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ABSTRACT 

Determining thermal difhsivity using flash diffisivity tests at high temperatures 
is investigated using parameter estimation. One aspect is the development of a method 
for determining two different heat transfer coefficients, one at the heated face and one 
at the opposite face. Both simulated exact and experimental data are used to illustrate 
the procedure. Although the heat transfer coefficients are different, assuming the heat 
transfer coefficients in the estimation process are the same does not significantly s e c t  
the estimates of the thermal difisivity. 

Insight into the estimation of thermal diffisivity and other parameters is 
obtained from a study of the sensitivity coefficients. Although the thermal diffisivity 
is the primary parameter of interest, a measured signal proportional to the temperature 
rise also depends on the heat transfer coefficients and energy input, which are called 
nuisance parameters (if they are not of interest). As the temperatures increase above 
15OO"C, the heat losses become very large and greatly influence the temperature 
response. By using insights from the study of the sensitivity coefficients for each of 
these parameters, the thermal difisivity can be estimated despite the large heat losses. 

INTRODUCTION 

Flash diffisivity methods have been used to determine the thermal diffusivity 
of solids fkom low to elevated temperatures [l-61. However, as the temperature 
increases, the heat losses fiom the specimen surfaces rapidly increase, resulting in more 
difficult analysis of the data. The heat loss from the specimen can be caused by free 
convection and radiation. If the specimen is in a vacuum, only radiation losses are 
possible. In both cases, the heat losses can be described by heat transfer coefficients. 
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For tests at elevated temperatures (greater than 1500°C), the heat losses can be large 
and the surface temperatures on either face are quite different. The heat transfer 
coefficients can also be different in magnitude. However, the heat transfer coefficients 
on both faces of the specimen are commonly assumed to have the same value[l-6]. 

This paper investigates the simultaneous estimation of the thermal difisivity, 
two heat transfer coefficients (one at x = 0 and the other at x = L, see Fig. 1) and the 
input power. The analysis is intended for elevated temperatures and the associated 
large heat losses. The main parameter of interest is the thermal difisivity but 
sometimes the three other parameters must be simultaneously estimated; they are 
termed nuisance parameters. Parameter estimation techniques are used to estimate 
these parameters and are described for this problem. Estimating all these parameters 
simdtaneously is deceptively diilicult. The correlation between parameters can be very 
high, which means that simultaneous determination of such parameters can be both 
difficult and inaccurate. Fortunately, it also means that the number of parameters can 
be reduced. 

An outline of the remainder of the paper is now given. First a mathematical 
model for this probIem is given and followed by the analytical solution. Next the 
parameter estimation concepts are given and a case with exact data is investigated. The 
method is then applied to analyze a set of experimental data. The paper ends with 
conclusions. 

MATHEMATICAL MODEL AND SOLUTION 

The specimen is modeled as a flat plate of thickness L.  A signal proportional 
to the temperature rise at x = L is measured using noncontact, averaging radiation 
sensors. In the experimental data used herein, the specimen is about 1 mm in thickness 
and about 25 mm in diameter. For these conditions, the one-dimensional plate model 
as shown in Figure 1 is appropriate. The surface at x = 0 is assumed to be heated with 
an instantaneous heat flash at time t = 0. (The analysis can be readily modified to treat 
a finite duration of the pulse.) Heat transfer coefficients of h, and h2 are at the faces 
at x = 0 and L, respectively. The ambient temperature is assumed to be the constant 
value of T,. These heat transfer coefficients can be used to describe the heat loss for 
both free convection and radiation. 

The mathematical model and boundary conditions are 



Figore 1. Diagram of a specimen heated by a flash at x = 0 and with heat transfa coefficient h, at x = 0 and 
heat transfer coefficient h, at x = L. 

-The initial temperature is T, The symbol &i‘) is the Dirac delta h c t i o n  that is zero 
everywhere except t near zero and its integral over z is equal to one. The units of the 
energy input, qD are Jim2. Implicit in eq. ( I )  is the assumption that the thermal 
conductivity, A, does not vary significantly over the temperature range of a particular 
flash experiment, although it can vary greatly one experiment to another. 

An analytical solution of the above problem is a Green’s hnction [7], 

The qm ’s are eigenvalues found fiom tanr7, = tl,(Bl + B2)/(f7,2 - BI BJ where B, = 
h,b” is the Biot number at x = 0 and l3, = hpVA is the Biot number at x = L; A i s  the 



thermal conductivity. The thermal difisivity, the parameter of interest, is denoted a. 
One important decision is determining which parameters or groups can be 

estimated from transient signals at the x = L face. The above solution shows that the 
temperature rise at L can be expressed as a hnction of four parameters denoted PI, 
P2, P 3 7  and P 4  where 

For p' three unknowns are included: energy input qo density p and specific heat c; 
however, only the parameter ,02 (= qo / p L )  is needed. Since the T rise is proportional 
to p' only a signal proportional to the temperature rise must be measured. The last two 
parameters, p3 and p4, also involve the ratio of unknown quantities, such as h, over 1. 
Although only the thermal diflfusivity, a, is often the single desired parameter, the other 
three groups (or parameters) must also be simultaneously estimated. 

PARAMETER ESTIMATION 

In these experiments, the measurement errors in the temperature rise (or a signal 
proportional to it) can be considered additive and unbiased and to have a constant 
variance. A cost fbnction for these assumptions is the sum of squares. Since the 
sensitivity coefficients for p3 and p4 are correlated, Tikhonov regularization [SI is used, 
resulting in the sum of squares hnction for j  =1, 2, . ., Jmeasurements, 

where < and q. are the measured and calculated temperatures at time 'j and x = L; 
is calculated using the model given by eq. (4). The second term in this equation is 
called a zeroth order Tikhonov regularization term. The Tikhonov regularization 
parameter, a;, is made sufficiently small that the estimates of the difibsivity are little 
affected but a;, is made big enough to allow convergence. Some examples of selecting 
an, is given later. 

Estimates of the four parameters are obtained by minimizing eq. (8) by taking 
the first derivative of Swith respect to the parameters P, (I = 1,2, 3,4)  and setting each 
equation equal to zero (see chap. 7, [9] for a complete discussion), 

where d = 0 for i =1 and 2 and d = 1 for i = 3 and 4. Four simultaneous nonlinear 
algebraic equations are obtained from eq. (9). The partial derivatives, dT/dP, in eqs. 
(9) are called sensitivity coefficients; see [ 101 for explicit expressions. 

Determination of the confidence intervals for the thermal diffisivity is found 



using the classical statistical procedure with some assumptions regarding the 
measurement errors. The covariance matrix of the estimates of the parameters is 
calculated using eq. (7.7.1) of ref. 9. The diagonal term associated with the thermal 
diffisivity is the variance of the estimated value. Its square root is the estimated 
standard deviation of the estimated thermal difisivity. The estimated confidence 
region is calculated as shown in Sect. 7.7 of ref. 9. 

The values of the covariance matrix depend upon the assumptions that are valid 
for the measurement errors. These assumptions used herein are that the errors are 
additive, have zero mean (that is, are unbiased), have a constant variance and are first 
order autoregressive. A method of treating the fkst order autoregressive errors is given 
in Sect. 6.9 of ref 9. These assumptions should be checked by examining the residuals 
which are simultaneously obtained with the parameter estimates. 

Another basic assumption is that the model is correct. If it is not, then a 
systematic variation (a characteristic bias or “signature”) will occur in the residuals that 
is repeated fiom test to test. One such imperfection in the model might be the lack of 
treatment of thermal penetration of the laser flash, causing the initial temperature dis- 
tribution to be nonuniform. 

Ideally uncorrelated measurements errors would be obtained and revealed by 
the residuals; unfortunately measurement errors are frequently either correlated or 
biased. Nevertheless it can be stated that the confidence intervals of the thermal 
difksivity are certain values, &d the assumptions are valid. 

EXACT DATA EXAMPLES 

An example with simulated temperatures (correct to six significant figures) is 
first given. The thickness is 1.0 and the initial temperature is 0.0. The true values of the 
parameters are a(=/$) equals 1; q&xL (=pZ) equals 1, B, (=p3) equals 0.5 and B2 
(=@’ equals 0.1. The temperature curve is shown as the upper one in Figure 2. Forty 
data points are used with dimensionless time steps of aAtLL2 = 0.05. Two sets of 
initial “guesses” are used. For the fkst three rows of Table I, all the starting parameter 
values are correct except the second one which is 0.7 while the true value is 1.0. The 
last three rows of Table I use the initial “guesses” of 1, 0.7, 0.5 and 0.5. Estimated 
parameters are denoted bi and results are shown in Table I for values of the Tikhonov 
regularization parameter a,, from 1 0l6 to 10 -’. In each convergent case the estimated 

TABLE I. RESULTS OF ESTIMATING PARAMETERS USING EXACT DATA 

Initial Values Estimated Parameters Std. Dev. Thermal Dfisivity 

of Parameters a,, b, bi b3 6, S Confidence Interval 

~1,0.7,0.5,0.1 lo8  1.0035 0.9893 0.2810 0.2810 0.167E-4 1.0027 to 1.0042 ’ 1,0.7,0.5,0.1 1.0002 0.9994 0.4932 0.1046 0.257E-6 0.99982 to 1.00056 
1,0.7,0.5,0.1 loL6 1.0000 1.oooO 0.5000 0.1000 0.268E-8 0.99996 to 1.00004 
1,0.7,0.5,0.5 10“ 1.0035 0.9893 0.2810 0.2810 0.166E-4 1.00270 to 1.0042 
1,0.7,0.5,0.5 10”  1.0034 0.9994 0.2859 0.2761 0.109E-5 1.0032 to 1.0036 
1,0.7,0.5,0.5 NONCONVERGENT 
Exact Parameter Values: 1 1 0.5 0.1 



1y (that is, b, ) is very near the true value of 1.0. The confidence regions for this 
parameter are also given by the last pair of numbers. The quantity denoted s is the 
estimated standard deviation of the measurements, which is an estimate of the standard 
deviation of the simulated measurements (about 10 "). 

For the first row of Table I (ajik = 10 -*), the estimated values of the Biot 
numbers (b, and b,) are both about 0.28, which is near the average of the true values 
of 0.1 and 0.5. For even smaller values of ru,, shown in the second and third rows of 
Table I, estimates b, and ZJ are quite accurate, indicating that the computational 
procedure is correct with extremely accurate data and quite different values of p3 and 
p4. The last three rows of Table I show that the estimation process is much more 
difficult ifthe initial guesses for p3 and p4 are the same value. However, for the cases 
that do converge (rows 4 and 5 )  the parameter of interest, the thermal diffisivity, is 
negligibly affected by the estimates of the last two parameters. Consequently in many 
cases, it is satisfactory to estimate the thermal diffisivity with the assumption that the 
two heat transfer coefficients are equal. A reason why there is a tendency for b, and 
b4 to approach the same value is because the sensitivity coefficients for ,8, and p4 tend 
to be correlated. See the below discussion of Figures 2 and 3. 

The choice of the Tikhonov parameter may require some experimentation. One 
concept is to make it as small as possible and yet obtain convergence. Another concept 
is to choose a+* so that the estimated standard deviation of the temperatures, s, is about 
the expected value, which is about 10 . Reference to Table I shows that aTa = 10 *I2 
satisfies this condition. 

The dimensionless temperature rise, Fourier number, and dimensionless 
modfied (by multiplying by A) sensitivity coefficients Z(i), i = 1,2,3,4 are defined by 

Dividing Z(i) by p2 eliminates the dependence of Z(i) upon p2. Multiplication of 20) 
by f l  gives the moGed sensitivities and permits comparison with the temperature rise. 
Notice that T is equal to Z(2). 

Figure 2 displays results for p3 =0.5 and r$ = 0.1; Z(2) reaches a maximum 
value about 0.7 and then starts to decrease with dimensionless time, t+. The 
dimensionless sensitivity for the thermal difhsivity, Z(I), is relativefy large at early 
times, reaching a maximum about 0.53 and then decreases to negative values. The Biot 
number sensitivity coefficients (p, and p4) are smaller in magnitude and correlated (i.e., 
have the same shape). Since p3 and p' are nuisance parameters, these conditions of 
small sensitivies and correlation need not significantly affect the estimation of PI (= 4. 
It suggests setting p3 equal to p, (and estimating only /?, ) will not significantly affect 
the estimation of p,. This can be seen by examining the results of Table I. 

Since it may not be necessary to estimate independently two Biot numbers, in 
the next case the Biot numbers are assumed to be equal. Figure 3 shows results for p3 
= jj" = 10. The magnitude of the PI sensitivity coefficient tends to be larger than that 
of the temperature rise and the P2 sensitivity coefficient. That is advantageous for 



estimating j?,. The correlation between Z(2) and Z(3) (that is, 2(2)/2(3) is nearly 
a constant) indicates that the simultaneous estimation of p,, f12 and f13 may be difficult. 
However, regularization may be used to improve the convergence for ,O,. 

I DIMENSIONLESS TIME 

Figure 2. Exact temperature rise and modified sensitivity coefficients for a =I, p2 = ZqdpcL = 1, p, = 
BI = 0.5 and p4 = B, = 0.1. Values plotted versus dimensionless time, a,,. 
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Figure 3. Exact temperature rise and modified sensitivity coefficients for (I = 1, p2 = 2qdpcL = 1, p, = 
BI = 10 and p4 = B2 = 10. Values plotted versus dimensionless time, a#L2. 



EXPERIMENTAL DATA EXAMPLE 

Transient temperatures for carbon bonded carbon fiber insulation (CBCF) at 
2000 “C are shown in Figure 4. The temperature response is given in “volts” units. 
An analysis was performed for estimating the four parameters, (di&sivity, energy 
input, and the two Biot numbers). Because of the high correlation between the two Biot 
numbers, Tikhonov regularization using eq. (8) was needed. Using all 472 data points, 
a range of aT& values was chosen for the initial estimates of the Biot numbers of p3 = 
12 and f14= 8. For each cz;,value shown in Table 11, the converged values of the two 
Biot numbers are equal, though different as cr,, is varied. The minimum regularization 
for aTik is about lo9 which is a large numerical value because the magnitude of the 
“volts” in Figure 4 is large. For smaller aTik values and the same initial estimates of 
parameters, the procedure has difficulty converging. The important point is that the a 
estimates, denoted b,, are relatively insensitive to changes in the Tikhonov parameter; 
for example, increasing a;, by a factor of 1000 increases b, by only 1 5%. 

The reason that the two Biot numbers converge to the same values in Table I1 
for a specifiedq&value is the very high correlation in the sensitivity coefficients. Since 
the two Biot numbers coalesce to the same values, it is reasonable to estimate only 
three parmeters, ((u, energy input, and the same Biot number for both surfaces). The 
estimated parameters are 0.006524 cm%, 579,900 and 10.645 for a, energy input and 
Biot number, respectively. The parameter estimates can be plotted sequentially with 
time, The sequential values are those that would be obtained if the number of measure- 
ments that are used increased one by one until all the data is used. In well-designed 
experiments and when an appropriate number of parameters are estimated, the 
sequential estimates should be nearly constant for at least the last half of the experiment 
duration. For this case, very large variations with time of the sequential parameters is 
found. The sequential values change so greatly because the energy input and Biot 
number (p2 and 4) sensitivity coefficients are correlated, as indicated by Figure 3. 
(Figure 3 is for the four parameters but for the case of identical Biot values at x = 0 and 
L, the sensitivity coefficient for the same Biot number on both surfaces is just a factor 
of two larger than that shown for p3.) Correlation between two sensitivity coefficients 
can be determined by dividing one by the other and plotting the result as a hnction of 
time. Ethe ratio is nearly constant, then high correlation exists and fewer parameters 
should be estimated. The ratio of the second and third sensitivity coefficients is almost 
a constant in this case. This suggests estimating only two parameters with the Biot 
number given a few values. 

TABLE II. RESULTS OF ESTIMATING PARAMETERS USING EXPERIMENTAL DATA FOR 
INITIAL VALUES OF p, = 12 AND p, = 8. DATA NOT FILTERED. 

*rik 

Estimated Parameters Std. Dev. I 
1 

b, b, b3 S slnm 

IO’* 0.00738 267600 6.363 6.363 0.217E+9 680.9 
1 0 ’ O  0.00676 450700 9.058 9.058 0.120E+9 506.4 
109 0.00662 519500 9.928 9.928 0.1079E+9 480.2 
lOa NONCONVERGENT 
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Figure 4. Measured temperature rise (in arbitrary volt units) versus time for CBCF at 2000°C. 
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TABLE In. RESULTS OF ESTIMATING ,O, and 
DATA FILTERED, FIRST TWO MEASUREMENTS DROPPED AND INITIAL. TEMPERATURE 
CORRECTION. 

FOR SPECIFIED VALUES OF ,L3” 

b,, cm21s b2 S 

Thermal DifFwivity 
Confidence Interval 

7 0.00720 305700 0.607E+8 359 0.00648 to 0.00791 
9 0.00677 444800 0.413E+8 296 0.00636 to 0.00717 

10.65 0.00652 578500 0.379E+8 284 0.00618 to 0.00687 
12 0.00637 700600 0.386E+8 285 0.00602 to 0.00671 
15 0.0061 1 1013000 0.4398+8 304 0.00572 to 0.00649 

Figure 5 shows sequential results for estimating only two parameters, thermal 
diffisivity and energy input. These results are for the Biot number, p3, equal to the 
converged value for three parameters which is 10.65. Before discussing this plot, 
several points are made. First, the data was filtered at each time by simply using the 
average of five previous, the measured value at that time and five subsequent measured 
temperatures. Also the first two measurements were omitted since they seemed to be 
high and a small correction for a non-zero initial temperature was added. The net 
effect of the filtering, etc. was negligible upon the parameter estimates shown by Figure 
5.  Second, filtering is very reasonable to reduce the effects of the periodic noise. The 
period of this noise is about eleven data points, hence the choice of the filtering region. 
Third, the estimated values shown in Figure 5 are not greatly affected by the value of 
the fixed value of p3. The fourth and final point is that the estimated value of the 
thermal diffirsivity in Figure 5,0.00652 cm2/s, is more properly given with a confidence 
region. Using standard statistical methods and assuming that the measurement errors 
are first order autoregressive[9] yields the confidence region of 0.00618 to 0.00687 
cm’ls. If the same procedure were used for ,03 equal to 7 to 14, the associated 
confidence intervals include the above value of 0.00652, shown in Table 111. 

Returning now to a discussion of Figure 5 ,  the most obvious and satisfactory 
feature is that the thermal difisivity and the energy input are nearly constant over a 
very large time range. This is in contrast to the case of estimating three parameters. 
The three parameters have large sequential variations because the second and third 
parameters are highly correlated. See Figure 3 which is for about the same Biot 
number. Figure 3 also shows that the first two parameters are quite uncorrelated, 
which is one reason that the sequential values in Figure 4 are nearly constant. One of 
the difficulties of this analysis for two parameters is that an estimate of ,03 is needed. 
However, a 1 14% increase in ,03 fiom 7 to 15 causes only a 15% drop in the estimated 
thermal diffusivity. Ifthe ,02 and ,Of parameters were perfectly correlated then changes 
in p3 would not affect the thermal difisivity VI). As it is, there is a slight change in 
the thermal diffusivity. The confidence region of 0.00618 to 0.00687 cm’/s (or *5%) 
is reasonable for measurements at 2000°C if the main source of errors is in the random 
temperature measurement. For lower temperatures, the Biot numbers are smaller and 



the correlation between the power and Biot number is decreased. This makes 
estimation of the three parameters (p,, p2 and p3) easier. 

Another important aspect is the examination of the residuals which are the 
differences between the measured and calculated temperatures. Because of space 
limitations, they cannot be shown. However, it is sufficient to describe them as 
increasing from zero at t = 0 to 550 at 0.08~~ decreasing to -500 at 0.15s increasing to 
550 at 0.3s and Snally going down to -600. There is a little fluctuation in the residuals 
and the data was filtered before analysis . Two observations are made. The residuals 
are relatively small, with the maximum magnitude about 3% of the maximum 
temperature rise. This indicates that the model is good. The second observation is 
that the residuals tend to be correlated and the residuals just less than 0.1s are more 
significant because the temperatures at those times are small. 

CONCLUSIONS 

Methods to estimate the thermal difisivity using data from flash diffisivity 
tests at elevated temperatures are discussed and illustrated using simulated and 
experimental data. At elevated temperatures the heat losses from the specimen faces 
are unequal (caused by a much larger temperature rise at x = 0 than at x = L) and large 
(Biot numbers >> l), making determination of the thermal difisivity more difficult. 
For specimens in a vacuum the heat losses are by radiation, which can be described by 
radiation heat transfer coefficients, one on each side of the specimen. The estimation 
of the thermal diffusivity for tests having two heat transfer coefficients and an unknown 
energy input is discussed. A method is given for the simultaneous estimation of these 
four parameters. (Actually it is more convenient to estimate the thermal difisivity, 
energy input divided by the volumetric heat capacity multiplied by the thickness, and 
two Biot numbers which are proportional to the heat transfer coefficients.) 

T i o n o v  regularization is needed in a sum of squares fbnction to find the four 
parameters. The sum of squares hnction is minimized with respect to the parameters. 
Tikhonov regularization is needed because the two heat transfer coefficients are highly 
correlated. Methods for determining the regularization constant are discussed. 

A physical understanding of the estimation problem can be obtained by 
examining the sensitivity coefficients for each of the parameters. The sensitivity 
coefficients are the first derivatives of the calculated temperature; a modified coefficient 
is a derivative multiplied by the appropriate parameter, If these modified coefficients 
are proportional over time or one is small compared to the others, the simultaneous 
estimation of all the parameters is very dficult because the minimum is poorly defined. 
However, if either of these conditions are true, the number of parameters being 
estimated can be reduced. PIots of the sensitivity coefficients show that the two Biot 
numbers are highly correlated, indicating that estimating a single Biot number is 
satisfactory and will not greatly affect the estimates of the thermal difisivity. The 
values of Biot numbers are not important since they are nuisance parameters. 

For elevated temperatures (> ISOO'C), not only are the Biot numbers for the 
two faces highly correlated but the input energy and the Biot numbers are correlated. 
Thus ifa reasonable estimate of the Biot number is available, only two parameters can 
be simultaneously estimated, namely, the thermal difisivity and the input energy. 



Several additional concepts are helpful. For oscillatory measurement errors, 
filtering of the data can improve the estimates. Sequential estimation (for adding one 
measurement after another) can yield much insight into the adequacy of the modei. It 
is important to examine the residuals. For the experimental data examined, which is 
for CBCF at 2000°C , the residuals are shown to be relatively small, indicating that the 
model is satisfactory. Confidence regions for the measurements are given which are 
about kS% for the data considered. 
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