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EXECUTIVE SUMMARY 

The main objective of synchronized signal timing is to keep traffic moving along arterial in 
platoons throughout the signal system by proper setting of left turn phase sequence at signals 
along the arterialshetworks. The synchronization of traffic signals located along the 
urbanhuburban arterials in metropolitan areas is perhaps one of the most cost-effective 
methods for improving traffic flow along these streets. MAXBAND Version 2.1 (formerly 
known as MAXBAND-86), a progression-based optimization model, is used for generating 
signal timing plan for urban networks. This model formulates the problem as a mixed integer 
linear program and uses Land and Powell branch and bound search to arrive at the optimal 
solution. The computation time of MAXBAND Version 2.1 tends to be excessive for realistic 
multiarterial network problems due to the exhaustive nature of the branch and bound search 
technique. Furthermore, the Land and Powell branch and bound code is known to be 
numerically unstable, which results in suboptimal solutions for network problems with a range 
on the cycle time variable. This report presents the development of a new version of 
MAXBAND called MAXBAND Version 3.1. This new version has a fast heuristic algorithm 
and a fast optimal algorithm for generating signal timing plan for arterials and networks. 
MAXBAND 3.1 can generate optimahear-optimal solutions in fraction of the time needed to 
compute the optimal solution by Version 2.1. The heuristic algorithm in the new model is 
based on restricted search using branch and bound technique. The algorithm for generating the 
optimal solution is faster and more efficient than version 2.1 algorithm. Furthermore, the new 
version is numerically stable. The efficiency of the of the new model is demonstrated by 
numerical results for a set of test problems. 
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1. INTRODUCTION 

Efficient transportation is very important to a nation’s economic health. Nearly all economic 
activity uses transportation directly or indirectly. The economic productivity of a nation is 
boosted by improving the efficiency of transportation systems. The synchronization of traffic 
signals, located along the urbanhburban arterials in metropolitan areas, is perhaps one of the 
most cost effective method for improving traffic flow along these areas. The main objective of 
synchronized signal timing is to keep traffic moving along an arterial in platoons throughout 
the signal system by proper synchronization of green signals along the arterialshetworks. 

Over time, traffic engineering research has resulted in a number of techniques for setting 
traffic signals along arterials and networks. These models can be classified into two major 
categories: on-line models and off-line models. The on-line (also referred to as traffic 
adaptive) models compute signal settings in real-time and are used for controlling traffic 
dynamically. Optimization Policies for Adaptive Control (OPAC) is an example of this type of 
model (Gamer, 1983). This model generates signal setting for single intersection. 

Off-line signal optimization models were developed in the late 1960s and early 1970s, and are 
used for computing signal settings for recurrent traffic flow conditions. The existing models 
for off-line determination of signal settings on single/multiarterial networks fall into one of 
two major categories. One set of models is based on the criteria of minimizing system delays 
and stops, while the other maximizes the progression bandwidth along the arterials. Delay 
minimization models lead to signal settings that minimize the number of stops and delays 
experienced by vehicles at intersections. Bandwidth maximization models lead to signal 
settings that maximize the proportion of traffic flowing unimpeded through the signals. 
TRANSYT (Robertson, 1968) and SIGOP (Lieberman et al., 1983) are models that determine 
signal settings that minimize delay. These models combine macroscopic simulation and 
nonlinear optimization based gradient searches to determine the optimal signal settings. 
MAXBAND (Messer et al. 1987, Chang et d. 1988), is a model that maximizes bandwidth 
for multiarterials. The underlying optimization model in MAXBAND is a Mixed Integer 
Linear Programming (MILP) model (Little, 1966). Cohen et al. (1983,1986) and Liu (1988) 
have experimented with combining MAXBAND and TRANSYT models and have obtained 
signal settings that minimize delay and maximize progression bandwidth. 

TRANSYT is perhaps the most widely used model for setting signal timings in the practice of 
traffic engineering. TRANSYT minimizes delay-based disutility functions from which green 
bands cannot always be found. Furthermore, the TRANSYT model does not optimize left turn 
phase sequences. MAXBAND model maximizes green bands, optimizes left turn phase 
sequences, and computes the best cycle time from a range of cycle time for given green split. 
Studies have shown [Rogness (1981), Cohen et al. (1983)l that left turn phase sequence 
optimization can substantially improve performance of signal timing plans. But, experience 
with MAXBAND has shown that hours of computer time may be required to optimize a 
medium-sized network problem even on a mainframe computer. The computational 
inefficiencies make the current version of MAXBAND impractical for use by traffic 
engineering community. 

This technical report documents recent enhancements to the MAXBAND model made for the 
purposes of improving its numerical stability and execution time when running on IBM 
compatible microcomputers. These enhancements include: i) development of a fast heuristic 
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algorithm that is capable of generating optimalhear optimal solution for the MILP in fraction 
of time required by the old MAXBAND, ii) a new optimal algorithm, and iii) replacement of 
the old linear programming problem solver with a numerically stable linear programming 
problem solver. 

The MAXBAND model with these enhancements is referred to as MAXBAND Version 3.1 
by the Federal Highway Administration (FHWA) who sponsored this research. The speed up 
in execution time should make MAXBAND usage attractive for real-time applications, off-line 
usage in a microcomputer system, and for iterative use of MAXBAND with delay- 
minimization problems or simulation procedures. 

This report is organized as follows. In the next section, the history and evolution of 
bandwidth maximization model and the limitations of the existing solution approaches are 
discussed briefly. Section 3 discusses the fast heuristic algorithm and the optimal algorithm 
developed for the MILP. This is followed by a discussion on the LP solver and computer 
implementation of MAXBAND Version 3.1 in Section 4. An overview of the new version is 
provide in Section 5. Section 6, reports the results for a number of network and arterial test 
problems. Finally, conclusions and directions for future work are discussed in Section 7. 
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2. MAXBAND 

The original mixed integer linear programming formulation for bandwidth maximization for 
signal setting along single arterial was by Little (1966). This formulation was extended to 
triangular networks by Little, Kelson, and Gartner (1981). MAXBAND Version 2.1 (formerly 
known as MAXBAND-86), developed by Messer et ul. (1987), extended the formulation to 
account for general grid networks and left turn phase sequences. Gartner et ul. (1991) report 
the extension of the arterial MILP formulation to include multi-band capability. Chaudhary 
et ul. (1993) report the development of bandwidth optimization formulation that include 
circular phasing of signals, the new model is called PASSER IV. 

The complete MILP formulation for multiarterial networks contains mix of integer and 
continuous variables. The optimal solution approach to solve the MILP is to use the branch 
and bound algorithm. MAXBAND Version 2.1 uses the branch and bound code by Land and 
Powell (1973) to solve the underlying MILP model. This code is numerically unstable for 
bandwidth maximization problems where the optimal cycle time is to be selected from a range 
of cycle times. Numerical instability results in runs ending prematurely with either suboptimal 
or no solutions at all. Also, the execution time for network problems were excessive due to 
the exhaustive nature of the branch and bound search in the optimization code. Some 
modifications were made to stabilize the numerical computations, see Solanki, Rathi, and 
Cohen (1993). Multi-step heuristic algorithms (Two-step heuristic and Three-step heuristic) 
were developed by Chaudhary, Pinnoi and Messer (1991) to generate optimalhear optimal 
solutions. The execution times for network problems were not consistently better than 
simultaneous optimization for all network problem instances and continued to be excessive. 
The issue of numerical instability remained unresolved, since they were using the Land and 
Powell code to solve the MILP sub-problems within the heuristic algorithms. 

0 
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3. HEURIsIlC AND OPTIMAL APPROACH 

The mixed integer linear programming formulations for multiarterial networks consists of 
blocks of constraints dealing with individual arterials and some additional constraints that 
impose restrictions on loops of multiple arterials. The derivation of the constraints and 
detailed MILP formulation are provided in Messer et al. (1987) and hence will not be 
discussed in this report. Only the integer variables of the MILP formulation are discussed. 
The difficulty in solving realistic network problems arises due to the large number of integer 
Variables in the MILP formulation. 

The branch and bound procedure is an implicit enumerative search method for finding the 
optimal integer solution from a set of feasible integer solutions. This procedure does not deal 
directly with the integer problem. Rather, it considers a continuous problem, (Linear 
Program, LP, which is simpler to solve), defined by relaxing the integer restrictions on the 
variables. Thus the solution space of the integer problem is only a subset of the continuous 
space. If the optimal continuous solution is all integer, then it is also optimum for the integer 
problem. Otherwise, the branch and bound algorithm partitions the continuous solution space 
into subspaces, which are also continuous (this is called the branching operation). Each of the 
created subproblems can now be solved as a continuous problem. When the solution of a 
subproblem is integer, the subproblem is not branched, otherwise further branching is 
necessary. The optimal objective value for each linearized subproblem created by branching 
sets an upper bound (assuming the objective is to be maximized) on the objective value 
associated with any of its integer feasible values (this is called the bounding operation). The 
optimum integer solution is the integer solution of the subproblem having the largest upper 
bound (maximization problem). Nemhauser and Wolsey (1988) provide a more detailed 
description of the branch and bound procedure. The complexity of the branch and bound 
technique depends on the large number of branches that may be created and on the computer 
storage required for the storing subproblems to be scanned later. The worst case complexity 
of the branch and bound algorithm is the same as complete enumeration of every integer 
solution in the feasible space. 

The set of integer variables in the bandwidth maximization MILP formulation can be divided 
into three sets: 

ZnrrCr-oop variables ( my ): are a set of general integer variables. This variable denotes the 
number of cycles required to go from signal i to signal i + I  and back, on arterial j. The q j ' s  
should assume integer values due to the fact that the progression bandwidth in a specified 
direction for arterialj should pass through the green interval of signal cycles at signal i and 
i + I .  Little (1966) provides the analytical justification for the integral nature of this set of 
variables. 

Znrer-loop vuriubles ( nf ): are a set of general integer variables. This variable denotes the 
number of cycles required for traversing arterials in the loop. The inter-loop variables are the 
reflection of the network closure constraints which are required in a closed network consisting 
of intersecting arterials and running on a common cycle length. These variables state that the 
sum of the offsets around any closed loop in the network must be an integral multiple of the 
common cycle length. Messer et al. (1987) provide the analytical justification for the integer 
nature of this set of variables. 
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LeJ-turn-phase sequence variables ( 6, ): are a set of binary variables. These variables are 
used to define the left turn phase sequence pattern on intersection i of arterialj. 

3.1 RESTRICTED BRANCH AND BOUND ALGORITHM 

The heuristic procedure discussed in this report is a restricted search procedure for suitable 
values of the integer variables. The only known heuristics for the MILP are the two-step and 
three-step heuristic by Chaudhary et d. (1991,1993). The first step of the two-step heuristic 
relaxes the GV’s to be continuous variables and searches for optimal mg’s and nis. Six of the 
best solutions, obtained during the search, are saved. (Note: These six best solutions found 
are not necessarily the best six solutions to the partial problem. They are the best six solutions 
to the partial problem which were identified as a part of the branch and bound search.) For 
each of these six solutions, the integer values of the mg’s and 11;s are fixed in the second step, 
which searches for optimal integer values of the 6,’s. Similarly, the three-step heuristic 
solves the integer values of the nl’s, mg’s and Gii’s in three steps, where the integer values 
obtained in one step are fixed in the next step. As expected, the two-step heuristic produces 
better solutions but consumes significantly more time compared with the three-step heuristic. 
In both heuristic methods, at each step an exhaustive branch and bound search is required to 
obtain optimal integer values. It was observed that, for some problem instances, the time 
required by the multi-step method could be more than the time required for the simultaneous 
optimization of all integer variables. This was because the six best solutions found during the 
execution of the first step are all kept and used in the subsequent steps, regardless of their 
relative merit and the exhaustive nature of branch and bound technique. 

The key observation of a good heuristic design is to identify suitable problems that can be 
solved quickly and repetitively to generate improving solutions over iterations. The heuristic 
developed for MAXBAND Version 3.1 is a resm*cted branch and bound algorithm. The 
branch and bound search is restricted to portions of solution space which is likely to contain 
good solutions. Figure 1 gives an overview of the new heuristic. There are two key elements 
that characterize the algorithm described here: 

1. 

2. 

a greedy heuristic to generate a good lower bound to be used at the root node of the 
branch and bound tree (Greedy Heuriszic I), and 
a tree search approach that combines branching and bounding techniques. 

Efficient implementation of these key elements allow us to solve large problem instances of 
the MILP in reasonable time and memory allocations. Let P be the original MILP problem to 
be maximized, Let V(P) be the optimal objective function value of P. Let P’ be the LP 
relaxation of P, obtained by relaxing the integer variables me’s, nis, and 6,’s. Then, V(P1, is 
the optimal objective value of P‘. The fact that V(P) - V(P1, is a consequence of the linearity 
of the problem. If the optimal value of the solutions vector corresponding to the variables 
mu’s, nis, and 6..’s are integer in P’, then the solution is optimal to the original problem P. 
The greedy heuristic, that generates a lower bound to be used in the tree search procedure, 
shall be discussed first. This report then continues to discuss the restricted branch and bound 
algorithm. 

!J 

Greedy heuristic I is based on the concept of local search in the space of integer variables. 
Heuristic algorithms based on local searches have been found to be very effective in a large 

6 



Restricted Branch and Bound Algorithm 

Lower Bound 
Generator 

Greedy 
Heuristic I 

Implicit 
Enumeration 

Restxicted Restricted Greedy 

Search Variables at Tree-node 
Deph-FEst Range On Heuristic II 

figure I t  Overview of Heuristic Algorithm 

variety of integer programming problems. The key to this algorithm is to restrict the integer 
variable ranges to those values which are likely to yield good solutions. The local search is 
performed by fixing the values of some of the integer variables. The objective of the 
restricted problem is evaluated by solving the resulting restricted linear program. 

3.1.1 Algorithm I: Greedy Heuristic I 

Input: P', the set of integer variables 

Step 1: Initialize the current incumbent, z' = -00. 

Step 2: Perform steps 3 through 9 two times. Go to step 10. 

Step 3: Order the set of integer variables as follows I = {nl , ...., nL, m,, , ...., mKNJ 

Step 4: Solve LP problem P'. 

Step 5: If the set Z is empty then go to step 8; otherwise, pick the next variable from the 
ordered set Z (say variable xu ) and delete it from set Z. 

Step 6: Set the upper and lower bounds of the variable xu as follows: 
b'Jl,=~Jw=Znt(xv+0.5), i.e. set the upper and lower bounds of the integer variable to the 
integer value nearest the LP solution. 
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Step 7: Solve the restricted LP. If the current LP is infeasible then reset the variable last set 
to the other end of the LP optimal solution (obtained in step 6) and re-solve. Go to step 5. 

Step 8: The algorithm reaches this step once all the integer variables have been set to the LP 
solution upper or lower bound. If the objective is greater than the current incumbent, save the 
current solution as the incumbent. Reset the bounds of all the integer variables. 

Step 9: Reverse the order of the integer variables and put it in set I ,  Le. this time the variable 
mKN is the first variable and variable nl is the last variable. Go through steps 4 through 8. 

Step 10: Fix the my’s and n,’s at their best values and use branch and bound code to 
integerize the 6,’s. 

The solution obtained at the end of step 10 of greedy heuristic I serves as a lower bound (best 
incumbent) in the branch and bound procedure. Such a bound restricts the growth of the tree 
and hence helps in faster resolution of the optimal solution. The restricted tree search 
algorithm, (also called restricted branch and bound), developed for bandwidth optimization 
can then be described as follows: In the tree-search procedure, the range over which the 
integer variables, me’s and n,’s, can vary, are restricted. Integer variable me’s are allowed 
only two values and integer variable nl’s are allowed three values. The three values of nl’s are 
selected such that the incumbent value is the middle value. The two values of 4, ’s  are 
selected such that the incumbent value is the upper bound of this variable. For ease of 
exposition let an integer variable be denoted xii. Let the set 4 be the set of the integer 
variables fixed at the lower bound during the branch and bound procedure Le. F, = {xii / b,,, 
I xii I brow ). Let F, be the set of integer variables fixed at the middle value i.e. F, = 
{xu / bf,,+l I X, I brow+ I } , and Fr be the set of integer variables fixed at the upper 
bound Le. F, = {xii / bq I x -  I b J .  Then, let S be a family of ordered triple of node 
sets < Fl , F, , F, > , and let 9, referred to as an incumbent, be the incidence vector of 
some integer feasible solution. 

To describe the restricted branch and bound algorithm the following terminologies are used. 
Let a tree-node, associated with the ordered set < FI , F, , F, > , be the problem PF;,F,,F,). 
This is a problem of finding a signal timing plan whose solution vector satisfies the 
inequalities (3.la), (3.lb), and (3.1~) given below: 

b,,, I xu I brow for all integer variables in the set Fl 
blm+l I xij I bfow+l for all integer variables in the set F, 
bq I x, I b, for all integer variables in the set F, 

(3.la) 
(3. lb) 
(3. IC) 

Then, P’F;,F,,F,J is the linear relaxation of PF;,F,,F,) obtained by relaxing the integer 
variable not in the set 4, F,, and F,. The tree-nodes are recorded by the ordered triple 
corresponding to it. A tree-node is considered fathomed if one or more of the following 
conditions are satisfied: 

i. the optimal LP objective Le. VfP’fFf,F,,FJ), at this node is less than the current 
incumbent, 

ii. the depth of this tree-node is equal to the maximum depth (depth)  specified, 
iii. the LP, P’(FI,F,,FJ, is infeasible, or 
iv. the optimal LP results in an integer feasible solution. 
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If the optimal solution of the current LP relaxation is fractional and the current depth (number 
of integer variables fixed) is less than maximum depth, the algorithm selects a branching 
variable xii and branches, thus providing up to three new tree-nodes (< F,U (xg) ,Fm ,Fr > , 
< Fl ,Fm U {xg),Fr > , < Fl ,Fm ,F,U {x& >). The root-node of the search-tree is the tree- 
node C @,@, 0 > . During the algorithm the tree-nodes of the search-tree that are in S are 
called active Pee-nodes. The restricted branch and bound algorithm can then be described as 
follows: 

3.1.2 Algorithm 11: Restricted Branch and Bound 

Input: z‘, the LP problem P’, the set of integer variables Z. 

Step 1: (Initialization) Set S = { < 0,0,0 > ). Limit the ranges of the mG’s and n,’s. 
Select the maximum depth (htdepth) of the tree to be half of the number of integer variables 
in the problem. Number the integer variables such that the first consecutive number, (starting 
with number 1)’ are given to the mu’s, the next consecutive numbers are given to n,’s and 
finally number the 6,’s. 

Step 2: (Select a treenode for evaluation). If S = 0 then stop - the current incumbent is a 
local optima. Otherwise choose an ordered set < F, , F, , Fr> from S and set S = SI C FI , 
F,,  Fr>.  

Step 3: (Greedy heuristic II). Fix the all integer variables that are not fixed yet, (Le. the set 
of integer variables {xG / 5G E IIF; U Fm U Fr)) ), to an integer value nearest to the LP 
solution, Le. set b’J,=b‘J,=Znt(x,i+0.5). Solve the new LP. If the optimal objective is 
greater than z‘, save the solution and reset the variables fixed in this step. 

Step 4: (Evaluation of treenode). Solve the linear program, P’F;,F,,F,J, with the additional 
restriction. Let 2’ be its optimal solution. If 2’ - f, go to step 2. 

Step 5: (Check for new incumbent) If Z’ is integer feasible, and the optimal objective value 
is greater than z‘, then set z‘ to Z’. Go to step 2. 

Step 6 (Create new set of treenodes) If the depth of the tree is greater than the maximum 
depth specified for the problem instance then go to step 2. Otherwise, select a fractional 
integer variable xii to branch on. Such a variable will be in Z\F;U Fm U Fr). Set S = S U 
<Fl U {xi i ) ,  Fm , Fr> U <Fl ,Fm U {xii),Fr > U <Fl ,Fm ,Fr U (x,)> 
and go to step 2. 

Once an ordered triple is removed from S it is never again generated in Step 6, so the 
algorithm terminates in a finite number of steps. When the algorithm stops, 2’ is a local 
optima. The performance of Algorithm I1 depends significantly on certain implementation 
details. In particular, the following issues are key to the algorithm’s performance: 

(a) Whether or not early tree-nodes can be fathomed depends on the starting z‘. If this value 
is close to the optimum, the search-tree will consist of few tree-nodes. Therefore it is 
necessary to generate good feasible solutions early in the procedure. This objective is 
achieved by the Greedy Heuristic I and Greedy Heuristic II. 

. 
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Steps 3 and 4 must be executed many times before a good solution is obtained. A large 
portion of the final execution time of the algorithm is devoted to wiving the LPs. 
Therefore, it is important to use the LP+ptimizer as efficiently as possible. The LP- 
optimizer of MINOS is very fast and numerically very stable since it uses the state-of-art 
techniques of numerical analysis and linear programming for updating basis and 
performing basis inversions. 
The efficiency of the algorithm with respect to run time and memory usage depends on 
two things: the way the ordered triple is chosen in Step 2, and the way the tree-nodes are 
created. The tree-nodes were processed in a depth-first fashion (LIFO). The integer 
variables are ordered as follows: (mij*s, n,'s, and "'s). Through experimentation, it was 
found that this particular order led to incumbents that are close to optimal early on in the 
search tree. The depth of the search-tree was also restricted to half the number of integer 
variables, mij's and nl's. This restricted the number of tree-nodes generated and, hence, 
restricted the growth of the search tree. Further restriction on the range of integer 
variables also limited the number of tree-nodes generated. As will be seen in the 
numerical results both types of restriction helped in faster resolution of the optimal 
solution. The experimentation with 6 variables revealed that these naturally turn out to be 
integer or can be rendered integer by a minimal amount of branching in the branch and 
bound search. Thus the 6 values are searched using the exact optimization technique. 

The algorithmic steps for the optimal approach, in MAXBAND Version 3.1, is the same as 
that of the heuristic approach (discussed earlier). In the optimal algorithm, during the tree- 
search procedure the integer variables and the depth of the search tree are not restricted. 
Figure 2 gives an overview of the optimal method in MAXBAND Version 3.1. 

Branch and Bound Algorithm 

Lower Bound 
Generator 

Implicit 
Enumeration 

Greedy 
Heuristic 11 
at Tree-node 

Rgure 2: Overview of Optimal Algorithm 
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MAXBAND Version 3.1 allows the user to select either the optimal approach or the heuristic 
approach for solving a network problem. This option can be exercised by setting the proper 
flag in the input data (discussed in the section on ’Getting Started’). The arterial problems are 
always solved optimally. This is because arterial problems could be solved very fast (in few 
seconds). 
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4. OVERVIEW OF MAXBAND VERSION 3.1 

Figure 3 provides an overview of the swcture of the revised MAXBAND Version 3.1. The 
new structure is not significantly different from the structure of MAXBAND Version 2.1. The 
routines in the box shown by dashed lines are the new modules. In MAXBAND Version 2.1 
this box contained the MATGEN and the MPCODE modules. The branch and bound 
procedure (by Land and Powell) used in MAXBAND Version 2.1, is called MPCODE. The 
matrix generator routine used to generate the MILP model for MPCODE is called MATGEN. 
In this research, MATGEN and MPCODE routines were replaced by a model generator 
routine call MPSGEN and a MILP solver routine called MODMINOS respectively. The 
MODMINOS module is comprised of subroutines from MINOS 5.4 (1993) modified for use 
in MAXBAND Version 3.1. Details of the MINOS code will be provided in section 5.0. To 
the MINOS code, heuristic algorithms and new branching and bounding strategies were added 
for faster resolution of the optimal bandwidth. The MODMINOS module is capable of solving 
both arterial and network problems. 

In MAXBAND Version 3.1, the arterial problems are always solved optimally. The network 
problems can be solved either heuristically or optimally. The MPSGEN routine generates the 
MILP model in the MPS format, (format discussed in Appendix A), required by MINOS. The 
OUTPUT module was also modified to accept the signal timing plans in the form provided by 
MINOS. Subroutines that would print the MINOS run statistics (e.g. number of solutions 
obtained, number of iterations, etc.) were added to the OUTPUT module. 
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figure 3: Overview of MAXBAND Version 3.1 
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5. THELPSOLVER 

Linear program solver routines from MINOS 5.4 (1993) were used to solve the LPs in 
Algorithms I and II. MINOS is a FORTRAN-based computer system designed to solve large- 
scale linear and nonlinear optimization problems. It has a collection of high-performance 
mathematical subroutines which can be called from application programs. From this package 
the subroutines required for solving linear programming problems were used. The main 
reasons for choosing MINOS over other LP solvers were the cost and the availability of 
source code. The availability of source code allowed customization and therefore helped to 
speed up the executable. 

MPCODE, the MILP solver in MAXBAND Version 2.1, is a straightforward implementation 
of the revised simplex algorithm presented in any elementary Linear Programming textbook. 
Advances in numerical analysis techniques and operations research techniques have led to 
improved revised simplex routines for updating basis, inverting basis, choosing entering and 
leaving columns, etc. These advances have led to faster and numerically stable algorithms for 
solving linear programming problems. MINOS implementation takes advantage of the recent 
advances in numerical analysis and linear programming techniques, e.g. using scaling as a 
simple cure for ill conditioned matrices. MINOS performs scaling of rows, right hand side 
vectors, and columns by choosing appropriate scale factors to make its rows and columns 
roughly the same length, in some appropriate norm during the solution process; whereas, in 
MPCODE the scaling of a problem instance had to be performed by the user externally. In 
MINOS, the constraints and variables are scaled by an iterative procedure that attempts to 
make the matrix coeffxients as close as possible to 1. This improves the solution 
performance. Some of the other techniques adopted by MINOS to improve stability and 
efficiency are discussed in the following paragraphs. 

Data (both input and output) is stored within a work array that is partitioned by a set of 
pointers to starting locations of individual mays needed by the procedure, each with an 
appropriate number of bytes that depends on whether the array is integer, single, or double 
precision floating-point. This makes implementation largely independent of data structures and 
it is then relatively easy to unplug one set of data structure and substitute another. 

An elementary way to solve a nonsingular square system of linear equations that arise in our 
case, within the cycle of primal simplex algorithm, is to use Guassian elimination. LU 
factorization is a reformulation, in matrix terms, of Gaussian Elimination. During LU 
factorization the near zero pivot elements lead to uncontrollable growth in the elements and 
fill-in of L and U. This in turn results in large numerical errors and large computational 
times. The soiution is to choose pivot elements suitably so as to prevent such element growth 
and fill-in growth. MINOS implementation is based on the Markowitz pivoting strategy that 
balances considerations of stability and sparsity. The basis updating strategy used by MINOS 
is the Bartels-Gohb basis updating strategy in which updating is carried out with a pivot 
strategy that balances considerations of stability and sparsity. The basis inverse is maintained 
implicitly in product form. For complete details of the Markowitz pivoting strategy, Bartels- 
Goiub basis updating strategy, and implementation details see Reid (1976, 1982). MINOS has 
also implemented various selection strategies for actually making the choice of entering and 
exiting variables. These strategies lead to faster resolution of the optimal solution, degeneracy 
resolution and also doesn’t lead to numerical instability. 
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Certain disk files are accessed by MINOS subroutines as follows: 

Input fires 
SPEC file ( i u t  file) 
MPS file (created during run time ) 
INTEGER VARIABLE SPECIFICATION files ( created during run time ) 

Output fires 
OUTPUT file 

The SPEC file sets various run time parameters that describe the nature of the problem being 
solved. This file is an input file and is required along with the network data file and the 
executable for MAXBAND. The file consists of a sequence of card images, each of which 
contains a keyword and certain associated values. The first keyword is BEGIN and the last 
keyword is END. The SPEC file format, the parameters, default values and a sample SPEC 
file are given in APPENDIX A. 

The MPS file is required for all problems to specify names for the variables and constants, 
and to define the constraints themselves. This file is generated by MAXBAND Version 3.1. A 
very fixed format must be used for the MPS file; this means that each item of data must 
appear in a specific column. The MPS file, called ‘MINOS.MPS’, is created by MPSGEN 
routines of MAXBAND Version 3.1. The MPS file format and a sample MPS file are given 
in APPENDIX B. 

The files ‘MNMINOS.MPS’ and ‘DLMINOS.MPS’, are used to specify which variables in 
the linear program described by the specifications file and the MPS data file are either integer 
values or are integer multiples of given increments. These two files use a format similar to 
that found in an MPS file. These files are also created by the MPSGEN routines. The 
INTEGER VARIABLE SPECIFICATION file format and a sample file are given in 
APPENDIX C. 

Warnings and errors encountered during the solution of problems are printed in the OUTPUT 
file. The solution to the problem is also printed in the OUTPUT file in the format specified 
by MAXBAND Version 2.1. The following information could be written by the MINOS 
routines to the OUTPUT file during the solution of each problem: 

1. A listing of warnings/errors encountered in the MPS file (if any). 
2. Extra storage requirements ( if any). 
3. Abnormal exit conditions (if any). 
4. Various run statistics: number of feasible integer solutions found, number of tree- 

nodes created, etc. 
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6. NUMERICALRESULTS 

A number of network and single arterial problems were solved using the new model. The test 
data sets were supplied by FHWA. Tables 1 through 4 report the solution quality and the 
computation times for these problems. Tables 1 and 2 show the results of the arterial test 
problems. Tables 3 and 4 correspond to the network problem runs. The columns of Tables 3 
and 4 can be described as follows. Column 1 specifies the names of data set, as provided by 
FHWA. Column 2 contains the problem size showing the number of arterials and total 
number of intersections. Column 3 contains the optimal objective value. Column 4 contains 
the objective function value at the end of the LP based heuristic (greedy heuristic I); the 
numbers in parentheses show how close this value is to the optimal value. Column 5 contains 
the time in seconds for greedy heuristic I. Column 6 contains the objective at 29s end of the 
restricted branch and bound procedure; the number in parentheses shows how close this value 
is to the optimal objective value. The numbers in column 7 show the time taken in seconds 
for the entire algorithm. The computation times are reported for an 80486166 MHz personal 
computer. As is observed from the Tables 3 and 4, the heuristic performs very well in 
generating optimahear-optimal solutions in a short amount of time. The utility of the 
heuristic increases as the size of the problem grows and an exact search requires excessive 
computation time. All of the arterial problems were solved using the optimal approach. 
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Table 1: Arterial Problem Without Left-Turn Phase Sequence Variables 

** CPU times on a 486133 MHz personal computer. 

Table 2: Arterial Problem With Left-Turn Phase Sequence Variables 

** CPU times on a 486133 MHz personal computer. 



Table 3: Network Problem Without Left-Turn Phase Sequence Variables 

s 

PROBLEM SIZE Opt. Obj. Heu.Ob]. (%Opt) Time H a .  B&B Obj. Time MAXBAND 
(&.) (%Opt) (k.) Version 2.1 

Time (sec)" 

Daytona (7,12) 1.6368 1.5381(94.0%) 46.58 1.5403(94.196) 235.52 244592 

8912 Annarbor (8914) 3.3235 2.8010(84.3%) 57.40 3.3235(100%) 

Houston (8,131 2.5079 1.5816(63.14%) 58.50 2.3723(94.696) 113.26 11765 

Memphis (8,171 3.0479 2.5768(84.5 4%) 50.10 3.OO44(98.6 96) 582.59 28306 

Ogden (8,131 2.6192 2.298 1 (87.7 4% ) 62.40 2.5902(98.9 4%) 548.49 33365 

Baycity (8,W 2.9658 2.5O40( 84.4 96 ) 75.63 2.7O94(9 1.4 96) 348.18 26854 

owosso (8,161 4.0057 3.2217(80.4%) 45.21 3.91 19(97.7%) 111.99 3804 

Lax (8.15) 3.4278 3.2157(93.8 4%) 65.63 3.4278( 100%) 394.86 15745 

3525 

Sanramon (6917) 1.8848 1.5416(81.8 96) 70.03 1.8848(10096) 348.45 32812 

Annarbol (9,201 2.5599 1.6168(63.296) 125.18 2.3363(9 1.3 96) 1782.11 na 

Wlntcrkl (9,221 2.6737 2.4303(90.9%) 75.80 2.4303(90.9 96) 658.12 na 

Annarho2 (9,261 3.0861 2.5016(81.14%) 161.81 2.7579( 89.4 96) 1443.50 na 

Wlntcrk2 (10,271 2.5763' 1.8660(72.4 96) 133.36 2.4834(96.4 96) 985.20 na 

198.18 

- 

148.30 Wlntcrk (6,131 2.0925 1.5478(74.096) 28.62 2.0923 10096) 

* Best known objective, not necessarily optimal. 
** CPU times on a 486-33 MHz microprocessor. 



Table 4: Network Problem With Left-Turn Phase Seyuence Variablest 

PROBLEM SIZE 

Daytona.ph (7,121 

Opt. Obj. Heu.0b.j (%Opt) Time Heu. B&B Obj Time 
(k.1 (%Opt) (set!.)** 

2.9445 2.2949(77.9 5%) 43.12 2.9445(100%) 474.72 

Annarbor.ph 

Houston.ph 

Memphis.ph 

Ogden.ph 

Bay city. ph 

Owosso.ph 

Lax.ph 

Wlntcrk.ph 

Sanramon.ph 

AnnarboLph 

WIntcrkLph 

Annarbo2.ph 

Wlntcrk2.ph 

f MAXBAND Version 2.1 was unable to solve these problems in 5 days on a 486-33MHz personal computer. 
* Best known objective, not necessarily optimal. 
** CPU times on a 486-33 MHz microprocessor. 

(8,W 3.7652 3.491q92.7 96) 34.71 3.7095(98.596) 314.56 

(8.13) 2.8171 2.O992(74.5 96) 48.83 2.8171(10096) 106.78 

(8,171 3.4682 3.22 14(92.9 96) 31.14 3.4474(99.496) 319.89 

(8.13) 3.1220 2.9627(94.9 96) 48.94 3.1029(99.496) 654.11 

(8,161 3.8354 2.6903(70.196) 54.98 3.7395(97.5 96) 221.95 

(8,161 4.2978 3.5324(82.2 96) 27.14 4.2321(98.5%) 79.48 

(8,151 4.0004 2.9501(73.8 96) 117.76 3.8862(97.296) 939.01 

(6,131 2.8304 2.3 120(8 1.7 96 ) 26.09 2.7231(96.296) 103.37 

(6,171 2.8012 2.3 150(82.6%) 3 1.4 1 2.8012( 10096) 181.26 

(9,20) 2.9380 1.8481(62.996) 118.09 2.7929(94.796) 73 89.95 

(9,221 3.3667 2.5443(75.6%) 62.29 3.207 l(95.3 96) 1494.02 

(9,261 3.6215' 1.9657(54.3 96) 223.38 3.4078(94.196) 6545.64 

(10,271 3.6644. 3.3740(92.196) 125.62 3.6798( 100.496) 6869.75 



This report describes the development of a new version of MAXBAND called MAXBAND 
Version 3.1. The new version has a fast heuristic algorithm and an new optimal algorithm. 
The two algorithms are faster than the existing approach for bandwidth maximization 
problem. Furthermore, the new version has removed the numerical instabilities that existed in 
the previous version. The reduction in computation times for difficult network problems are 
substantial, and should make MAXBAND usage attractive for real-time applications, off-line 
usage in a microcomputer system, and for repetitive solutions of the bandwidth maximization 
problem in conjunction with the delay minimization problem or simulation procedure. All of 
the arterial problems were solved optimally since they only required a few seconds to solve. 

Further work can be done to enhance the MILP formulation to include circular phasing and 
multiband capability. Work can also be done in building a combined model based on 
bandwidth maximization, delay minimization, and simulation. 

7. CONCLUSIONS AND FUTURE WORK 
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APPENDIX A 

SPECS FILE 

Each line in the SPECS file contains a sequence of items in free format (they may appear 
anywhere in columns 1 to 72). The items are separated by spaces or equal signs (‘ ’ or ‘=’). 
Those selected from each line are: 

1. The first word (the keyword). Only the first 3 characters are significant. 

2. The second word (if any). Sometimes this is the keyword’s associated name value, an 
8 character name. More often it qualifies the keyword, and its first 4 characters are 
significant. 

3. The first number (if any). This may be an integer value or a real value, specified by 
up to 8 characters in Fortran’s I, F, E or D format. 

The following example SPECS file shows all valid keywords and their default values relevant 
for MAXBAND Version 3.1. A more extensive list is provided in the MINOS 5.4 [1993] 
manual. Keywords are grouped according to the function they perform. Blank lines and 
comment lines may be used for readability. A comment begins with an asterisk (‘*’) and 
includes subsequent characters on the same line. Some of the default values depend on E, the 
relative precision of the machine being used. The values given here correspond to double- 
precision arithmetic on IBM 360 and 370 systems and their successors (e ~ 2 . 2 2 ~  1@). 
Similar values would apply to any machine having about 15 decimal digits of precision. 

BEGIN * check list of SPECS file parameters and their default values 
* 
* Keywords for the MPS file 
* 

MAXIMIZE 
ROWS 
COLUMNS 
ELEMENTS 
M P S  file 

AU TOLERANCE 
LOWER BOUND 

100 
300 
1500 
? 

1.OE-10 * 
0.0 * 

* opposite of MINIMIZE 
* (or less) 
* or 3*rows (or less) 
* or 5*colurrms (or less) 
* depends on installation 

A- 1 



UPPER BOUND 1.OE+20 * Plus infinity* 

* Keywords for the simplex method 
* 

FACTORIZATION FREQUENCY 50 
SCALE YES 

variables 
* 

* refactorize the basis matrix 
* linear constraints and 

* Convergence and Stability tolerances 

FEASIBILITY TOLERANCE 
* 

* 
* Keywords for Mixed Integer Program 
* 

CYCLE LIMIT 

WORKSPACE (USER) 
problems 

WORKSPACE (TOTAL) ? 
* 
END * of SPECS file checklist 

1.0E-6 * for satisfying bounds 

1 

0 

* limits number of B&B 

* allocated for B&B routine 
* depends on installation 

SPECS FILE DEFINITIONS 

The following is an list of recognized SPECS file keyword definitions. A use of each keyword 
is given, along with a definition of the quantities involved and comments on usage. In some 
cases the value associated with a keyword is denoted by a letter such as k, and allowable 
values for k are subsequently defined. 

AIJ TOLERANCE (t): During the input of the MPS file, matrix coefficients aij will be 
ignored if I aii I < I, i.e. the coeflicient is set to zero. 

COLUMNS (n): This must specify an over-esfime of the number of columns in the 
constraint matrix (excluding slack variables). If n proves to be too small, MINOS will 
continue reading the M P S  file to determine the true value of n, and an appropriate warning 
message will be issued in the OUTPUT file. 

CYCLE LIMIT (0: The number of branch and bound subproblems solved is controlled by 
the CYCLE LIMIT parameter found in the SPECS file. For this reason, I should be set to be 
more than the maximum number of subproblems to be solved. 
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ELEMENTS (e): This must specify an uwr-estimate of the number of nonzero elements 
(coefficients aG) in the constraint matrix. COEFFICIENTS is a valid alternative keyword. If e 
proves to be small, MINOS continues in the manner described under COLUMNS. 

FACTORIZATION FREQUENCY (K): At most k basis changes will occur between 
factorizations of the basis matrix. In LP, the basis factors are usually updated every iteration. 
The default k is reasonable for typical problems. Higher values of k (say, up to k=100) may 
be more efficient on problems that are extremely sparse and well scaled. 

FEASIBILITY TOLERANCE (0: A feasible solution is one in which all variables satisfy 
their upper and lower bounds to within the absolute tolerance, t (this includes slack variables). 
The linear constraints are also satisfied to within t. MINOS attempts to find a feasible point 
before optimizing the objective function. If the sum of infeasibilities cannot be reduced to 
zero, the problem is declared INFEASIBLE. Let SINF be the corresponding sum of 
infeasibilities. If SINF is quite small, it may be appropriate to raise t by a factor of 10 or 100. 
Otherwise, some error in the data should be suspected. If SCALE is used, feasibility is 
defined in terms of the scaled problem (since it is then more likely to be meaningful). 

LOWER BOUND (0: Before the BOUNDS section of the MPS file is read, all structural 
variables are given the default lower bound 1. (Individual variables may subsequently have 
their lower bound altered by a BOUND set in the MPS file). LOWER BOUND = 1.OE-5 
(say) is a useful method for bounding all variables to remove singularities at zero. If all or 
most variables are to be FREE, use LOWER BOUND = -1.OE+20 to specify ‘minus 
infinity’. 

MAXIMIZE: This specifies the required direction of optimization. 

Mps FILE 0: This is the file number for the MPS file. The default value is the system file 
reader (f=5). INPUT FILE is a valid alternative keyword. 

ROWS (m): This must specify an uver-estimate of the number of rows in the constraint 
matrix. If m proves to be too small, MINOS continues in the manner described under 
COLUMNS. 

SCALE: The constraints and variables are scaled by an iterative procedure that attempts to 
make the matrix coefficients as close to 1 as possible (see Fourer [1982]). This will 
sometimes improve the performance of the solution procedures. 

UPPER BOUND (u): Before the BOUNDS section of the MPS file is read, all structural 
variables are given the default upper bound u. (Individual variables may subsequently have 
their upper bound altered by the BOUNDS section in the MPS file.) 

WORKSPACE (USER) (mum): You will need to reserve a portion of the MINOS 
workspace for use by the integer programming routines. The variable maxw is the number of 
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spaces in the workspace array that will be allocated to the arrays needed for integer 
programming. A good rule of thumb for selecting muxw is to set it to at least 6n+2m+41, 
where n is the number of variables, m is the number of constraints, and 1 is the CYCLE 
LIMIT. 

WORKSPACE (TOTAL,) (muxz): Default maxz=NWCORE. These keywords define the 
limits of the region of storage that MINOS may use for solving the current problem. The 
main work array is declared in the main program (MODMINOS), along with its length, by 
statements of the form 

DOUBLE PRECISION Z(200000) 
DATA NWCORE/200000/ 

where the actual length of Z must be specified at the compilation time. The values specified 
by the WORKSPACE keywords are stored in 

COMMON /M2MAPZ/ M A W ,  MAXZ 

and workspace may be shared according to the following rules: 

1. Z(l) through Z(MAXW) is available for branch and bound routines. 

2. Z(MAXW+ 1) through Z(MAXZ) is available to the LP solver in MINOS, and is not to 
be altered by MAXBAND 93. 

3. Z(MAXZ+ 1) through (ZWCORE) is unused. 

The WORKSPACE parameters are most useful on machines with a virtual (paged) store. 
Some systems will allow NWCORE to be set to a very large number (say 500000) with no 
overhead in saving the resulting object code. In general it is far better to have too much 
storage than not enough. 

AN EXAMPLE: 

Begin Example * sample spec file 
Maximize 
Rows lo00 
Columns lo00 



Elements 2oooo 

MPS file 10 
Feasibility Tolerance 1 .OE-5 
Workspace (User) 90000 
Workspace (total) 200000 

Cycle Limit 1OOOOO 

End Example 

A-5 



APPENDIX B 

Mps FILE 

MPS format is the industry standard. Files of this kind are recognized by all commercial 
mathematical programming systems. In contrast to the relatively free format allowed in the 
SPECS file, a very fixed format must be used for the MPS file. Various ‘header lines’ divide 
the M P S  file into several sections as follows: 

NAME 
ROWS 

COLUMNS 

RHS 

RANGES 

BOUNDS 

(optional) 

(optional) 

ENDATA 

Each header line must begin in column 1. The intervening lines (indicated by ‘.’ above) all 
have the following data format: 

COlumnS 2-3 
Contents Key 

5-12 15-22 
Name0 Name1 

25-36 40-47 
Value1 Name2 

50-61 
value2 

The NAME section: This section contains the word NAME in columns 1-4, and a name for 
the problem in columns 15-22. The name may be ftom 1 to 8 characters of any kind, or it 
may be blank. The name is used to label the solution output. The NAME line is normally the 
first line in the MPS file, but it may be preceded or followed by comment lines. 

eg. NAME MAXBAND 93 

The ROWS Section: The constraints are referred to as rows. The ROWS section contains one 
line each for each constraint (Le. for each row). Key defines what type the constraint is, and 
Name0 gives the constraint an 8-character name. The various row-types are as follows: 
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- E - 
G 2 
L I 
N Objective 

Row-types E, G, and L are easily understood. Row-type N stands for ‘non binding’, also 
known as ‘free’. It is used to define the objective row, and also to prevent a constraint from 
actually being a constraint. 

eg. ROWS 
N MAXBAND 
E LCOOl 

The COLUMNS Section: For each variable xj the COLUMNS section defines a name for xj 
and lists the nonzero entries aii in the corresponding column of the constraint matrix. The 
nonzeros for the first column must be grouped together before those for the second column, 
and so on. If a column has several nonzeros, it does not matter in which order they appear (as 
long as they appear before the next column). In general, key is blank (except for comments), 
Name0 is the column name, and Nizmel, Value1 give a row name and value for some 
coefficient in that column. If there is another row name and value for the same column, they 
may appear as N m 2 ,  Value;! on the same line, or they may appear in the next line. 
eg. 

COLUMNS 
XOl MAXBAND 
xo1 LCOOl 
x02 MAXBAND 
x 0 2  L O 1  

The RHS Section: This section specifies the elements of the right hand side of the 
constraints. Only the nonzero coefficients need to be specified. They may appear in any 
order. The format is exactly the same as the COLUMNS section, with Name0 giving a name 
to the right-hand side. 
eg. RHS 

RHso1 LCOol 7.5 

The RANGES Section: Ranges are used for constraints of the form 

T I I a  I u ,  
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where both 1 and u are finite. The range of the constraint is r=u-1. Either I or u is specified 
in the RHS sections (as b, say), and r is defined in the RANGES section. The resulting I and 
u depend on the row-type of the constraint and the sign of r as follows: 

Row-type 
E 
E 
G 
L 

Sign of r Luwr limit, I 
+ b 

+ Of - b 
b -  Irl 

+ or - b -  Irl 

Upper limit, u 
b + b l  

b + Irl 
b 

b 

The format is exactly the same as in the COLUMNS section, with Name0 giving a name to 
the range set. 

The BOUNDS Section (Optional): The default bounds on all variables xi (excluding slacks) 
are 0 I xi I 00. If necessary, the default values 0 and Q, can be changed in the SPECS file 
to 15 xi < u by the LOWER and UPPER keywords respectively. In this section Key gives the 
type of bound required, Name0 is the name of the bound set, and Name1 and Value1 are the 
column name and bound value. (Name2 and Value2 are ignored). Let I and u be the default 
bounds just mentioned, and let x and b be the column and value specified. The 
various bound-types allowed are as follows: 

LO 
UP 
FX 
FR 
MI 
PL 

B o ~ n d - t y ~  

Lower bound 
Upper bound 
Fixed variable 
Free variable 
Minus infinity 
Plus infinity 

Resulting bounds 
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AN EXAMPLE: 

NAME 
N 
E 
L 
L 

COLUMNS 
COLUMN1 
COLUMN1 
COLUMN1 
COLUMN1 
COLUMN2 
COLUMN2 
COLUMN2 
COLUMN2 
COLUMN3 

DEMANDS 
DEMANDS 
DEMANDS 

RHS 

ENDATA 

EXAMPLE ROWS 
COST 
ROW 1 
ROW2 
ROW3 

COST 
ROW 1 
ROW2 
ROW3 
COST 
ROW 1 
ROW2 
ROW3 
ROW 1 

ROW 1 
ROW2 
ROW3 

-7.0 
-1 .o 
5.0 

-2.0 
-2.0 
2.0 
1 .o 

-2.0 
16.0 

4.0 
20.0 
-7.0 
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APPENDIX C 

INTEGER VARIABLE SPECIFICATION FILE 

MNMINOS.MPS and DLMINOS.MPS use a format similar to that found in an MPS file; 
there is a header line, an end-ofdata line, and the lines in between must have the following 
data format: 

Columns 5- 12 25-36 
Contents Variable name Increment value 

In other words, the variable name is placed left justified in columns 5-12 of the line, and the 
increment value is placed in columns 25-36. The increment value used in MAXBAND 
Version 3.1 is 1. 

AN EXAMPLE: 

INTEGERS 
COLUMN1 
COLUMN2 

ENDATA 

1 .o 
1 .o 
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APPENDIX D 

c 

GETTING STARTED 

Installing the MAXBAND Version 3.1 System 

Use the DOS ‘copy’ command to transfer all the files from the diskette. Unzip all the files in 
‘MAXBND3 1 .ZIP’ using the command ‘PKUNZIP MAXBND3 1 ’. 

The following files will be created in the current directory: 

- all the source modules of the system 
- a ’makefile’, that can be used for compiling and linking the FORTRAN source code using 

Lahey FORTRAN extended memory version 5.10. 
- MAXBAND.EXE, the executable code 
- ’MINOS.SPC’ file which is needed to run the system 
- all the data files mentioned in the tables of the result. 

Running MAXBAND Version 3.1 System 

Type ‘MAXBAND’ at the DOS prompt. This will start the MAXBAND Version 3.1 system 
running. The default option on all the data sets is the heuristic method (except arterial 
problems). In order to exercise the optimal solution method of MAXBAND Version 3.1 the 
input data file will have to be altered. A flag should be reset in the input file. In the data line 
‘MPCODE’, columns 51-55 is used for this purpose. A ‘1’ in one of these columns will 
indicate that the optimal solution technique is to be used to solve the problem, otherwise the 
heuristic approach is used to solve that problem. 

Output Results 

The results of the run, i.e. the best signal timing plan, is printed on the output file specified at 
the beginning of this run by the user. 
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Software Avaiiabiiity and Technical Support 

The new release, MAXBAND Version 3.1, software is available from Mffruns and Pc-trans. 
For any technical questions, comments, and suggestions please contact the main author at the 
address given below either via letter, phone or e-mail. 

NHS Research Group 
Center for Transportation Analysis, ORNL 
P.O. Box 2006, MS 6206 
Oak Ridge, TN 37831 
PH: (615) 574 1402 
FAX: (615) 574 0202 
e-mail: puv@ornl.gov 
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