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1. 

Can Inertial Electrostatic Confinement Work 
Beyond the 

Ion-Ion Collisional Time Scale? 

W.M. Nevins 
Lawrence Livermore National Laboratory 

Livermore, CA 94550 

Abstract 

Inertial electrostatic confinement systems are predicated on a 
non-equilibrium ion distribution function. Coulomb collisions 
between ions cause this distribution to relax to a Maxwellian on 
the ion-ion collisional time-scale. The power required to prevent 
this relaxation and maintain the IEC configuration for times 
beyond the ion-ion collisional time scale is shown to be at least 
an order of magnitude greater than the fusion power produced. 
It is concluded that IEC systems show little promise as a basis for 
the development of commercial electric power plants. 

Introduction 

Inertial electrostatic confinement (IEC) is a concept from the earlydays of 
fusion research. Work on magnetic confinement fusion in the Soviet Union was 
begun by Sakharov and others in response to a suggestion from Lavrent'ev that 
controlled fusion of deuterium could be achieved in an IEC device.1 The concept 
was independently invented in the United States by Farnsworth.2 Inertial 
electrostatic confinement schemes require the formation of a spherical potential 
well. Low energy ions are injected at the edge and allowed to fall into this 
potential well. If the ion injection energy is low, the ions have a low transverse 
energy, low angular momentum, and must pass near the center of the spherical 
potential well on each transit. The repeated focusing of the ions at the center of 
the well results in peaking of the fuel density and greatly enhances the fusion 
rate relative to what would be achieved in a uniform plasma of the same volume 
and stored energy. This strong ion focusing at the center of the potential well is 
the defining feature of IEC schemes. The plasma configuration envisioned by 
proponents of IEC fusion systems is illustrated in Fig. 1. 

A. Sakharov, Memoirs (Random House, New York, 1992) p. 139. 
R.L. Hirsch, Journal of Applied Physics 38, 4522 (1967). 
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Figure 1. Plasma Configuration in an IEC Device 
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Fig. 1 The IEC plasma is divided into three regions: a dense plasma 
core, a bulk plasma where the density falls approximately as l/r2, and a 
cold plasma mantle where the ions are reflected from the edge of t k  
potential well and the mean kinetic energy is low. 

Early spherical electrostatic traps2Jf4 required grids to produce the 
confining potential. Calculations of grid cooling requirements5 indicated that 
this concept would require a grid radius greater than 10 m to achieve net energy 
output, leading to an impractical reactor. It was suggested that the concept could 
be improved by using a magnetic field to shield the grid from the hot plasma; 
and in the Soviet Union the concept evolved into an investigation of 
electrostatically plugged cusps (see Ref. 6 for an excellent review of this field). In 

O.A. Lavrent'ev, Ukrain. Fiz. Zh. 8,440 (1963). 
O.A. Lavrent'ev, Investigations of an Electromagnetic Trap *', Magni tnye Lovushki Vypusk 
(Naukova Dumka, Kiev, 1968) 77 [for an English translation, see AEC-TR-7002 (Rev)]. 
O.A. Lavrent'ev, Ann. N.Y. Acad. Sci. 251,152 (1975). 

6T.J. Dolan, Plasma Physics and Controlled Fusion 36,1539 (1994). 
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this evolution from a purely electrostatic confinement scheme into an magneto- 
electrostatic-confinement scheme it appeared that a key advantage had been 
lost-the confining magnetic field lacked spherical symmetry so the strong ion 
focus is lost within a few ion transit times because the angular momentum of the - 

ions is not conserved in the absence of spherical symmetry. 

Recently, there has been a resurgence of interest in electrostatic 
confinement fusion.7 Two new concepts for forming the spherical potential well 
which do not involve internal grids have been proposed-the PollywellTM and 
the Penning trap. In a Penning trap a spherical effective potential well is formed 
in a rotating frame by a combination of electrostatic and magnetic fields.8 In the 
PolywellTM configurationgJoJ1 a polyhedral magnetic cusp is used to confine 
energetic electrons. The space-charge of these magnetically confined electrons 
then creates a potential well to confine the ions. 

Table I. Reference IEC Reactor Parameters 

Quantity 

Potential well depth 
Plasma radius 
Core radius 
Volume averaged density 
Peak ion density 
Fusion power 

Symbol 

a0 
a 

r0 
<"i > 

"io 

'fusion 

Value 

50.7 keV 
l m  
1 cm 
0.5~10 m- 
3.3~10 m 
590 M W  

20 3 
23 -3 

In estimating the importance of collisional effects on an IEC fusion reactor 
we will use the parameters in Table I. These parameters generally follow those 
suggested by Bussardlo and Krall11. We have adjusted the operating point 
somewhat to take account of our more accurate calculation of the fusion 
reactivity (see Sec. 3) and to ensure that the projected operating point is 
consistent with the model described in Sec. 2. We assume a DT-fueled IEC 
reactor because the power balance is most favorable with this fuel and we find 
power balance to be the critical problem. 

See, for example, G.L. Kulcinski, Testimony to the House Subcommittee on Energy (April 21, 
1994). 
D.C. Barnes, R.A. Nebel, and L. Turner, Phys. Fluids B 5,3651 (1993). 

4,826,646 (May 2,1989). 
gR.W. Bussard, "Medhod and Apparatus for Controlling Charged Particles", U.S. Patent Number 

I0R.W. Bussard, Fusion Technology 19,273 (1991). 
I1N.A. Krall, Fusion Technology 22,42 (1992). 
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In this work a perfectly spherical potential is assumed, thus assuring that 
the ion focus can be maintained over many ion transit times (about 1 ps for the 
IEC reactor parameters of Table I). Ion-ion collisions act on a substantially longer 
time scale. The ion focusing which defines IEC systems is associated with a 
strong anisotropy in the ion distribution function. Ion-ion collisions tend to 
reduce this anisotropy on the ion-ion collisional time scale (about 1 s for the IEC 
reactor parameters of Table I). It is possible to maintain this non-equilibrium ion 
distribution function with sufficient recirculating power. The object of this paper 
is to compute the collisional relaxation rates and estimate the recirculating power 
required to maintain an IEC reactor beyond the ion-ion collisional time scale. 

Proponents of IEC systems often assume an ion distribution function that 
is nearly mono-energetic.2r 1 0 ~ 1 1 ~  12 There is not a necessary connection between 
maintaining the ion focus (which results from the dependence of the ion 
distribution function on angular momentum) and the variation of the ion 
distribution function with energy. However, some proponents (see especially 
Ref. 10) believe this to be a second key feature of IEC systems because of the 
substantial increase in the fusion rate coefficient for a mono-energetic 
distribution relative to that of a thermal ion distribution (but see section 3 where 
it is shown that this increase is not significant). 

Our approach in analyzing IEC systems is to develop a simple model that 
contains the essential features described by proponents of IEC systems; and then 
to use this model as a basis for the calculation of collisional relaxation rates and 
for estimates of the fusion power produced by the systems and the auxiliary 
power required to maintain the non-equilibrium IEC configuration. A successful 
IEC device must maintain a high convergence ratio, a/ro. We find this to be a 
useful ordering parameter, and use it freely to identify leading terms in the 
collisional relaxation rates and power balance. 3 

In section 2 we present a model IEC ion distribution function and show 
that it reproduces the central features envisioned by proponents of IEC systems. 
In section 3 we compute the averaged fusion rate coefficient for this distribution 
and show that it is not substantially greater than that for a Maxwellian 
distribution with similar mean energy per particle. In section 4 we compute the 
collisional rate of increase in the angular momentum squared <L2> (which 
determines the rate of decay of the ion focus), and the collisional rate of increase 
in the energy spread of the ion distribution due to collisions in the plasma bulk 
and core between ions with large relative velocities. In section 5 we compute the 
collisional rates of change in<L*> and energy spread due to collisions in the 
plasma bulk between ions with small relative velocities. Assuming that the ion 
distribution is initially strongly focused and nearly mono-energetic, this analysis 
indicates that it will relax on two characteristic collisional time scales. The 

12M. Rosenberg and N.A. Krall, Physics of Fluids B 4,1788 (1992). 
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shortest collisional time is that at which the ion energy distribution evolves 
towards a Maxwellian while retaining the strong ion focus [TE -(rO/a)Ti; where 
ro is the radius of the ion focus, a is the radius of the bulk plasma, and ‘Cii is the 
ion-ion collision time evaluated at the volume averaged density]. The ion 
anisotropy decays on a longer time scale, ZL - Zii. Clearly, some intervention is 
required if the non-thermal ion distribution is to be maintained beyond the ion 
collisional time scale. In section 6 we analyze two schemes proposed by 
proponents of IEC systems,10J2 and conclude that they will not be effective in 
maintaining the non-thermal ion distribution function. In section 7 we examine 
two additional schemes for maintaining a non-thermal ion distributions that rely 
on controlling the life time of ions in the electrostatic trap. We find that these 
schemes require the recirculating power be at least an order of magnitude greater 
than the fusion power for the IEC reactor parameters of Table I. In section 8 we 
conclude that IEC devices show little promise as a means for generating electric 
power. However, they may be useful as a means of generating 14 MeV neutrons 
for other applications. 



2. TheModel 

Two constants of the single-particle motion for an ion of species "s" in a 
spherically symmetric trap are the total energy, 

and the square of the particle's angular momentum, 

We consider weakly collisional systems, in which the collision frequency 
(VI and fusion rate (ns'<OV>DT) are small compared to the transit frequency (ob) 
in the electrostatic well. At leading order in v/%, the ion distribution function is 
then a function of the single-particle constants of motion. We assume an ion 
distribution function of the form, 

The particle density at radius r is then given by 

where the Jacobian between velocity space and (E, L2)-space is given by 

and 

Initially, we consider ion distributions that are mono-energetic, and 
strongly focused at the center of the sphere (Le./ distributions with low angular 
momentum). A ion distribution function with these properties is 

where Cs is a constant (to be evaluated below), and H(x) is a Heaviside function. 
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In our calculations we consider a "square-well" potential, 

A substantial confining potential (+$o) is assumed in order to insure that the 
dominant collisional effect is thermalization of the ion distribution, rather than 
ion upscatter (in energy) followed by loss from the potential well. The ion 
number density corresponding to our model distribution function is then 

ns(r) = dL2 I 71: 
Cs &(E) H(Lo2 - L2) (8) 

where 

r < ro 

r > ro 

T 
LO 

msvs Lr=mvsr, and ro=-. 

We evaluate the constant Cs by noting that the total number of ions in the 
trap, N,, is given by 
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00 

Ns = 14xr2dr ns(r) 
0 

4xa3 -- - nso [ I - (I - r02/a2)3/2] 

= Znro2a nso (To << a 1 

Hence, we find that the central ion density, nSO, is given by 

where 

is the volume averaged density, and 

4n v=-a3 3 

is the volume of the trap. The corresponding value of Cs is 

Restricting the ions distribution function to low values of angular 
momentum, I L I 5 Lo = msvsro, has the effect of increasing the central ion density 
relative to what it would be for an isotropic ion velocity distribution by the factor 
0.67 (a/r,P. This strong dependence of the central ion density on the ion 
convergence ratio is illustrated in figure 2. We conclude that the model IEC ion 
distribution function of Eq. (7) reproduces the essential features of inertial 
electrostatic confinement schemes-electrostatic confinement, strong central 
peaking of the fuel ion density, and a mono-energetic energy distribution. 
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Figure 2 Ion number density plotted versus radius for model IEC ion 
distribution function in a square-well potential. For the solid curve 
k = O . l  mSvSa (corresponding to r,/a = 0.1) . For the dashed curve 
L0=0.25 msvsa (corresponding to r,/a = 0.25) while Ns, I$, , and a are 
held fixed. Note the strong depcndence of the central ion density on 
ro/a- '1 
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3. Fusion Power Generation 

For a deuterium-tritium plasma, the total fusion power is given by 

Where YDT =17.6 MeV is the fusion yield per event. We assume an equal mixture 
of deuterium and tritium (with no impurities), and that deuterium and tritium 
distribution functions have the same convergence ratio, so that 

ni(r) = n&) + nt(r) = 2 n&) = 2 nt(r>. 

If the fusion rate coefficient, <OV>, , were independent of radius, then the 
fusion power would be given by 

where we have used the fact that, for the model distribution described in Sec. 2, 

This motivates the definition 

The radial dependence of the fusion rate coefficient arises because, even 
for mono-energetic distributions, the fusion rate has to be averaged over the 
angle between the colliding particles. This angular distribution varies as a 
function of radius. For the model described in Sec. 2 the angular distribution 
function g(p) is isotropic within the core (i.e., for r 5 TO), while outside of the core 
(r > ro) this distribution satisfies 

. . . . .. - . 
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0 

where p is the cosine of the angle between the ion velocity and the unit vector in 
the radial direction, & . 

The averaged fusion rate coefficient for an ion with zero angular 
momentum (i.e., an ion for which p =+I> colliding with a background ions 
described by the model IEC distribution is 

where the relative velocity Vr satisfies 

1 the center-of-mass energy is given by Ecm = 5 mrvr2, and the reduced mass by 

mdmt m -  r - m d + q  e 

The p-integral is evaluated numerically using the analytic fit to thd center- 
of-mass fusion cross-section developed by Bosch and Hale13 (which is accurate to 
within 2% over the relevant energy range). The radial variation of the fusion rate 
coefficient is shown in Fig. 3 for three different well depths, +o. 

I3H.S. Bosch and G.M. Hale, Nuclear Fusion 32,611 (1992). 
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Figure 3. Radial Dependence of <m>, 
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Figure 3. The radial variation of <ov>,,~ for an ion with zero angular 
momentum is plotted vs. radius for three potential well depths, 
$o = 25 kV, 50 kV, and 75 kV. The integral over collision angle was 
evaluated numerically using fusion cross-sections from Bosch and Hale. 

There is significant variation in <ov>,,~ with both radius and potential 
well depth. The rate coefficient in the core (r 5 ro) is that of an isotropic, mono- 
energetic distribution, as previously evaluated in this context by Miley et al.,14 
and Santarius et al.15 In the bulk region (ro < r < a) the rate coefficient rapidly 
approaches that of two counter-streaming beams as considered by Bussard.10 

v 

In evaluating the total fusion power one should integrate over the angular 
distributions of both incident ions. The rate coefficient shown in Fig.3 is 
averaged only over the angular distribution of one of the incident ions. 
However, it reproduces the correct result for r I ro (where both distributions are 
isotropic), and for r ,> 2ro, where the dominant contribution to the rate coefficient 
comes from counter-streaming ions. Hence, only a small error is introduced by 

I4G.H. Miley, J. Nadler, T. Hochberg, Y. Gu, 0. Barnouin, and J. Lovberg, Fusion Technology 19, 

I5J.F. Santarius, K.H. Simmons, and G.A. Emmcrt, Bull. Am. Phys. SOC. 39,1740 (1994). 
840 (1991). 
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replacing this second angular average with its value for L2=0. Using this 
approximation, we have evaluated the effective rate coefficient, as defined in 
Eq. (22) as a function of the potential well depth for both DT and D-3He 
reactions. These results are displayed in Fig. 4. 

eff ef f Figure 4. Dependence of <ov>,, and <ov>,~~ on Potential Well Depth 

0 50 100 

0 0  

50 200 250 300 
Y 

(kV) 

Figure 4. Effective fusion rate coefficient for DT and $He reactions vs. 
potential well depth, 40. The kinetic energy of all particles is taken as qQ0. 

eff 
In computing the effective rate coefficients, < O V > ~ ~ ~  , displayed in Fig. 4 

we have assumed that the kinetic energy of the incident ions ''s" and "s' 'I are 
given by qsq0 and qs$o respectively because we find no advantage in choosing 
the energy of the heavier ion to be smaller than that of the lighter ion by the ion 
mass ratio. This ordering of the ion energies was recommended in Ref. 10 as a 
means of minimizing the energy diffusion resulting from collisions in the "bulk" 
region, ro e r e a. This issue is discussed further in Sec. 4. 
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Finally, we compare the effective DT fusion rate coefficients for a mono- 
energetic IEC system to the Maxwellian averaged rate coefficients in Fig. 5. 

Figure 5. Averaged Fusion Rate Coefficients 
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Figure 5. Averaged DT fusion rate Coefficients for a mono-energetic IEC 
distribution (solid line) and for a Maxwellian distribution (dashed line). 

The Maxwellian-averaged DT fusion rate coefficient was computed following 
eff Bosch and Hale.13 The mono-energetic IEC rate coefficient <ov>, has a peak 

value of 0.90~10-21 m3/s at a potential well depth Q0=50.7 kV; while the 
Maxwellian averaged fusion rate coefficient <ov>, has a peak value of 
0.89~10-21 m3/s at an ion temperature of 75.0 keV. We see that, despite claims to 
the contrary,lo the averaged rate coefficient for a mono-energetic IEC system is 
not significantly greater than the Maxwellian-averaged fusion rate coefficient at 
similar energies. In fact, the only significant qualitative difference between these 

ef f averaged rate coefficients is that <ov>,,,. goes to zero more rapidly at small Qo 

Max 
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Max than does <ov>, at small Ti. Hence, if it proves difficult to achieve mean ion 
energies above 20-30 keV, then thermal ion distributions are superior to mono- 
energetic IEC distributions because they have a higher reactivity. 

Max The Maxwellian-averaged D3He rate coefficient, < o v > ~ , ~ ~ ,  may also be 

compared to the corresponding mono-energetic IEC rate coefficient, <ov>+~, . 
The peak value of the mono-energetic rate coefficient occurs at q0 = 140 kV, 
where it takes the value < c ~ v > ~ ~ ~ ~ ~  = 2.8x10-22m3/s. A direct comparison with 
the Maxwellian averaged D3He rate coefficient of Bosch and Hale is not possible 
because their parameterization of < O V > ~ ~ ~ ,  is valid only for Ti I 190 keV. 
However, Miley16 reports a maximum value in the Maxwellian-averaged D3He 
rate coefficient, <ov>$~, = 2.5~10-22,3/s at Ti = 250 keV. The somewhat 
larger difference (about 11 %) between these averaged rate coefficients is similar 
in magnitude to the change in the magnitude of the D3He rate coefficient 
associated with the improved parameterization of the fusion cross-section 
developed by Bosch and Hale (see Fig. 22 of Ref. 13). However, the peak value 
of the effective IEC rate coefficient for D3He is not significantly larger than that of 
the corresponding Maxwellian averaged rate coefficient. 

eff 

cf f 

Max 

Max 

We conclude that significant increases in the power density of an IEC 
system relative to other confinement systems result only from the choice of a 
higher mean ion energy at the projected operating point and from the strong 
central peaking of the ion density associated with the anisotropic ion distribution 
function assumed by proponents of IEC systems. 

1 

16G.H. Miley, H. Towner, N. Ivich, "Fusion Cross Sections and Reactivities", U. of Ill. Report COO- 
2218-17 (June, 1974). 
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4. Collisional Relaxation of the Ion Distribution Function 

The strong focusing of ions at  the center of the well is the defining feature 
of IEC systems. This focusing leads to a substantial enhancement of the total 
fusion power at fixed stored energy. The total fusion power within our square- 
well model, 

is enhanced relative to what would be obtained with an isotropic ion distribution 

function (for which ni = <ni>,, ) by the factor - - . This enhancement results 
from the central peaking of the ion density which, in turn, depends critically on 
maintaining a strong anisotropy in the ion distribution function [Le., insuring 
that f&, L2) goes to zero rapidly for L' > (msvsro)2 1. Hence, it is important to 
examine effects which will tend to reduce this anisotropy in the ion distribution 
function. 

8 a  
9 ro 

Ion-ion collisions are an obvious mechanism for reducing the ion 
anisotropy. It follows from the Boltzmann H-theorem that ion-ion collisions will 
drive the system to an equilibrium in which fS@, L2) - exp(-&/T), that is, to a 
state in which there is no ion anisotropy and the only variation in the ion density 
arises from variations in the potential, such that n&) - exp(-qs$(r)/T). If the ion 
distribution function is allowed to relax to thermal equilibrium, 'the key 
advantage of IEC systems (enhanced fusion power at fixed stored energy due to 
strong density peaking) is lost. However, ion collision rates are low (of the order 
of 1 Hz) at the energy and densities projected for IEC reactors. Hence, the power 
required to maintain a non-equilibrium ion distribution function might be less 
than the fusion power produced. In order to investigate this possibility we must 
first evaluate the collisional relaxation rates of the ion distribution function. 

A. Collisional Relaxa€ion of Ion Anisotropy. 

Coulomb collisions will result in an increase in <L2> due to transverse 
scattering (that is, scattering of the ion velocity so that it has a component in the 
plane perpendicular to Sr >. In Appendix A we show that, in the limit L2+ 0 (so 
that the ion velocity is nearly radial over most of its orbit), the collisional rate of 
increase in the mean-square transverse velocity for ions of species s and speed 

-1 7- 



is given by 

where 

following B00kp we have defined 

S/S‘ - 4xq,2qs~2ns~ Ln Asst 
2 3  vo = 

ms vs I 

and 

r 5 ro 

r > ro 
(30) 

is the cosine of the angle between v and & at which the inodel IEC distribution 
function goes to zero at a given radius. 1 

17D.L. Book, NRL Plamsa Formulary, NRL Publication 0084-4040 (NRL, Washington DC, 1986). 
See page 31. 
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Figure 6. Il&,, u) is displayed as a function of test-particle speed (u) for 
= 0.995 (corresponding to r = 10 ro). The resonance at u=l results 

from self-collisions among co-moving particles. 

The variation of the collision integral Il(po,u) with particle speed is shown 
in Fig. 6 for a typical location in the plasma bulk, r = 10 ro. At each location in this 
region (ro < r S a) the ion distribution resembles two counter-streaming beams 
[see Eq. (2311. The resonance at u=l (corresponding to vs=vs*) in Vgure 6 
describes collisions between particles which are co-moving in the same beam. 
Collisions between co-moving particles leads to strong coupling between the 
transverse and longitudinal velocity dispersion of these beams as pointed out by 
Rosenberg and Krall.12 We will return to this important effect in Sec. 5. In this 
section we will ignore the internal structure of these beams, focusing on the rate 
of increase in velocity dispersion due to collisions between ions in counter- 
streaming beams. We can remove the effect of collisions between co-moving 
particles from our representation of the collision integral by replacing the 
collision integral Il(po, u) with I ' l (h ,  u), which has been cut-off at = 0.95 to 
eliminate the effect of collisions between co-moving particles in the bulk plasma 
as described in Appendix A. In the bulk region (where p 0 = ~ ~ *  = 1) this 
modified collision integral is well approximated by 

I 1 
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The variation of I'l(po, u) with particle speed in the plasma core (r 5 ro) is shown 
in Fig. 7. 

0.8 
"O i 
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0.0 1 .o 2.0 3.0 4.0 5.0 

U 

Figure 7. I l ( b ,  u) is displayed as a function of test particle 
speed for h = O ,  corresponding to radial locations in the plasma 
core, rSro. 

At a given radius the collisional rate of increase in L2 is simply related to 
the collisional rate of increase in the transverse velocity dispersion, v 

d 
=ms2r2 5 <Av12>. 

collisions dt 

The rate of increase in L2 varies over the ion orbit. However, at the ion densities 
and energies projected for an IEC reactor the change in L2 due to collisions 
during a single orbit is small. Hence, we average the collisional change in L2 
over the ion orbit to eliminate the rapid time scale associated with ion orbital 
motion, and obtain the bounce-averaged rate of change in L2 : 

-20- 
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Figure 8. Radial variation in the transverse collision integral, YL(p&), u) 
is displayed for a test particle with spced u=l. The structure at r/r,=l is 
associated with the cut-off in 1'1 at pp0.95 applicd for r/ro21. 

The radial dependence of the transverse collision integral, I'i(po(r), u) is 
shown in Fig. 8. Except for a small region about the plasma core (r 5 3ro), I'I is 
well approximated by Eq. (31). Hence, the rate of increase in the tralnsverse 
velocity dispersion depends on radius mainly through the ion density. We may 
isolate this dependence by multiplying and dividing by the ion density, and 
noting that the factor, (v;IS'/ns) is nearly independent of radius. Hence, we may 
approximate the bounce-average collisional rate increase in L2 for ions of 
species s as 

dt d <L2> \ -  
collisions 

(34) 
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where 

and 

2 2 LZ = 3 (ms vs a> (37) 

is the value of <L2> for an isotropic, mono-energetic ion distribution-that is, 
an ion distribution that yields a constant ion density throughout the trap. For a 
DT plasma we find 

and 

= 0.949. 
1 1 ct= - + 1 + d G z G  (39) 

We were motivated to introduced the volume average scattering rate, 

because (assuming that the total number of ions is conserved) this rate is eonstant 
as the ion distribution function relaxes towards isotropy. It follows that the rate 
of increase in CL2> is independent of time and that, even after taking credit for 
the central concentration of the ion density, the ion distribution function relaxes 
to isotropy in a time18 

For the reference IEC reactor of Table I this works out to 'f = 0.43 s. 

18The 2-D analogue of this calculation applies to systems with rotational symmetry like the 
MIGMA. Here ion focussing results from the constancy of the canonical angular momentum 
while that the ion density fall with radius as 1 /r. Hence, off-axis collisions will again cause a 
loss of the ion focus on the (volume-averaged) ion collisional time scale. 
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If at t=O we prepare an IEC trap with a well-focused ion distribution, the 
collisional increase in <L2> will result in a spreading of the radius of the ion 
focus with time. If we constrain the ion distribution to maintain the form defined 
in Sec. 2, and evaluate Lo at each instant in time such that <L2> increases at 
collisional rate, the radius of the ion focus will be given by 

Note that, while the focus expands until the focal radius, ro = a and the ion 
distribution is fully isotropic in time f , the instantaneous rate of increase in the 
focal radius, 

is much faster. 

In the absence of particle sources and sinks, collisional effects define a 
minimum rate of at which the ion focus degrades. The actual rate of can be 
substantially higher. For example, asymmetries in the confining potential may 
occur due to the inherent lack of symmetry in the magnetic fields needed to 
confine the electrons that generate the potential well,lg asymmetries associated 
internal or external electrodes, asymmetries associated with the apparatus that 
injects the ions into the trap, or due to waves and instabilities.20 Even very small 
asymmetries in the confining potential can substantially increase the rate at 
which the ion distribution function relaxes towards isotropy because they scatter 
longitudinal velocity into transverse velocity at a radius r = a (so for a fi>c'ed Av12 
we generate the maximum change in L2 >; and because a "collision" occurs 
between each ion and the confining potential once each bounce period. Hence, 
we may estimate the rate of change in L' due to asymmetries in the confining 
potential as 

dt d <L2> - m p )  , 
asymmetries ($0 %b 

(43) 

where "m" is the mode number and 6@ is the magnitude of the asymmetry in the 
confining potential. 

'9T.J. Dolan, Fusion Technology 24,128 (1 993). 
2oSee, e.g., C.W. Barnes, Ann. N.Y. Acad. Sci. 251, 370 (1975); S.K. Wong and N.A. Krall, 

Physics of Fluids B 5,1706 (1993). 
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For the 50 keV deuterons in the reference IEC reactor described in Table I, 
l / T b  = 1.1 MHz, while <vo >vo, = 2.23 Hz. Hence, the bounce frequency is 
larger than the collisional rate of isotropization by a factor of 5x105. Clearly, 
even very small asymmetries in the confining potential can lead to relaxation of 
the anisotropy in the ion distribution function at a faster rate than Coulomb 
collisions. 

d /d 

B. Collisional Relaxation of the Ion Energy Distribution. 

Despite the absence of any significant advantage in fusion reactivity or 
direct impact on ion focusing, it is stilI important to examine the collisional 
relaxation of the mono-energetic ion energy distribution function because the 
energy dependence of the distribution function is important in determining the 
equilibrium potential; and the rate of thermalization in energy has important 
implications regarding the effect of collisions between co-moving ions on the 
evolution of the ion anisotropy (see Sec. 5). 

0.8 
'.O I 

7 

0.0 1 .o 2.0 3.0 4.0 5.0 

U 

Figure 9. Ill&, u) is displayed as a function of test particle speed for 
po=O, corresponding to radial locations in the plasma core, r I r,. 
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In Appendix A it is shown that the collisional rate of increase in the 
longitudinal velocity dispersion of ions of species "s" is given by 

S' 

The variation of the longitudinal collision integral with speed in the plasma core 
(r 5 ro), is shown in Fig. 9. For u 5 1, Il(po=O, u) takes the same value (2/3) as 
the transverse collision integral, Il(po=O, u). Hence, the collisional diffusion is 
isotropic in the core at low ion velocity (as expected for an isotropic distribution 
function), while pitch angle scattering (and drag, which is not treated here) are 
the dominant collisional effects for fast particles. 

Unlike the transverse collision integral, the longitudinal collision integral 
approaches zero in the bulk region (r > ro), where it may be approximated by 

(r >> ro) . (45) 

BussardlO first noted that bulk collisions would not cause energy diffusion. 
However, Bussard based his conclusion on an additional requirement-that the 
ion energies be chosen such that the energy of the heavier ion is smaller than that 
of the lighter ion by the ratio of the ion masses. When this condition is satisfied 
the center-of-mass frame for collisions between counter-streaming ions in the 
plasma bulk is nearly identical to the lab frame. We obtain this same result more 
generally, concluding that collisions in the bulk plasma do not cause energy 
diffusion for any choice of the relative ion energies. Hence, the result lis not a 
consequence of the kinematics of two-body collisions in the center-of-mass frame 
since, for general relative energies of the tu70 ion species, the center-of-mass and 
lab frames of reference are not identical. Rather, it follows from the assumption 
that the scattering angle is small (which is always the case for the dominant 
contribution to the Coulomb collision operator) together with the fact that, in the 
bulk plasma region, the velocities of the colliding particles are nearly co-linear. 
For small-angle collisions the momentum transfer between the colliding particles 
can be obtained by treating the interaction as a perturbation, and integrating 
along the unperturbed (i.e., parallel, straight-line) orbits. When the impact 
parameter is finite (as required for small angle collisions) it is easily seen that the 
momentum transfer (the time integral of the force on one particle due to 
interaction with the other particle) must be perpendicular to the particle 
velocities for any central force law. Hence, bulk collisions can produce pitch- 
angle scattering (as described by the transverse collision integral) but not energy 
diffusion. This conclusion holds independent of the relative energy of the 
colliding ions. We conclude that only the plasma core contributes to the 
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collisional increase in the longitudinal velocity dispersion. This is apparent in 
Fig. 10, which shows the radial dependence of I'll(po, u). 

T 
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r / r ,  
Figure 10. Radial variation in  the logitudinal collision integral, 
I'I&(r), u) is displayed for a test particle with speed u=l.  The structure 
at r/ro=l is associated with thc cut-off in 1'11 at pc = 0.95 applied for 
r/roX. 

The bounce averaged collisional rate of increase in the ion energy'is given 
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where 

S' 

We have computed the orbit integral numerically for a DT plasma with equal 
deuterium and tritium fractions, finding 

dd = 1.73 

and 

(49) 

At constant ion convergence ratio (a/r,), the ion energy distribution relaxes to a 
Maxwellian in a time of order 

d For our reference IEC reactor of Table I this works out to $ = 5.4 ms. Given this 
relatively rapid rate of ion thermalization, it is clear that it is at least as difficult to 
maintain the mono-energetic character of the IEC ion distribution function as it is 
to maintain the anisotropy required for central focusing of the fuel ioTs. One 
must question the strategy of attempting to maintain a (nearly) mono-energetic 
ion distribution function, and consider allowing the ion distribution to relax to a 
Maxwellian in energy, while retaining the anisotropy. We will return to this 
question in Section 6. 
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5. Collisions Between Co-Moving ions 

When mapped to radial locations in the bulk plasma (ro c r c a) the model 
IEC ion distribution function of section 2 yields a local ion distribution that 
corresponds to two ion beams counter-streaming at speeds +v, [see Eq. (2311. In 
this section we consider the effect of collisions between ions in the same beam 
(that is, co-moving ions) on the longitudinal and transverse velocity dispersion of 
that beam. In earlier work, Rosenberg and Kralll2 considered the collisional 
evolution of the ion distribution function in a model in which the confining 
potential has a finite gradient at the plasma surface. They point out that, for a 
nearly mono-energetic ion distribution function, the mean-squared ion velocity 
near the ion injection point (which is simply related to the longitudinal and 
transverse velocity dispersion discussed in section 4) is small compared to ion 
streaming velocity, v,. Hence, the ion collision frequency, which goes as l/v3, 
will be large at the plasma surface. Rosenberg and Krall conclude that these edge 
collisions cause a relaxation of the longitudinal and transverse velocity 
dispersion towards isotropy (<Avl2 >, =: 2 < A q 2  >s ) at a rate 

d<Av2 > I 

where 

is the potential gradient scale length at r = a. The effect of these edge collisions is 
to transfer energy between the longitudinal and transverse degrees of freedom. 
That is, to couple the energy spread of the ion beam to the quality of the ion 
focus. 

Edge collisions are omitted from our square-well model because r$ 
vanishes for a square well. However, collisions between co-moving ions in the 
plasma bulk have the same effect-i.e., these collisions couple the longitudinal 
and transverse degrees of freedom, the collisional rate is large because the 
relative velocity of the co-moving ions is small, and they act over most of the ion 
orbit, rather than just at the plasma surface. Collisions between co-moving ions 
change the beam velocity dispersion at a rate 

qs oo 

d<Av2 dt 'I co-moving ions - -\im<Av2> vol 
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Since r$/a is expected to be less than one, we conclude that bulk collisions 
between co-moving ions dominate the edge collisions emphasized in Ref. 12. 
These collisions are included in our square-well mode1, and will be examined in 
detail in the remainder of this section. 

Following Rosenberg and Krall, we resolve the singularity associated with 
the delta function in the ion distribution function by modeling the internal 
structure of the beam-like ion distribution function in the plasma bulk by 
assuming that it is drifting bi-Maxwellian. The longitudinal and transverse 
temperatures of the beam are chosen to reproduce the longitudinal and 
transverse velocity dispersion discussed in section 4. The ion distribution 
function has a longitudinal velocity dispersion 

and a transverse velocity dispersion 

Note that the transverse velocity dispersion of the beam, <Av12>, and the 

transverse temperature, Tl , are simply related to the ion focal radius, ro [see 

Eq. (57) below]. Hence, we only introduce one new parameter, .I;', to describe 
the internal structure of the counter-streaming ion beams. 

(SI 

7 

The transverse temperature, TF), is strong functions of radius. This strong 

radial variation in TY) results from the fact that different groups of ion orbits 
intersect at each radial location. Hence, we find it convenient to compute the 
contribution of collisions among co-moving ions to the transverse velocity 
dispersion of the ion "beam" by relating it to cKL2>/dt. We may then compute 

the local value of T, (r) and the ion focal radius from the relations (SI 

In the absence of collisions between co-moving ions the velocity 
dispersion would increase at the (bounce-averaged) rates computed in section 4. 
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These rates of increase in the beam longitudinal temperature and <L2> for ions 
of species s are 

dTiS) 

core collisions dt 

and 

d 
= ms dt < A q 2 >  

bulk collisions dt 

or, equivalently, 

2 

bulk collisions 

+SI 
A<-- 1 ro2 

2 a2 qsoo 
A. Nearly Mono-Energetic Ions, 

We follow Kogan21 in computing the collisional relaxation of the beam 
velocity dispersion between the longitudinal and transverse degrees of freedom. 
In the spirit of the model IEC ion distribution function of section 2, we degin by 
considering a beam with a finite ion convergence radius (so that <L2> > 0) and a 
nearly mono-energetic ion distribution function, such that T, ( S )  (a) 2 TII (SI or, 

equivalently, T (S) /qsq0 < 0.5 ro2/a2. Then Tf)  2 TII ( S )  everywhere in the well, and 

the local rates of change in T:) and T (S 1 due to collisions among co-moving ions 
II 

It 
are21 

S / S  
dT;;) 

co-moving ions dt 

21V.I. Kogan, in Plasma Physics and fhe Problem of ControZZed Thermonuclear Reactions (Pergammon 
Press,New York, 19611, Vol. 1, p. 153. 
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and 

dTT) 1 

co-moving ions dt ‘(63) 

It follows that the local rate-of-change in <L2> due to collisions among co- 
moving ions is 

(64) = - 4  co-moving ions d<Lz>I dt 

These rates need to be averaged over that portion of the ion trajectory with 
r 2 re where 

is the radius at which the cut-off in the longitudinal collisional integrals 
introduced in section 4 to remove the effect of collisions among co-moving ions 
becomes effective; and we have again taken pc = 0.95. The orbit-averaged rates 
are 

(66) 6 dTir’ 
dt 

- -  
- 4  co-moving ions 

1 and 

or, equivalently, 

= - 3 (tJ (1 -$) <v:”> . (68) 
co-moving ions vol 

Both core collisions and collisions among co-moving ions lead to an 
increase in the longitudinal velocity dispersion. However, even for a relatively 
poorly focused ion distribution, 
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the decrease in <L2> due to collisions among co-moving ions will dominate the 
increase due to collisions in the bulk plasma and <L2> will decrease. As a 

result, the ion distribution will rapidly evolve until TY) = TI, at r=a. (S) 

1 ro2 
l I - -  

2 rc2 B. Moderately Thermalized Ion Distributions, 2 --J 5 
qsoo 

1 ro2 

We are led to consider the effects of collisions among co-moving ions in 
the limit that the longitudinal velocity dispersion is large compared to the 
transverse velocity dispersion, ’I? > Ty) . In this limit the local rates of change 

in TII and Tf) due to collisions among co-moving ions are21 
II 

(SI 

s/s dT:y 

co-moving ions dt 

and 

It follows that the local rate-of-increase in <L2> due to collisions among co- 
moving ions is 

We perform the orbit average by dividing the ion orbit into a portion at 
small radius, r < rx, where 7!:)(r) > T(” , and a portion at large r, r > rx, where I1 
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(s) (SI T > T, (r), using the expressions for the local rate of change in the longitudinal I1 
and transverse temperatures appropriate for each region. The radius rx, where 
TI ( S )  (rx) =Tr), is given by 

rx E ro 43. (73) 

Averaging these rates over the ion orbit, we obtain expressions for the 
rates of change in the longitudinal and transverse beam temperatures valid for 
longitudinal beam temperatures in the range 

and 

or, equivalently, 

where e = 2.718. .. is the base of the Naperian logarithms. 
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+S 1 
1 102 

C. Strongly Thermalized Ion Distributions, li 2 - - qsQ0 2 r,* 

Finally, we consider the regime 

In this limit the longitudinal beam temperature is greater than the local value of 
the transverse beam temperature everywhere in the plasma bulk, and the orbit- 
averaged rates of change in the beam velocity dispersion are given by 

dT;T 
dt 

and 

1 2erc rx 2e a - - -- [ $Ln(-;;-)-;Ln(T;-jl 
co-moving ions 6 

or, equivalently, 
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D. T h e  Evolution of T;;) and <L2> 

(SI We are now ready to examine the time evolution of TII /qsq0 and ro/a. 

Summing the term describing the rate of increase in $) due to core collisions [as 

due to both collisions between co-moving ions [from Eq. (661, (74), or (78) as 
appropriate] we obtain an expression for the total rate of change in the 
longitudinal beam temperature, 

given by Eq. (59)] with the appropriate term describing the rate of change in TI, (S) 

The function Gs(Tf)/qs@o, ro/a) is displayed in Fig. I1 for deuterium ions in a 

DT plasma. We see that Gs is weakly varying with both $'/qs@o and ro/a. A 
further decrease in ro/a beyond 1 0 4  results in only a very small downward shift 
relative to the ro/a = 104  curve of Fig. 11; while at smaller values of TI, /qs$o 
the function Gs goes to 

(SI 

4% Gs=d,+-Ln 4 (rt;:) -- 

for any ro/a. We find that d?fis'/dt is positive for all interesting values of 
(S) (SI TII /qs@o and ro/a. Hence, collisions will result in a monotonic increase of TII 

in time. 
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Figure 11. The variation of thc longitudinal beam heating rate, inchdin$ 
both core collisions and collisions with co-moving ions for deuterons in a 
DT plasma is displaycd for ro /a = (long 
dashes), and ro/a = lo4 (short dashes). 

(solid line), ro /a = 

The behavior of the transverse velocity dispersion as measured by <L2> 
is more interesting. Summing the term describing the rate of increase in <L2> 
due to core collisions [as given by Eq. (60)] with the appropriate term describing 
the rate of change in <L*> due to both collisions between co-moving ions [from 
Eq. (67), (75), or (79) as appropriate] we obtain an expression for the total rate of 
change in the <L*> I 
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The function Hs(TF/qs@o, ro/a) is displayed in Figure 12. 
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Figure 12. The variation in the total transverse beam heating rate as 
measured by the rate of increase in <L2>, including both bulk 
collisions and collisions between co-moving ions, is displayed for 
deuterium ions in a DT plasma for ro /a = (solid line), r,/a = l o 3  
(long dashes) and ro/a = IO-* (short dashes) as a function of T,, /qsc$oo. 

(S) When TI, /qsQ0 is small (less than about 0.1 ro/a> collisions between co- 
moving ions dominate the bulk plasma collisions so that the net effect is rapid 
decrease in <L2> (i.e., a rapid decrease in the size of the ion focus, ro>. 

However, for larger values of $)/qS@, the orbit-averaged effect of collisions 

between co-moving ions weakens, so that both <L2> and T',;) increase 

monotonically for TI, /qsQo > 0.1 ro/a. (SI 
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The transition from collisional focusing to collisional defocusing can be 
understood by examining the leading terms in the expression for d <L2>/dt in 

the moderately thermalized regime, 1/2 ro2./a2 5 TI, /qs$ I. 1/2 ro2/rc2, (SI 

where we have used Eq. (73) to express (rX/r&' as 1/2 T;;)/q&. It follows that 
the transition from focusing to defocusing occurs when 

After initial transients, in which the ion focal radius may decrease in size 
( S )  (SI while TII /qsq0 increases, the system wiIl reach a state in which TII /qsQ0 2 ro/a. 

The longitudinal temperature and ion convergence then satisfy the equations 

where we have taken Gd = 1 (valid for and T;)/q,Q, - ro/a 2 le2, see Fig. 11); 
and 

1 

(SI where we have taken Hd = 1 (valid for TI, /qso0 2 ro/a, see Fig. 12). 

These Equations have the solution 

and 
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lli = 4 4; <Vy>>,,, t + 
qsoo qsoo 

(90) 

We conclude that collisions between counter-streaming ions will initially 
lead to rapid thermalization of the distribution of the ion radial velocities (at a 
rate of order (a/ro) <v:” >vel ). Once Tis) has increased to the extent that 

TI, /qso0 2 0.1 r,/a this process will be accompanied by the spreading of the ion 

focus. Finally, when $’)/qS@, 2 ro/a, the increase in T,, /qs@o and ro/a will 

proceed in concert at a rate of order (a/ro) <v, >vo,. As the ion focus spreads 
the rate of increase in the focal radius decreases so that it takes a time of order 

(SI 

(SI 

s/s 

for the ion distribution function to relax to isotropy and the IEC configuration to 
be destroyed. 

Our conclusions regarding the time evolution of the IEC distribution 
function is very different from that reached in Ref. 12, where steady-state, beam- 
like solutions to the kinetic equation were found. Two key reasons for our 
completely different results are 

1) The artificial constraint imposed in Eq. (11) of Ref. 12, which prevents 
collisions between counter-s treaming ion beams from producing any net 
increase in the velocity dispersion (i.e., heating) of the ion beams; 

and Y 

2) The neglect of the dominant term in the evolution of the beam temperature- 
the increase in the longitudinal velocity dispersion of the beam due to 
collisions in the plasma core. 

When this problem is treated correctly we see that there are no beam-like steady- 
state solutions to the kinetic equation. 
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6. Schemes for Maintaining a Strongly Focused Ion Distribution 
that Don’t Work 
. We have shown that ion-ion collisions will cause the IEC distribution to 

relax towards an isotropic Maxwellian, and that this process occurs on two time 
scales. On the fast time scale, { - (a/ro) <v:” >,:, , the energy distribution 
relaxes toward a Maxwellian, while on a the somewhat slower time scale, of 
order f, - <vi’’ >itl, the angular distribution relaxes toward isotropy and the 
ion focus is lost. At the high energies and relatively low volume-averaged 
densities proposed for IEC devices the ion collisional time scale is rather long- 

<vo >vel is about 2.2 Hz (as compared to an ion bounce frequency of 
1.1 MHz) for the IEC reactor parameters of Table I. Hence, it may be possible to 
prevent this collisional relaxation through some process that acts only weakly on 
the ion distribution function. We consider two such schemes which have been 
proposed by proponents of IEC fusion reactors in this section. 

d/d 

A. Fusion Reaction Rates. 

Bussard’o makes the rather surprising claim that the fusion reactions in an 
IEC device will remove fuel ions at  a rate sufficient to maintain a nearly mono- 
energetic ion distribution function. In malting this claim Bussard recognizes that 
the fusion reaction rate must be greater than the collisional energy-scattering rate 
if the loss of fuel ions by fusion reactions is to substantially alter the ion 
distribution function. In section 5 we showed that the orbit-averaged collisional 
rate of increase in the beam velocity dispersion is 

while the orbit-averaged fusion rate for the deuterons is given by 

a 

Note that the orbit-averaged fusion rate scales with the core convergence ratio 
and ion density as (a/r,) <ni>vol - that is, in exactly the same manner as the 
rate of increase in the longitudinal velocity dispersion. We computed the orbit- 
averaged fusion rate following the methods described in section 3. This rate is 
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plotted together with the orbi t-averaged energy diffusion rate versus the 
potential well depth in Fig. 13. We see that the orbit-averaged energy diffusion 
rate substantially exceeds the orbit-averaged fusion rate at all potential well 
depths considered (5 kV S @o I 275  kV). We conclude that fusion reactions rates 
are not sufficient to materially effect the form of the ion energy distribution 
function. 

0 100 200 300 

1 
Figure 13. Orbit-averaged fusion rate coefficient (black curve) and orbit- 
averaged energy diffusion rate (grey curve) vs. potential well depth, 
for deuterons in a DT plasma. The ion density, convergence ratio, etc. 
are taken from Table I. The relative magnitude of fusion and collisional 
rates are insensitive to the choice of nj and ro/a. 

The rate of decay of the ion anisotropy is slower than the rate at which the 
ion energy distribution relaxes to a Maxwellian, Hence, one might hope that the 
loss of fuel ions through fusion reactions could maintain the ion anisotropy. We 
may estimate the resulting ion core radius by replacing 'I" in Eq. (89) with the 
inverse of the orbit-averaged fusion reaction rate. After a bit of manipulation, 
we can put this estimate in the form 
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We conclude that the removal of fuel ions by fusion reactions occurs at a rate that 
is insufficient to maintain an ion focus. The situation regarding maintenance of 
the ion anisotropy is essentially the same as that regarding maintenance of a non- 
Maxwellian ion energy distribution because the orbit-averaged fusion rate 
decreases as the ion focus spreads, thereby making fusion reactions less effective 
as a mechanism for removing fuel ions before they are scattered further in angle. 

B. Maintenance of Ion Anisotropy with a "Cold" Plasma Mantle 

The basic idea inspiring the work of Rosenberg and Krall was that it might 
be possible to control the ion distribution function in an IEC device by 
manipulating the ion distribution function in the neighborhood of the ion 
injection point. In section 5 we demonstrated that the calculation performed in 
Ref. 12 is in error, and that collisions between ions with low relative velocities 
cannot prevent thermalization of the ion distribution function. However, 
perhaps this only demonstrates that the wrong problem was addressed both in 
section 5 and in Ref. 12. In this subsection we consider the related problem in 
which the ion distribution function at the injection point is treated as a boundary 
condition. We are then able to force the transverse temperature to go to zero at 
the lip of the potential well, which we take at (E - L2/2msa2) = 0, rather than at 
(E - L2/2msa2> = +qsQ0, so that this boundary condition will have greater 
influence on the distribution of trapped ions. 

It is convenient to adopt as velocity-space co-ordinates u, the particle 
speed normalized to the thermal velocity, and p, the cosine of the angle that the 
particle makes with the normal when it strikes the surface of spherical square 
well potential. Note that both of these velocity-space co-ordinates can be 
expressed as functions of E and L2, 

so that u and p are themselves constants of the single particle motion. We 
assume that the steady-state ion distribution function is nearly an isotropic 
Maxwellian (and verify this assumption a posteriori) so that we may use the usual 
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test-particle collision operator. In the high-velocity limit (u 2 2) the steady-state 
kinetic equation may then be written as 

a - af + u-- - +-(1-$)-  = 0 .  
a2f 

a ( all 

We look for solutions in the form 

where the PL(p) are Legendre Polynomials of index L, and the f,,(u) satisfy 

+ L(L+l) f,. = 0 .  du2 

We solve this equation on the domain 0 5 u 5 Umax = 42qs@,/Ts , taking as our 
boundary condition a plasma with finite phase-space density and zero velocity 
spread at the ion injection point, 

Expanding this boundary condition in a Legendre series we obtain 

and 

fJU) = 0 

for L even, 

for L odd. 

The solutions of the kinetic equation with this boundary condition are 
shown in Fig. 14 for the first four even Legendre harmonics. We see that our 
highly anisotropic boundary condition has an appreciable effect on the 
distribution function only at the highest speeds, u? 2. The bulk of the phase- 
space density is contained in fo(u), an isotropic Maxwellian, providing the a 
posteriori justification for the use of the test particle collision operator. 

The L=O Legendre harmonic is the sum of a Maxwellian plus a small 
constant term required to match the boundary condition at U=Umax. The density 
and temperature of this Maxwellian must be determined from consideration of 
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energy and particle balance in analogy to the Pastukhov solution of the problem 
of electron confinement in magnetic inirrors.22.23 
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Figure 14. The first four even Lcgendre harmonics of the stcady-state 
ion distribution function whcn a zero transverse temperature boundary 
condition is applied at u=umaX. 

Another way of displaying this information is to compute the effective 
radius of the ion focus from the root-mean-square value of the distance 01 closest 
approach at each ion speed, 

1 I 

This effective ion focal radius is displayed as a function of ion speed in Fig. 15. 
We see that there is essentially no ion focusing at speeds less than twice the ion 
thermal velocity. We conclude that it is not possible to maintain a strongly 
anisotropic ion distribution function in an IEC device solely by controlling the 
form of the ion distribution function at the ion injection point. 

%J. P. Pastukhov, Nucl. Fusion 14,3 (1974). 
23R.H. Cohen M.E. Rensink, A.A. Mirin and T.A. Cutler, Nucl. Fusion 18,1229, (1978). 
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Figure 15. The effective radius of the ion focus is displayed as a function 
of the ion speed for the steady-state ion distribution function of Fig. 14 
with a zero transverse velocity boundary condition applied at Umax = 3. 
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7. Schemes for Maintaining a Strongly Focused Ion Distribution 
That Work, but Require too Much Power 

We have shown that two mechanisms proposed by proponents of IEC 
systems to maintain a strongly non-thermal ion distribution function will not be 
effective. In the absence of intervention the ion distribution function will 
thermalize in an ion-ion collision time. In this section we propose two 
approaches for maintaining a strong ion focus in an IEC system. These 
approaches are based on the assumption that some means can be found to 
control the ion confinement time such that ions will be lost before they have time 
to fully thermalize. The ion lifetime is in fact limited in electrostatic traps that 
use grids (due to the finite grid transparency), and in Penning traps (due the 
leakage of ions through the poles of the trap). 

A. Power Cost of Maintaining a Nearly Mono-Energetic Ion Distribution 

We first consider IEC systems in which ions are removed at a rate 
sufficient to maintain a nearly mono-energetic ion distribution function. A 
potential benefit of such an approach is that the collisions between co-moving 
ions can be used to control the quality of the ion focus if we choose to maintain 
the parallel velocity dispersion (as measured by TII /qd+o) such that 

d<L2>/dt = 0 (see Fig. 12). This requires ?fp'/qd$o = 0.1 ro/a. The ion lifetime 
required too achieve this velocity dispersion is 

(d) 

d) (d) where we have taken Hd(4,  /qd$o, ro/a> = 1.21 consistent with TI, /qdo0 
= 1x10-3 and ro/a = 1x10-2. For the IEC reactor parameters of Table I we obtain 
Zpump = 3.9 ys (or about four ion transit times). 

The energy required to remove an ion is at least equal to the energy 
spread in the ion distribution, 
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Assuming Q0=50.66 keV to maximize the DT fusion rate coefficient and 
ro/a = 1 ~ 1 0 - ~ ,  this comes to 2.3 keV to remove each ion. The total power 
required to maintain the ion distribution function is then 

which comes to about 20 GW for the IEC reactor of Table I (which produces 590 
M W  of fusion power). The power balance in this operating mode can be 
characterized by 

For the Reference IEC reactor of Table I this upper limit on Q is Q 5 0.028. In fact, 
Q will certainly be well below this limit as this estimate does not take account of 
the power required to maintain the potential well and support energy losses in 
the electron channel. 

Apart from weak dependencies through Gs(Tf)/qs@o, ro/a), this estimate 
of the upper limit on the fusion gain, Q, depends only on the potential well 
depth, Qo, and the ion convergence ratio, a/ro. For DT plasmas, 

is a very slowly increasing function of @o for Qo 2 50 kV, whose value has 
increased by 10% as Q0 is increased from 50 kV to 75 kV; and by an additional 
10% as q0 is increased to 300 kV. Assuming that there must be some penalty to 
increasing Go, we take @o = 75 kV, yielding a 10% improvement in Q (to 
Q 5 0.031). Surprisingly, we see that fusion gain increases with decreasing ion 
convergence ratio. Decreasing the convergence ratio to a/r, = 10 (which we take 
to be the lower limit for an IEC system) produces a further increase in this upper- 
limit on the fusion gain to Q 5 0.097. 

These very disappointing limits on the fusion gain follow from the fact 
that the averaged fusion rate is small compared to the averaged collisional rate 
[see Eq. (106) and Fig. 131, so that the power required to maintain the non- 
thermal, mono-energetic IEC ion distribution is too high. This suggests that we 
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relax our requirements on the ion distribution function, and examine the limit in 
which the ion energy distribution is allowed to thermalize in energy, while 
maintaining strong ion convergence. 

B. Power Cost of Maintaining a Strongly Anisotropic Ion Distribution 

It was shown in section 3 that the fusion rate coefficient for a nearly mono- 
energetic ion distribution function peaks at a value that is not substantially 
greater than the peak in the fusion rate coefficient for Maxwellian plasmas. 
Given the relatively small penalty in fusion power from allowing the ion energy 
distribution to thermalize, one is led to consider an operating mode in which the 
ion speed distribution is allowed to relax to a Maxwellian, while ions are 
removed at a rate sufficient to maintain the ion anisotropy and a strong ion 
convergence ratio. The ion lifetime required to maintain a given convergence 
ratio is 

3 2  1 
Tpump 4 e) 

<vi/” >\,*! . 

If we assume a temperature of 70 keV to maximize the Maxwellian-averaged 
fusion rate coefficient, while maintaining the same average density as the reactor 
in Table I, this calculation yields a required ion lifetime of 75 p. 

A potential well depth qs+05 3/2 T, will be required to confine the ions, 
which have a mean longitudinal energy of 1 /2  T,, We can imagine pumping 
these ions using charge-exchange on a neutral beam with an energy 1/2 Ts at an 
energy cost of Y 

1 
Epump = 5 T, = 35 keV 

for Ts = 70 keV. Hence, the required pumping power is 

which comes to 15 GW for the IEC reactor of Table I. 
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Assuming a Maxwellian distribution in ion energy together with the same 
strongly peaked distribution in angular momentum, the ion number density is 
less peaked radially than it is for the IEC distribution of section 2. Hence, the 
fusion power is somewhat smaller, 



or about 125 MW for the reactor parameters of Table I at an ion temperature 
Ti = 70 keV. The fusion power balance is now characterized by 

For the IEC reactor parameters of Table I this yields Q 5 8.1~10-3. However, can 
we obtain a factor of 1.2 improvement in Q by reducing Tt to -40 keV, increasing 
our limit on Q to Q S 9.5~10-3. Further improvements in Q require a reduction in 
the ion convergence ratio, a/ro. The scaling is now more favorable [being linear 
in (ro/a)]. At the minimum convergence ratio consistent with an IEC 
configuration, a/r, = 10, we find the optimal fusion power balance, Q 5 0.095. 
This is a particularly disappointing result in light of the fact that the upper limit 
on Q due to ion pumping goes to Q 5 00 if we continue to assume that a potential 
well can be formed at little cost in power while abandoning the IEC concept and 
letting a/r, + 1. 

We conclude that at high convergence ratio there is an advantage to 
operation with nearly mono-energetic distributions, while at low convergence 
ratio there is an advantage in allowing the ion energy distribution to thermalize. 
However, we always find that the optimal IEC reactor power balance occurs at 
the lowest allowed ion convergence ratio, a/ro, and that the power required to 
maintain the ion distribution function is that retains the defining charactqistic of 
an IEC system (a/ro2 10) is at least an order of magnitude greater than the 
fusion power that this system might produced. Reactor studies indicate that an 
economic DT fusion power reactor requires much more favorable energy 
balance, Q 2 10. Hence, there appears to be no prospect that an economic 
electrical power generating reactor can be developed based on an inertial 
electrostatic confinement scheme. 
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8. Conclusions 

We have presented a model for the ion distribution function in an inertial 
electrostatic confinement system. This model is shown to reproduce the essential 
features of IEC systems-electrostatic confinement, strong central peaking of the 
ions, and a mono-energetic energy distribution. Using this model distribution 
function we are able to test key claims made by proponents of IEC systems. We 
find: 

3) 

4) 

5) 

After averaging over collision angle and volume, the peak in the effective 
eff 

fusion rate coefficient for DT (<ov> = 9.0xlO-**m3/s at q0 = 50 keV for 
D-l’ 

the IEC distribution vs. 8.9x10-22m3/s at  T = 75 keV for a thermal 

= 2.8x10-22m3/s at +o = 140 keV vs. distribution) or D3He (<av> 

2.5xlO-**m3/s at T = 250 k e V )  reactions are not significantly higher than 
the peak in the corresponding thermal rate coefficient. 

eff 
D31lc 

Ion/ion collisions will cause the ion distribution function to relax to a 
Maxwellian in energy at a rate that is enhanced relative to the ion-ion 
collision frequency (evaluated at the volume-averaged density) by one 
power of the convergence ratio, a/ro. 

Ion/ion collisions will cause a further relaxation to an isotropic ion 
distribution on the ion-ion collisional time-scale (evaluated at the volume- 
averaged density). 

The means of preventing this relaxation of the ion distribution functidn so far 
proposed by proponents of IEC schemes are not effective. 

The energy cost of maintaining an anisotropic ion distribution function 
through control of the ion lifetime is at least an order of magnitude greater 
than the fusion power that would be produced by the IEC device. 

This analysis is based on a particular model ion distribution function, while the 
reactor operating point has been optimized over the parameters of this model. It 
is possible that a more attractive power balance could be obtained by further 
optimization of the form of the ion distribution function. A serious effort to 
perform such an optimization would require the development of a bounce- 
averaged Fokker Planck code in (E, L2)-space. However, it seems most unlikely 
that such optimization will increase Q by the factor of 100 required to achieve an 
acceptable recirculating power fraction for an economic power plant. Hence, we 
conclude that inertial electrostatic confinement shows little promise as a basis for 
the development of commercial electrical power plants. 
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The analysis does not place a lower-limit on the unit size of an IEC reactor. 
Such a lower limit on the unit size will (persumably) follow from an analysis of 
electron energy confinement and the energy cost of maintaining the spherical 
potential well. This leaves open the possibility that IEC based reactors may prove 
useful as means of generating a modest flux of 14 MeV neutrons for applications 
other than power generation, such as such as assaying, neutron imaging, 
materials studies, and isotope production. In such applications a small unit size 
@fusion 5 1 kW) and, hence, smaller unit cost might compensate for modest 
values of Q (Q 2 10-3). 
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Appendix A. Collisional Rate Coefficients for a Mono-Energetic 
I EC Distribution Fu nc t i o 11. 

In this appendix we compute the rate of increase in the transverse and 
longitudinal velocity dispersion, <Av12> and <Av11*>, for a test particle of 
species s and velocity v = vrGr colliding with field particles of species s'. The 
distribution function of the field particles is taken to be the mono-energetic IEC 
model distribution function defined in section 2. Since the model IEC velocity 
distribution function varies as a function of radius, we expect these rates of 
increase in the longitudinal and transverse velocity dispersion to vary with 
radius. 

Rosenbluth, McDonald, and rudd24 give a coinpact expression for the rate 
of increase in the velocity dispersion due to Coulomb collisions. Following these 
authors we use the symbols <Av12> and <A$> in this appendix only to 
denote the rate of increase in the velocity dispersion rather than the velocity 
dispersion itself. In the main text these syinbols are used to denote the velocity 
dispersion. These rates are given by: 

<AvAv>, = <AvAv>,,~ -. 
S' 

where <AvAv>,,, , the rate of increase in the velocity dispersion in species s due 
to collisions with particles of species S I ,  is given by 

Defining a characteristic speeds vs for species s, and using the vector identity 

we can write the rate of increase in the velocity dispersion as 

P c-s 

24M.N. Rosenbluth, W.M. MacDonald, and D.L. Judd, Phys. Rev. 107, 1 (1957). See especially 
Eqs. (18) and (19). 
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define 

The mono-energetic IEC distribution 
in spherical co-ordinates as 

tj 

where w = (v - v'), + = w/Iwl, I is the identity tensor and, following Book,16 we 

vr i t ten valuated t radi s r may be 

where principle axis of the spherical co-ordinates is taken parallel to & , p' is the 
cosine of the angle between v' and e r ,  ns*(r) is the local value of the field ion 
density as given by Eq. (lo), 

and 

The integral over the field ion speed is easily performed, yielding ~ 

where 
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The only dependence on the azimuthal angle, 0, comes through the unit 
vector 

It follows that the integral over azimuthal angle acts only on the diads, yielding 

Because there is only one preferred direction in velocity space (Gr ) we are 
able to write <AvAv>, in the form 

where the rate of increase in the transverse velocity dispersion is given by 

1 

X 

and the rate of increase in the longitudinal velocity dispersion is given by 

1 

I. 
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Two integrals remain to be evaluated, 

and 

1 -p2 - -  - 
U 

2 - - 
3u3 

FL 
1 -p’2 f (1 + u2 - 21.1’ u)3/2 

(1 + u2- 2pu)-1/2 

Combining these results, we obtain the rate of increase in the transverse 
velocity dispersion, 

and the rate of increase in the longitudinal velocity dispersion, 

1 

s‘ 
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where 

and 

For po=l (corresponding to radial locations in the bulk plasma, where 
r >> ro the IEC distribution function corresponds to two counter-streaming 
beams. We can remove the contribution of collisions between co-moving 
particles from the collision integrals, 11 and 111 by replacing the upper limit of 1 in 
the integrals 11 and I2 with kcl. This results in the modified collision integrals 

and 

The angular width of the counter-s treaming beams, pol increases towards 
the plasma core (r I ro). Hence, the proper choice of involves a trade-off 
between eliminating the effects of collisions behveen co-moving particles over 
most of the plasma bulk, while minimizing the effect of the cut-off on the 
collision operator near the plasma core where the ion distribution function 
becomes isotropic, and the ansatz of counter-streaming beams breaks down. Our 
experience indicates that pp0.95 provides an adequate compromise. 
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Finally, we note that 

and 


