. It may be subject to significant uncertainties so we choose 

to use measurements of PDDO19 to evaluate the st.rength contribution of 

the compensator. The steps are shown in Table 3. Using the measured 

potential change as showrl by the flipcoil measurement. and the permeance 

inferred above. WC calculate the flux produced by the compensator. Using 

the compensator area, we infer a value for B,. Sate that the compensator 

bridges from the upper pole to the lower pole in this design. not from pole 

to the flux return. In effect each 2” wide piece of compensator provides two 

1” compensators. For this reason we double the area of compensator in the 

calculation. The inferred value for B, is larger than the room temperature 

value found in the fits to Figure 7? but within the systematic uncertainties 
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of that measurement .’ 

8.4 Strength Contributions of Side Bricks 

The flux from the side bricks is not efficiently captured by t.he pole tip. 

Less than l/3 of the brick face is in contact with the pole tip. Rather than 

utilizing the POISSOS calculations of the PDD strengths, we will infer the 

contributions of the side bricks from the PDDO19 measurements. From the 

measured change in pole potential: we infer the flux change due to side bricks 

from the previously measured permeance. We compare this to the measured 

flux produced by the bricks in the brick tester. Again, we average the two 

bricks which are stacked at each location by dividing the side brick sum by 

two. The overall side brick efficiency (65.77%) indicates that about half of 

the flux which is not directly captured by the side of the pole is effective in 

creating bending strength in this design. 

9 Results from PDD Production 

More than 40 PDD dipoles will be built. Using PDDOOS - PDDO16, we 

will examine the data on brick and magnet strength to further confirm the 

usefulness of the above calculations. As in the studies of PDDO19, we will 

use the average flux produced by two bricks stacked on top of each other, 

with top and bottom bricks contributing at full strength and side bricks at 

6.5.77yC. The data will be presented in two ways. First, we will assume 

that all compensator contributes with an average B,. \Ve will compare 

the magnet strength predicted by the brick and compensator strength to 

the measured magnet strength. These results are shown in Figure 10. For 

magnets PDDOOC01.5, the RMS deviation between measured and predicted 

strength divided by the mean measured strength is 0.23%. Equivalently, we 

will assume the bricks correlate perfectly with the measured strength and 

use the magnet strength as a measure of the B,, of the compensator. A 

‘This measurement was performed at about 0.15 T fields. The compensator in the 

fully assembled PDD sits at about .245 T fields. Since the B-H line of the compensator is 
still curved in this region. the effective intercept (BT) may be somewhat higher at higher 

fields. We expect that precise compensation should rely on detailed adjustment rather 

than precise measurements of the compensator properties. Nevertheless, we expect to 
monitor the strength and compensation properties in terms of the parameters which are 
identified in this calculation. expecting that they are both approximately correct. and that, 
within the range of designs under consideration. the model upon which this calculation is 
based is quite suitable. 
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Magnet Strength Correlation 
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Figure 10: C’omparison of the measured strength of PDD dipoles with a 

prediction assuming B,, = .361 T. Magnet PDDO16 shows the apparent 

poor correlation. Dashed line corresponds to ideal prediction. For mag- 

nets PDDOO%01.5. the normalized RMS deviation between measured and 

predicted strength is 0.23%. 
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Magnet Strength Correlation 
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Figure 11: Apparent B, of FeNi Compensator material as inferred from 

measurements of ferrite flux and magnet permeance in combination with 

the integrated bending field produced as measured by the flipcoil technique. 

Low value is the one inferred for PDDOlG. 
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histogram of the resulting BTc is shown in Figure 11. The data for these 

magnets is provided in Table 4. 

The production of PDD magnets is currently under study and additional 

results will be compiled separately. Of note is some information on compen- 

sation which is now know. We have measured many of these magnets at both 

room temperature and at cy .‘J”C. For most of them, the relative strength 

change is 5 2 x 10-a. confirming that compensation has been carried out 

properly. LJore detailed studies indicate that we require 24 (26) compen- 

sator strips for PDDOlO (PDDOlG), indicating that significant differences in 

compensator properties do exist. In Figure 11, the data for PDDOlO lies in 

the group with larger values of B, . As noted, PDDOlG measurement would 

suggest that the compensator used for it has a lower B,. If we assume 

perfect compensation and apply Equation 33. we find 

d&C - = 
dT 

C -4pmiBrpm ( 1 dB,prn ) 

C&; B,,,dT 

If we apply the weighted sum of the brick strengths and assume 

1 d&m 
-~ = -.002, 
B rpn cm 

(48) 

(49) 

Table 4: JJeasured properties of selected PDD dipoles at the end of ini- 

tial production. Strength trimming was applied subsequent to the strength 

measurement. 
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we find values of cLB,,/dT of 0.00547 T/“C (0.00594 T/“C) for PDDOlG 

(PDDOlO). Th ese are of the same magnitude but not as high as the values 

reported by the manufacturer for measurements at 50 Oe. 

10 Effects of Steel Properties 

Effects due the the finite permeability of steel are often not large in hy- 

brid permanent magnets since one is dealing with intermediate fields where 

neither the remanent field nor large H values associated with saturation 

are important. Since the effects are small, we are satisfied to find an esti- 

mate for their size. In the same spirit as the balance of this calculation, we 

will consider the effects on a dipole of the steel pole and flux return in the 

approximation that for that for steel 

B = popr(H - Hc) (50) 

where pl is the relative permeability of steel. If we parameterize low carbon 

steel with this form. we may expect H, less than 3 Oe (poH, < 0.0003 T) 

and, for B < lT, pr > 2000. This approximation is useful for typical magnet 

iron below about 1 T. 

To illustrate this calculation while keeping the algebra less cluttered, 

we will consider again a magnet like Figure 1 but assume that hr and h3 

are sufficiently large that we can neglect the flux through those sides of the 

magnet. We will label the thickness of the flux return steel as tr? t2, and ts. 

Following the same method, we use Ampere’s Law on a path beginning in 

the center of the gap and extending through the CSEM above the pole, then 

to the right through the upper and right side return yoke to the mid-plane. 

The return portion which follows the mid-plane to the starting point adds 

no contribution. 

B,LIh w1 &‘2/2 0 -+ J PO 0 
H,oi,(~)4/+Hz+ J H,&)dx+ J H,,,(Y)&/ = 0. C-51) 

0 ?L’l 

1Ve will substitute for H using Equation .50. In both vertical segments, B is 

uniform and given (using flux conservation) by 

Bp, 
B,,/,(y) = B, Bwt(~) = 2t 

1 

Along the top we assume that the field increases Linearly since the return 

yoke has constant thickness and flux is added in linearly. 

49 &et(x) = - 
t2 
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with x:y measured from the center of the gap. Substituting for H and 

performing the integration we have 

B,gh 4 -+H,wl+- WI -112 
B2 - 8 

+H,s+ 
B, w; 

--++H,u~l+~- = 

PO FOP1 POPi- 2 POP1 gt2 POcLl 2t1 

C.54) 

B, wlw, 
0. 

Bggh 
- + H,('Lw + y)+ 

PO 

!$fk) _ h2 B;,pBT = 0. C.5.5) 
P 

Solving for B2 we have 

WI wg 

B2 = &(gh+ +'I + 2 + %tl))+ B, +poi'-~(2wl + 7). c.56) 2 

Substituting into the flux conservation equation we have 

0 = B,w,+pr 
i 

~~g~+~(~~+~+~))+B,~12+~o~,~12w~+~). 
2 

(57) 

Solving for Bggh we find 

&lh = - 

Brw2 + ~o~rfJcl~.2 

h2 (2w1+ y) 
(.58) 

We find that the iron modifies the results found in Equation 7 (or Equa- 

tion 7.5) in two ways. The source flux is incremented by the flux which is 

driven across gap 2 by Ii,. .As usual: the field added across Gap 2 is propor- 

tional to the iron path length divided by a gap height. The permeance is 

modified by an additive term proportional to l/p/. Since the coercivity de- 

pends upon the excitation history, the observed field contribution from the 

coercivity of the steel may depend strongly on details of assembly and/or 

previous magnetization history of the iron. if any. In no case would we 

expect a large contribution from the term which depends upon /LI. 

11 Higher Order Multipoles 

We have seen that the strength calculation involves relating the desired 

field strength to the magnetic scalar potential. In turn, this potential is 

determined by the flux supplied by the CSEM and the permeance of the 

structure. To understand simple multipole structures, we will need formulas 

for the gap permeance and the relation between the pole potential and the 
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multipole field. \17e will consider a symmetric 2Kpole structure. We will 

examine a single pole of this structure beginning with the center of the 

multipole and extending in the angular region from 0 to T/X. An iron pole 

tip centered at r/2S is placed at radius a. The poletip is shaped to form 

the equipotential for the multipole 2-N. We assume that the field created is 

precisely the desired multipole. The poletip is terminated adjacent to the 

z axis at z = ou and symmetrically along the other edge. Sotice that the 

gap at the bottom of the dipole structure which we have examined has this 

form with :V = 1. 

The simple form of the multipole field permits us simple calculations. We 

relate the design strength of the multipole field? B.v, to the pole potential 

by observing that at angle 7r/2iV (where the pole is centered), the field is 

entirely radial. The Line integral is then 

/LO\;, = /g. di+= s,” Bl,~rS-l&- = -$j\& 

To calculate the flux which enters the pole, we will choose to calculate twice 

t,he flux which crosses the x aaxis. since the same flux will also cross at K/N. 

The simplicity comes from the fact that all fields are tangential along the z 

axis. 

0x2 aa 
s s 

al7 
Bsdr = 2 

2 
BNr”-‘dr = -B,\~(cML)~~ 

N 
WV 

0 0 

The (2-dimensional) permeance contribution from this multipole gap is given 

by the ratio of flux to potential. 

p=L= 2ciAYi. 
PO\;, 

(61) 

To complete the calculation for this pole, one needs to describe the remaining 

iron, gaps: and CSEM. The contribution to the permeance from the pole 

region is simply added to other parallel permeances. 

Calculations for gradient magnets can be well approximated by the cal- 

culation for a similarly shaped dipole. 

12 Summary and Conclusions 

We have shown that the magnetic scalar potential on the pole of a compen- 

sated hybrid permanent magnet is given by 

pov; = - C -4pmiBrpm - C ilctB,c 
CP~ + CL.& 

074 
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where A; is the area of a portion of the pole tip, pi the corresponding per- 

meance due to “ideal” flux, LjEj the permeance due to “excess” flux term 

where Ej is the excess flux coefficient for edge j and Lj is the length of 

that edge. A;B, is the flux added (subtracted) by the permanent magnet 

(compensator) material. 

The corresponding design field is given by 

where 2N is the number of poles for the design field. S=l for dipole. u, is 

the pole radius for multipoles or the half gap for dipoles. This magnet will 

be thermally compensated provided 

In summary vve have shown that 

l Analytic calculations provide detailed design formulas which relate ge- 

ometry and magnetic material properties to the magnet strength. For 

hybrid permanent magnet designs which are suitable for accelerator 

use, we have demonstrated understanding at the 1% level. 

l Flux Shunting for Temperature Compensation as suggested by Bertsche 

et. a1.[10] can stabilize the strength changes with temperature, We 

have derived formulas which permit detailed design and understand- 

ing of temperature compensation systems. 

l Setting the magnet strength by adjusting the total flux available from 

the permanent magnet material (CSEM) is a useful production tech- 

nique. 

l Further trimming of the strength is available using flux shunting tech- 

niques. 

Experimental success of these techniques has been demonstrated. 
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A Calculations for Simple Dipoles 

A.1 Simple Plate Magnet 

We will illustrate the technique for calculating the strength of a hybrid 

permanent dipole with a very simple geometry. We will then build on that 

to obtain useful formulas lvhich account for more effects, allowing precise 

calculations. Figure 12 provides a very simple geometry. -Assume that we are 

driving the field in a gap of height g and width wy using a brick of CESM 

(ferrite) materials of height h (= g) and width wprn. In order to obtain 

h 
g 

Figure 12: Schematic end view of a simple permanent magnet. Top and 

bottom plates are iron. Field is driven by brick of CSEM (ferrite) material 

placed between the plates. 
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simple, illustrative formulas, we will solve the one-dimensional problem in 

which we neglect the horizontal components of B in the gaps and assume 

that the boundaries are sharply defined at the edges. We will use two of 

Maxwell’s Equations. We apply the conservation of magnetic flux on the 

external surface of the upper pole (iron). 

Bp, + BpmwUpm = 0 65) 

since (by assumption) the field is zero except on the two inner surfaces. We 

apply Ampere’s Law on the path shown. So current is enclosed by the path. 

We note that due to the high permeability of the iron, the H is small for 

the given B., and the contribution from the portions of the path in iron is 

negligible, giving 

B,g 
--h,H -0 nn - (66) 
PO ’ 

, 

The problem has 3 unknowns - B and H in the gap and in the CSEM 

(ferrite). The two additional equations are provided by the magnetic prop- 

erty (constitutive) equations for the materials. In the gap we have B = poH. 

The properties of a typical CESM material is shown in Figure 2 which a a B- 

H curve for strontium ferrite. \.lr, will be operating in the region poH > -.27 

T where the ferrite properties are well appro,ximated by B = B, + pU,poH = 

0.400 + 1.043poH. 1Ve define pr as the recoil differential permeability of the 

CSEM materialg. The values of B, and p,. are typical of oriented strontium 

ferrite when magnetized to saturation. 

We will characterize the iron surfaces by their magnetic potential, poV, 

where 9 = B,. B, is uniform and, defining the potential reference (zero) 

on the lower pole, for the upper pole we find pur/;IL = B,g. We will solve 

for this using the expressions above. We solve for H,, in the expression 

from Ampere‘s Law and substitute for H,, in the equation for the CSEM 

properties. Substituting into the flux conservation equation. we have 

B3g B3g 
B,g~+(B,+/l+wpm =O 

B,gT t t B,gpry = -B,wp, 

3The literature on permanent magnets (e.g. Parker and Studders[ll]) defines a recoil 

permeability as the average slope of a minor hysteresis loop. For those materials for which 

the B-H (demagnetization) curve has no useful linear portion in the second quadrant, there 
is still a nearly linear response on minor hysteresis loops. The distinction between recoil 

(minor loop) and differential (major hysteresis loop) slope is not significant for CSEM 

materials. 
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por;n = B,g = - 
8 wpm 

(~+p?yl 

This equation establishes the potential and thereby the dipole strength 

of this magnet in terms of the source term: determined by t,he remanence 

( BT) of the CSEM and its width (area in the 3-dimensional case) divided by 

a permeance (reluctance- ‘) for the geometry of the structure. The magnetic 

permeance is governed by a width (area) divided by the gap. In general, the 

permeance of the region with CSEM is modified slightly by the differential 

permeability of the CSEM. This can be accounted for by using an effective 

gap height 

h 
h 

eff = - 
PT 

The designer must also be aware of the “demagnetizing” field seen by the 

CSEM. The coercivity of the CSEM (puH M 0.27T for the ferrite shown in 

Figure 2) limits the field which can be supported without demagnetizing the 

CSEM. The relation between BP, and H,, is determined by the geometry of 

the magnetic circuit. Beginning with the expression derived from Ampere’s 

Law (Equation 66) and replacing B, using flux conservation (Equation 65) 

we have 

This “load line” can be imposed on the BH curve for the CSEM (such as 

Figure 2). The operating point will be the intersect,ion of the two lines. 

A.2 Simple Calculation for Rectangular Dipole 

X useful geometry for a dipole which bends a particle beam is illustrated 

in Figure 13. iVe will ignore corners and ends to concentrate on the major 

effects. The fundamental equations are hIaxwell’s Magneto-static Equations: 

Ampere’s Law and the Flux Conservation Equation. We apply the flux 

conservation with the notation that the magnetic field points toward the 

poletip in each gap. If we ignore edge effects: the results for each side of the 

pole are elementary. 

B,w, + BI WI + Bz wz + B3w3 = 0 (72) 

By construction: the midplane (bottom of picture) is an equipotential sur- 

face at the same magnetic potential as the flux return shell. We apply 

Ampere’s Law by following a flux line which begins on that surface, crosses 
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Figure 13: Schematic end view (upper half) of a permanent magnet hybrid 

dipole. The useful volume is in the gap above the centerline (shown at the 

bottom of the illustration. The pole tip is the iron block above the gap. 

Top, bottom, and side plates are iron for flux return. Field is driven by 

brick of CSELI (ferrite) material placed between the flux return plates and 

the pole tip. 
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the gap (half-gap height gh) to the pole tip. Since the pole is assumed an 

equipotential, H is zero across that portion of the path. )Ve then follow 

the flux line across the CSEM material in the top of the circuit to the flux 

return shell. 
BgYh - - hzH2 = 0. 

PQ 
(‘73) 

Following different flux lines: we will obtain the same form of equations for 

HI and H3. FVe now wish to relate B and H. In vacuum (air) we have 

B = p,-,H but for the CSEM permanent magnet material, we will be using 

strontium ferrite. A measured B - H curve for this material is shown in 

Figure 2. L$‘e will be operating on the highly reversible linear portion of the 

curve where 

B = B, + popu,H. (74) 

Where B, and pr are the intercept and slope of a line through that portion 

of the B - Ii curve (plotted as B cs. poH). 

The solution is given by 

B 
3 

= -1 (WI& + 7~28 + w3&) 
g(xz+E$!L+Ee2+!!fL) 

9 h2 

(7.5) 

We note that in describing this in three dimensions, we can simply multiply 

the numerator and denominator by the length L. We then replace wi L with 

/Ii) the area of the region of interest. 

When multiplied by the magnet length L, the denominator of the second 

fraction is known as the permeance of the magnet. Permeance is the inverse 

of magnetic reluctance. The numerator (multiplied by L) is the available 

flux. B, is an effective density of magnetic charge. In this design the positive 

charges are deposited on the pole tip with the negative charges on the return 

yoke. Since the material is so linear, and the pL, at high field is so near to 

1, one can quite precisely design by choosing to place magnetic charge is 

appropriate places. 
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