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Abstract 
The study was motivated by the necessity to construct 
monitoring networks in various applied areas. Environ- 
metry, meteorology, and seismology are the most notable 
examples. The approach is based on the expansion of c+ 
variance kernels with respect to their eigenfunctions and 
subsequent use of numerical algorithms based on convex 
design theory ideas. 

1 Model 
Consider the regression model . .  

yij =q(zi,B)+t~ij+~ij, i =  1 ,..., n , j = l ,  ..., k .  (1) 

The function q(z,O) is assumed to be linear, i.e., 
q(z ,0 )  = OTf(t),6 E Rm and the basis functions f(z) 
are given. Variables z E X C R’ are usually coordinates 
of sensors (observing stations, sampling sites). The oper- 
ability region X is normally a compact set in RZ (for in- 
stance, geographical region). Examples of other dimen- 
sions include one dimensional allocations (for instance, 
sampling along highways) and three dimensional cases 
(elevation of Sensors may be controlled). The subscript 
“2’ corresponds to the number of a sensor, “J“ stands 
for the time when observation is done. We assume that 
uij and ~ i j  are random variables. The same characters 
are used both for random variables and their realization, 
if it does not lead to confusion. The objective of an ex- 
periment may be prediction of y, estimation of q(z,t9), 
or 0, or some functions of them. 

The random term u = U + E  is partitioned to trace two 
different “generators” of randomness. The first random 
variable u describes deviations of the observed response 
from q(z, 0) due to some causes, which can be common 
for various sites. For instance, it can be weather fluctu- 
ation on the scale of the whole region X. That is why 
observations at different sites may be dependent. This 

dependence is described solely through the covariance 
kernel of u: 

E(uij, ~ i j ~ )  = K(zj, tin)6jjj, E(uij) = 0. (2) 
The second variable describes “observational” errors. 

These errors can depend upon the observational tech- 
nique or by the length of the observational interval. We 
assume that these errors be (at least partly) controlled 
by an observer and are specific for every particular site 
or sensor. The latter statement may possibly assume 
that 

E(Ejj,&j#jl)  = 02SiirSjjl, E(Eij) = 0. (3) 
Probably, the reader has noticed the presence of Kro- 

necker’s symbol Sjjl in (2) and (3), Le., there is no cor- 
relation in time. As it was mentioned before, “j” fre- 
quently indicates the time of observation. We skip the 
index when it  does not cause any confusion. 

Let the kernel K ( z , z ‘ )  defined by (2) exist on 2 x 2, 
where 2 is compact in R‘ and X C 2. All eigenval- 
ues of K ( z ,  2’) are positive. The series (see for instance, 
Kanwal(l971) for more rigid mathematics and details): 
K ( z ,  2‘) = A, p,(t)cp(z’) is uniformly and ab- 
lutely convergent, and the series E,”=, Aa is convergent. 
Obviously A, must diminish not slower than a-l. In 
many cases the decay is much faster. This fact allows us 
to hope that for practical needs we can use the approxi- 
mation 

P 
~ ( z ,  2’) 21 ~ p ( z ,  2‘) = Lpa(z )pa( z ’ )  (4) 

,=l 

with some moderate p. The opportunity to use (4) is 
essential for our approach. 

2 Prediction without trend 
Optirnalzty criteria. Let us start with the very simple 
but quite popular model in applications 

yij = Uij  + E i j ,  i = 1,. . .,n, j = 1,. .-,k, ( 5 )  
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which is a particular case of (1) with q(z,e) E 0. 
Let points (, = (21, , . . I z,) be selected from X. It is 

convenient to introduce the following matrices and vec- 
tors (recall our promise to skip ''jn): 

It is easy to check that 

E(Y) = 0, E(YYT) = V(&) = u21 + K(<,).  (7) 

Let the prediction of y(z) on a given set X p ,  be an im- 
mediate goal for a practitioner. It is known (see, Rao 
(1973), Ripley (1981)) that 

is the best linear unbiased predictor for y(z). If z does 
not coincide with any supporting point of <,,, i.e., x # 
zi E supp<,, then the variance of this predictor equals 

Vat (d.) - Y(z)) 

= V(z1z) - vT(z1€,)v-'(€*n)v(z1€*) 
= u 2 + K ( z , z )  

-KT(.l<,) [a21 + K(tn)I-l K(z,<n) 
= u2 + C(z,€n). (9) 

Otherwise it obviously diminishes. The definition of 
V(z, z), V(z1<,) and V(&) is evident from (6) and (7). 
Through the whole paper the use of any inverse matrix 
automatically assumes the existence of this matrix. The 
most commonly used objective functions related to (9) 
are 

Ql(€n) = V O ~ ( Y ( ~ )  - e(%)) , (10) 

and 
QdhR) = / Var ( d z )  - Y(z))dz. (11) 

X v  

Subsequently the design problem may be stated as 

where Q stands for either Q1, or 9 2 .  To avoid the dis- 
cussion of singular cases it is assumed that sx,, d z  > 0. 

Most publications are concerned with the criterion 
Qz(<,,); see Cambanis (1985) for a survey of main r e  
sults and further references. Standardly it is assumed 
that the observational error is negligible, i.e. u2 = 0, 

and n is large enough to use asymptotical (n -+ 00) re- 
sults. The proposed approaches are strongly based on 
ideas developed in the classical theory of function and 
integral approximation. Our intention is to use the ideas 
developed in the convex design theory. We want to em- 
phasize at this stage that it is essential for the whole 
approach that u2 # 0 and approximation (4) is valid, 
i.e., u2 > C:=,+, Xapa(2)9a(~ ' ) ,  for all t E X .  

Regression model with mndom parameiers as an ap- 
prozimation of a random field.  If (4) is valid, then model 
( 5 )  can be replaced by its approximate version 

yi = YTp(zi) + Ei,  (13) 
where p T ( z )  = {Cpa(Z)); , the parameters 7 are random, 
and 

In the frame of (13) 
E(Y) = 0, E(YY~) = A, Aaa = Xabap-  (14) 

E(YYT) = V ( € d  
= a21+ K(<n) 
= u21 + *T(€n)A@(€n), (15) 

where e(€,) = (dzl) ,  - . . , ~(4). 
Let us try to predict y(z) using the regression analysis 

technique. The best linear predictor for 7 is 

i. = u-2 (MI<) + A-') @(<n)Y, 
M(€n) = ~-2*(<n)@T(<n). (16) 

The dispersion matrix of the difference i. - 7 is 

D(&) = E [(i. - Y)(? - T ) ~ ]  = (LE(€) + A-1)-'. (17) 
Let us select g(z) = pT(z)T as a predictor for y(z). 

On an intuitive level it is obvious that e(t) and g(z) 
must coincide in the frame of approximation (4). Indeed, 
using the identity 

(A-' + BBT)-' = A - AB(BTAB + I)-'BA. (18) 
one can check that for z # zi E suppQ : 



3 Optimal designs for prediction 
In this section we pursue a very transparent and sim- 
ple idea. First, we formulate results for optimization 
problems (20) - (22) in terms of approximation (4), i.e. 
all calculations are based on our knowledge of A and 
cp(z). At the second stage we translate our findings to 
the language of covariance kernels and linear unbiased 
predictors. Thus our intention is to use (4) mostly as an 
intermediate step. 

Continuous opfimal designs. Let us admit the pos- 
sibility of repeated observation and let N = ri, 
where rj is a number of observations at point zj. For 
sufficiently large N we can introduce continuous designs 

n 

€ = { P i s z i ] ? ,  O 5 pi I 1, zi E X, 

or to  define a design as a probability measure [ (dz) on 
X; see Ermakov (1983), Fedorov (1972), or Pukelsheim 
(1993). 

Let us redefine the matrix D(() as 

D(() = [ o - ~ N M ( < )  + A-']-' , (22) 

where 
M ( € )  = J, cp(~)(pT(4€(W. (23) 

Similar to (12) we can define 

where can be any probability measure on X. It is 
expedient to note that in general <* may depend upon 
N. This fact makes (24) different from the standard 
design theory in the continuous case. However, when N 
is k e d ,  all the results developed in this theory may be 
used almost directly. For instance, for the linear criterion 
(22) we have: 
Theorem 1 The design €* is linear optimal if and only 
if for all z E X 

+l(Zl€*)  <, t r W € * ) ~ ( € * W ( € * ) 1  (25) 

w h e n  +l(zl <) = y?'(z)D(<)AD(€)(p(z), and equality 
takes place ai all supporfing points of C'. 

For criterion (20) in the simplest case, when X, = X 
we have an analogue of the Kiefer-Wolfowitz theorem. 
Theorem 2 1. The design <* is minimaz i f  and only 

if for all z E X 

$2(z,€*) I trW€*)D(€*), (26) 

where +2(2,[) = (pT(z)D(<)(p(z), and equalifg fakes 
place at all supporfing points of <*. 

2. Minimaz designs coincide with D-optimal designs, 

Let us recall that in the above theorem D(() = 
( u - ~ N M ( < )  + unlike the classical Kiefer- 
Wolfowitz theorem, where D(() = M-' ( ( ) .  Both thece 
rems are routine results from convex design theory. They 
tell us that in the framework of approximation (4) the 
design of a spatial monitoring network can be embedded 
in the well developed area of convex design theory. 

Let us now move in the reverse direction: having the 
results stated in the above theorems and using presenta- 
tion (15) let us try to formulate results in terms of the 
covariance kernels. 

In what follows we consider only designs with a fi- 
nite number of supporting points. This fact is not very 
restrictive, because for every design with given matrix 
AI(<) there exists a design <' with a finite number of 
supporting points and exactly the same matrix M(<'),  
see, for instance, Fedorov (1972). 

i.c. <* = argmiq lD(f) l .  

From identity (18) it follows that 

D(€) = A -  A@(€) (J (€ )  + W€))-'*(€)=A, (27) 
where 

J$;'(€) = ~ - ~ N i p i 6 i 1  and a(€) = ( ~ ( z l ) ,  - ., ~ ( t n ) )  

Combining (25), (27) and introducing (compare with 
(19)) the function 

Cp(Z, z',€) = &(z, 2') 

-Kp(z1€) ( J R )  + KP(€))--l KP(Z'l€) (28) 
we come to the following result. 
Theorem 3 The design €* minimizes the average vari- 
ance of prediciion if and only if for all z E X 

(29) 

and equality holds at all supporting points of e*. 
cides with the previously introduced function Cp(zl <). 

Theorem 4 

Obviously, for 

For the minimax case we have with X,, = X 

= t' the function Cp(zl z', e )  coin- 

1. The design <* is minimaz if and only 
if for all its supporting points z; 

C&i.,E*) = m=Cp(z,€*) (30) =EX 

2. Minimaz designs coincide wiih D-optimal designs: 



To get (31) one has to notice that 

Optimization problem (31) may be considered as max- 
imization of the determinant of the variance-covariance 
matrix of observations. The idea that it can lead to 
good prediction was probably first stated by Shewry and 
Wynn (1987) in a different setting. 

4 Algorithms 
Theorems 1 and 2 lead immediately to numerical proce- 
dures, that are well known in experimental design theory 
and can be found, for instance, in Ermakov (1983). Ac- 
tually the corresponding algorithms are technically iden- 
tical to algorithms developed for the Bayesian approach. 
At every s-th iteration of these algorithms one has to 
find either 

where the function 11, may coincide with +I or $2 corre- 
spondingly, and X, = supp &. The algorithm is sim- 
ple, but it is necessary to know the eigenfunctions $(z). 
However, it is not easy to compute this function even for 
relatively simple kernels K ( z ,  2’) and symmetrical 2. 

Theorems 3 and 4 allow the development of numeri- 
cal procedures, that use “directly” the covariance kernel 
Kp(z,z‘). For instance, the first order exchange algo- 
rithm (compare with Mitchell, 1974) can be written for 
the minimax criterion with X’ = X as follows: 
Siep a. There is a design <,. Find p? 

(33) 

and construct €t = €8  + a86(z?), where 6(z) is a prob- 
ability measure atomized at 2. 

Siep b. Find 

z; = arg min Cp(2,&), 
SEX. (34) 

where X, = suppt: , and construct (,+I = €8  - a8b(z;). 
The changes which must be done in the case of linear 

criterion (see (22)) are evident. To guarantee covergence 
of the above iterative procedure, the sequence {a8)  may 
be chosen similarly to what was proposed in standard 
design theory (see, Ermakov, 1983, Silvey, 1980). 

Probably the reader has noticed that to use the above 
numerical procedure one has to find Kp(z,z’) and that 
may be rather difficult. However, if approximation (4) is 
valid, then Kp(z, 2‘) may be replaced by K ( z ,  z’), which 

in this case is assumed to be known. As soon as it is 
done the iterative procedure becomes a simple tool for 
“optimd” design construction. The word “optimal” is 
used in quotation marks to emphasize that a rigorous 
mathematical analysis of the limit behavior of (* defined 
by (24) when p + 00 is still an open problem, which 
hopefully will attract the attention of statisticians. In 
particular, the following questions must be answered: 

Are limit versions of Theorems 3 and 4, i.e., when 
Cp(z, d,<) is replaced by C(z, z‘, <), valid? 
Does this algorithm converge to an optimal design 

when Cp(z,[) is replaced by C(z,<)? 
Our computational exercises seem to confirm positive 

answers to both questions. 

5 Spatial trends 
The ideas considered in Sections 2-4 can also be applied 
in the case of a non-zero trend. Instead of the matrix 
D([)  defined in (22) one has to introduce the extended 
covariance matrix 

where now 

and M+J,(<) is identical to M(<) previously defined in 

Obviously we now have a greater variety of possible 
optimality criteria. To complement the previous consid- 
erations let us assume that the trend parameters 8 are 
of prime interest, Le., we have to search for 

(23). 

€* = arg j, * [Djf(€)I 1 (37) 

where D f j  is the obviously defined submatrix of the ma- 
trix D. Again, the optimization problem (37) is a par- 
ticular case of convex design theory, and the equivalence 
theorem can be immediately formulated. For instance, 
if \ k ( D f ~ )  = In IDjjI, then a necessary and sufficient 
condition for <* to be optimal is that for all z E X 



where $3(2,() = fr(z)Df(z) and $z(z,€) is defined in 
Theorem 2. 

Combining (38) and (32) one can implement an itera- 
tive procedure based on the function $(z,€). However, 
the eigenfunctions cp(z) must be computed to use the 
presentation of $(z,€) described in (38). Can we re- 
place this presentation by another one similar to (29), 
i.e., which does not include the functions cp(z) explic- 
itly? The answer is positive and 

$(Z,€) = +,€I - CP(.,€) + R p ( 4  
+Q% €)&(€)&,€I - 24%€) (39) 

where 

[4] Kanwal, R. P. (1971). Linear Integral Equations, 
Theory and Technique. Academic Press, New York. 

(51 Mitchell, T.J. (1974). An Algorithm for Construc- 
tion of D-optimal Experimental Design. Technomef- 
ncs,  a, 203-210. 

[6] Pukelsheim, F. (1993). Optimal Design of &en- 
menfs, Wiley, New York. 

[7] Rao, C.R. (1973). Linear Sfafistical Inference and 
i fs  Applications, 2nd Edition, Wiley, New York. 

[8] Ripley, B. D. (1981). Spatial Sfafist ics,  Wiley, New 
York. 

191 Shewry, M. C. and Wynn, H. P. (1987). Maximum 
entropy sampling. Journal of Applied Sfafisfics.  & 
pp. 165170. 

[lo] Silvey, S.D. (1980). Opfimal Design, Chapman and 
Hall, London. 

-K,T(z,€) (a(€) + KP(W KPtZl€), 

a(€) = J(0 (JW - 4€))-1 J(€)l 

{d(€))ij = d(zi1 z j ; € ) -  

The matrix R p ( 0  and the vector R+(z,() are obvicrusly 
defined through Rp(z,z’); compare with (7). Assuming 
that p - 00 and replacing Kp(zl 2‘) by K ( z ,  2’) we have 
an opportunity to construct an algorithm (compare with 
(33), and (34)) which includes only the basis functions 
f(z) and the correlation kernel K ( z ,  t’). Still the ques- 
tions similar to those two posted at the concluding part 
of Section 4 must be answered. 
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