
f 

A 

FORWARD-IN-TIME DIFFERENCING FOR FLUIDS: 
NONHYDROSTATIC MODELING OF FLUID MOTIONS ON A 

SPHERE 

Piotr K Smolarkiewicz: Vanda Grubigik; Len G Margolint 
and Andrzej A WyszogrodzkiS* 

*National Center for Atmospheric Research, Boulder, Colorado, U.S.A. 
t Los Alamos National Laboratory, Los Alamos, New Mexico, U.S.A. 

§University of Warsaw, Warsaw, Poland 
RECEtvegj 

1. INTRODUCTION 
MAY 0 3 l999 
O S T I  

Traditionally, numerical models for simulating planetary scale weather and climate em- 
pIoy the hydrostatic primitive equations-an abbreviated form of Navier-Stokes’ equations 
that neglect vertical accelerations and use simplified Coriolis f0rces.l Although there is no 
evidence so far that including nonhydrostatic effects in global models has any physical signif- 
icance for large scale solutions, there is an emerging trend in the community toward restoring 
Navier-Stokes’ equations (or at least their less constrained forms) in global models of atmo- 
spheres and oceans (Cullen et al., 1997; Marshall et al., 1997a; Semazzi et al., 1995). The 
primary motivation is that state-of-the-art computers already admit resolutions where local 
nonhydrostatic effects become noticeable. Other advantages include: the convenience of lo- 
cal mesh refinement; better overall accuracy; insubstantial computational overhead relative 
to hydrostatic models; universality and therefore convenience of maintaining a single large 
code; conceptual simplicity and mathematical elegance-features important for education. 

The few existing nonhydrostatic global models differ in analytic for ation and numer- 
ical design, reflecting their different origins and purposes. Much of our present research 
(Anderson et al., 1997; Smolarkiewicz and Margolin, 1997) aims to improve the design of 
a high-performance numerical model for simulating the flows of moist (and precipitating), 
rotating, stratified fluids past a specified time-dependent irregular lower boundary. This 
model is representative of a class of nonhydrostatic atmospheric codes that employs the 

‘For a thorough critique of the hydrostatic primitive equations see Marshall et al. (1997b). 
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anelastic equations of motion in a terrain-following curvilinear framework, and contains par- 

allel implementations of semi-Lagrangian and Eulerian approximations (Smolarkiewicz and 
Pudykiewicz, 1992; Smolarkiewicz and Margolin, 1993) selectable by the user. The model 
has been employed in a variety of applications; the quality of results suggest that modern 
nonoscillatory forward-in-time (NFT) methods are superior to the more traditional centered- 
in-time-and-space schemes, in terms of accuracy, computational efficiency, flexibility and 
robustness (Smolarkiewicz and Margolin, 1997; 1998). 
We have extended the Cartesian NFT model to a mountaineous sphere and, consequently, 

have dispensed with the traditional geophysical simplifications of hydrostaticity, gentle ter- 
rain slopes, and weak rotation. In this paper, we discuss the algorithmic design, relative 
efficiency and accuracy of several different variants (hydrostatic, nonhydrostatic, implicit, 
explicit, etc.) of the NFT global model. We substantiate our theoretical discussions with 
the results of simulations of idealized global orographic flows and climates. 

2. MODEL DESCRIPTION 

The small-scale numerical model used as the basis of the global model discussed in this 
study has been described in Smolarkiewicz and Margolin (1997). It is representative of a 
class of nonhydrostatic atmospheric models that solve the anelastic equations of motion in 
standard, nonorthogonal terrain-following coordinates. The extended global model results 
from a composition of two mappings: it can be derived by either transforming the small- 
scale model equations to spherical coordinates, or by transforming the anelastic variant of 
the Navier-Stokes’ equations on a rotating sphere (cf. section 4.12 in Gill (1982)) to terrain- 
following coordinates. Below we comment briefly on the essential aspects of the design of 
the extended global model while referring the reader to earlier work for further details. 

2.1 Analytic formulation 

In this paper, we focus on an inviscid, adiabatic, density-stratified fluid whose undis- 
t urbed, geostrophically- balanced “ambient ” stat e is described by the pot entia1 temper at ure 

0, = Qe(x) and the velocity Ve = ve(x). The nonorthogonal terrain-following system of CO- 

ordinates [z, y, zl = [RX, Rb, H ( r - h ) / ( H - h ) ]  assumes a model depth H and an irregular 
(but at least twice-differentiable) lower boundary h = h(z,  y). Here T, R, A, and 4 denote, 
respectively, the radial component of the vector radius, sphere’s radius, longitude, and lati- 
tude. The coordinate transformation enters the governing eauations of motion through the 
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coefficients of the metric tensor GIJ = (az'/azg)(&J/8zg), and the Jacobian of transfor- 

mation G = Det{ax,/&} = (Det{G'J})-'/2, where the subscript C refers to Cartesian 
- GllG13 G22 = r-1 G23 = G22~:3, and coordinates. In particular, G1' = (I' cos $)-', GI3 - 0 ,  7 

G = G0r2 cos 4. Here, I? = r /R ,  and the subscript o refers to the metric coefficients of the 
standard terrain-following transformation from a Cartesian space (Gal-Chen and Somerville, 
1975). The remaining coefficients are as in the standard transformation. 
Given the assumptions above, the governing anelastic equations may be written compactly 

as follows: 

@GG1lu @GG22v @Gw +---=O* 
a2 

+ 
dX 89 

Here 7r is the pressure perturbation with respect to the ambient state normalized by the 
anelastic density. 0 is the potential temperature, f = 2Rsin4 and f^ = 2Qcos# are the 
radial and latitudinal components of the planetary rotation vector s1, g is the acceleration 
due to gravity, and w -= i is the "vertical" component of the transformed (contravariant) 
velocity, related to the covariant velocity components of a local tangent Cartesian framework 
(aligned with standard geographical coordinates) through 

w = Gi'w + G13u + G23v , (2) 

and i = G%, and = G22v. The potential temperature B = B(r'), r' G r - R, which 
appears in the denominator of the buoyancy term in (IC), and the anelastic density jj = 

a(.') in the mass continuity equation (le) refer to the hydrostatic reference state of the 
Boussinesq expansion around a constant stability profile. The attenuation forcings that 
appear in the momentum and entropy equations (la)-(ld) simulate wave-absorbing devices 
employed typically in the vicinity of the open upper boundary of the problem domain, and 
primes denote deviations from ambient values. 
Mathematically, the formulation in (1)-(2) is analogous to that of the small-scale model 

except for the metric forces in (la)-(lc) proportional to products of various velocity corn- 
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ponents (cf. Clark et al., 1996). Similarly, the finite-difference approximations employed to 
solve (1) closely follow the approach adopted in the small-scale model. 

2.2 Finite-difference approximations 

2.2.1 Basic model algorithm 

Our basic algorithm for integrating (1) on a discrete mesh is second-order-accurate in space 
and time. Time marching is based on two-time-level NFT transport methods. In gen- 
eral, t here are two options for the spatial differencing-semi-Lagrangian (Smolarkiewicz and 
Pudykiewicz, 1992) and Eulerian (Smolarkiewicz and Margolin, 1993). The lattice structure 
assumes all prognostic variables defined at  the same grid points xi-important for the effi- 
cacy of the unified semi-Lagrangian/Eulerian NFT approach (Smolarkiewicz and Margolin, 
1997). 

We write the finite-difference approximations to the prognostic equations (la)-( Id) in the 
compact form 

$$" = LE($) + 0.5AtF;" . (3) 

Here, LE denotes either an advective semi-Lagrangian or a flux-form Eulerian NFT transport 
operator (sections 3.1 and 3.2 in Smolarkiewicz and Margolin (1997), respectively);* 4 3 
+n + 0.5AtFn, where II, and F denote vectors of the dependent variables u, v,  20,  and 0 
and the associated forcings appearing in (1); and the indices i and n denote the spatial and 
temporal location on a (logically) rectangular Cartesian mesh. Completion of the model 
algorithm requires a straightforward algebraic inversion of the system (3), which is implicit 
with respect to 0, u, v, and w; and the farmulation of the boundary value problem for 
pressure T implied by the continuity constraint (le). [Some details of the formulation as well 
as the explicit form of the resulting operator for the implicit variant of the model, introduced 
later in section 2.2.4, can be found in Appendix B.] The resulting elliptic equation is solved 
(subject to appropriate boundary conditions; section 4b in Smolarkiewicz and Margolin 
(1994)) using the generalized conjugate-residual (GCR) approach (Eisenstat et al., 1983; 
Smolarkiewicz et al., 1997) summarized in Appendix A. 

*Specifically, the semi-Lagrangian algorithm remaps transported fields to the departure points of flow 
trajectories arriving at grid points (xi, tn+l) (Smolarkiewicz and Grell, 1992), while the Eulerian scheme 
integrates the homogeneous transport equation ~4, t + V @V$) = 0, where V G (G"u, G22w, w )  (Smo- 
larkiewicz and Clark, 1986). 
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2.2.2 Metric forces 

In order to avoid solving a nonlinear elliptic equation for pressure, the metric forces con- 
tributing to Fn+l on the RHS of (3) are either approximated explicitly (e.g., in the spirit 
of Adams-Bashfort schemes), or the entire subset of (3) corresponding to the momentum 
equations (la)-(lc) is iterated with the metric terms lagged behind. In both cases the metric 
forces enter the RHS of the resulting linear elliptic pressure equation. Although the iterative 
approach requires solving the elliptic equation at each iteration, it is overall advantageous: 
In the limit, it converges to the trapezoidal-rule approximation, which preserves the neutral 
character of the metric force. With the first guess Fn+'l0 = F", one iteration suffices for 
second-order accuracy. In typical applications for flows on the Earth, the results are insen- 
sitive to the number of iterations beyond 2, and the overhead associated with two passes 
through the pressure solver is insignificant, as the second pass requires merely a few iterations 
of the GCR solver to maintain the accuracy of the first pass. 

2.2.3 Pressure solver 

Because NFT methods are inherently two-time-level, an accurate (time-centered) integra- 
tion of forces leads to the inversion of a large nonsymmetric linear system that represents 
a complex nonself-adjoint 3 0  elliptic PDE for pressure. For atmospheres whose depth is 
comparable to the radius of the sphere, such a problem can be solved easily using standard 
Krylov subspace methods for nonsymmetric operators (Smolarkiewicz and Margolin, 1994; 
Smolarkiewicz et al., 1997). For thin atmospheres typical of Earth meteorology, however, 
the resulting elliptic operator is extremely stiff 3,  necessitating additional enhancements to 
the Krylov solvers to assure their convergence as well as to reduce the number of iterations. 
We have explored two (not necessarily exclusive) strategies. One is to use the hydrostatic so- 
lution for pressure as an initial guess for the (iterative) nonhydrostatic pressure solver. This 
procedure naturally facilitates the optional implementation of hydrostatic or nonhydrostatic 
models, leaving the final choice to the user. The second strategy uses ADI-type precondi- 
tioners (Skamarock et al., 1997) for the Krylov solver, and dispenses with the decomposition 
of the pressure into a hydrostatic and a nonhydrostatic part (Marshall et al., 1997a). This 
results in a simpler, more general, and elegant variant of the model. 

A particularly simple and effective preconditioner used in the stage (A3e) of the GCR 

3A reasonable estimate of the spectral condition number is IC N 8(1O1O). 
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procedure (Appendix A) derives from the implicit stationary Richardson iteration 

where Q denotes an error estimate between the current iterate of 7r and the exact solution, T- is 

the residual error, P is an abbreviated form of E in (A3f) with all “off-diagonal” coefficients 
CIJ set to zero, Ph and Pz are the horizontal and the vertical counterparts of the operator 
P ,  respectively, 4? is a parameter of the iteration (a pseudo-time step) based on spectral 
properties of Ph [viz., linear stability analysis of (4)], p numbers successive Richardson 
iterations, and v numbers the outer iterations of the GCR solver. The equation (4) leads to 
a linear problem 

(Z - ATPz)qc”+l = R’ , 
I 

where Vi Rf = q: + A?(P?(qP) - T:+~), that can be solved readily using the celebrated 
tridiagonal algorithm (cf. Appendix A in Roache 1972).* The majority of results shown in 
this paper use the fourth-order GCR [i.e., GCR(k) with k = 4 in Appendix A] with eight 
inner iterations in (4). 
In a series of numerical experiments for continuously stratified flows past a large isolated 

mountain in mid latitudes (discussed later in section 3.1 of this paper), we have verified 
that both hydrostatic and nonhydrostatic models reproduce the same solution. The solution 
differences take the form of a horizontally propagating inertia-gravity waves (cf. Fig. 2b in 
section 3.1) with a maximal vertical velocity - ms’l that is an order of magnitude 
less than the vertical velocities of the actual flow. The relative overhead of solving the 
nonhydrostatic problem is - 80% in the model where nonhydrostatic solution is sought as 
a perturbation to the hydrostatic result, but only N 40% in the simpler model without 
the hydrostatic counterpart. We believe the latter number can be reduced substantially 
by accelerating the elliptic solver with improved premnditioners. In light of these results, 
pursuit of the hydrostatic approach seems unjustified. 

2.2.4 Implicit variant 

In the basic version of the model, the entropy equation (Id) is integrated prior to the 
momentum equations. This allows the buoyancy term in (IC) to be evaluated explicitly at n+ 
1 in (3)-in the spirit of Runge-Kutta schemes-and to enter the RHS of the elliptic pressure 

4 0 n  the nonstaggered mesh used here, the resulting liner problem is formally pentadiagonal and requires 
a customized tridiagonal algorithm for its inversion. 
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equation. Consequently, the numerical stability of the basic model depends primarily on the 

propagation speed of internal gravity waves.5 Another implicit variant of the model replaces 

(Id) with 

solved simultaneously with the momentum equations; the buoyancy term in (IC) is evaluated 
implicitly at n + 1 in (3)-in the spirit of the trapezoidal-rule scheme-and enters both the 
RHS and the coefficients of the elliptic pressure equation (see Appendix B for details). The 
numerical stability of this variant of the model is controlled solely by proper limiting of 
Courant and Lipschitz numbers C =/I AtV/AX 11 and L =I/ At(dV/&) 11, respectively, for 
the Eulerian and semi-Lagrangian options of the solver. For smooth flows, the latter option 
admits large time steps characteristic of semi-implicit semi-Lagrangian models. 

3. EXAMPLES 

3.1 Orographic flow 

Figure 1 shows the pattern of vertical and meridional velocity components after 15 days 
of simulated zonal flow of a stratified Boussinesq fluid past a large hill (cf. Grose and 
Hoskins 1979, Williamson et al., 1992) using the semi-Lagrangian implicit variant of the 
model discussed above. The flow parameters are: 

the corresponding thermally-balanced 

where Qe(r ' )  = @,[l + r'N2/g] and the Brunt-Vaisalla frequency N = 1W2 s-'. The 
conical hill with height 2 .  lo3 m and the angular base radius n / 9  is centered at (A,  4) = 

(3/2n, 1/6n). The globe is covered with a uniform spherical mesh with nx x ny = 128 x 64 
grid intervals (no grid points at the poles) and the H = 8. lo3 m deep atmosphere is resolved 
with nz = 20 uniform grid intervals. The time step of integration is At = 7.2 - lo3 s. 
The simulation in Fig. 1 employs no viscous filters, and the only dissipation is that due to 

the monotonicity constraints built into the remapping algorithm (Smolarkiewicz and Grell, 
1992). The execution time on a single processor GRAY J-90 is N 1.4 . lo4 s. This value 

5External gravity modes are eliminated by assuming a rigid-lid upper boundary. 
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cmx, cmn, cnt: 7.8 e-03, -1.17 e-02, 1.95 e-03 32.21m/s 

cmx, cmn, cnt: 14.0, -76.0, 2.0 32LWs 
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Figure 1: Planetary wave propagation on a sphere. Contours show patterns of vertical 
and meridional velocity components (plates a and b, respectively) at 4 km after 15 days of 
simulation. Contour extrema and intervals are shown in the upper left corner of each plate. 
Negative values are dashed, and zero contours are omitted. The mountain is illustrated with 
thick solid circles. Maximum vector lengths (here identical) are shown in the upper right 
corner of each plate. 
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1 EU-2400 20.6 5.0 2.3. 9.6- loA4 291 
2 SL-2400 20.5 4.8 2.2. 9.4- 378 
3 SL-7200 20.6 4.8 2 . 2 ~ 1 0 - ~  9.6. loA4 226 

3b SL-7200, 21.0 4.8 2.2. 9.4. 616 
4 SL-1200 20.7 4.8 2.2. 9.3. 527 
5 EU-1200 20.9 5.1 2.3-10-2 9.7.10A4 377 

Table 1: Comparison of various executions of the semi-implicit anelastic model for simulating 
the 15-day evolution of the orographic flow on the sphere. The first column numbers runs, 
for further reference. The second column lists the solver (Eulerian vs. semi-Lagrangian) and 
the time step (At in s) employed; run SL-7200, tests the convergence criterion in the pressure 
solver. Columns 3-6 provide norms of the meridional and vertical velocity components (in 
ms-I), respectively. The last column lists single-processor Cray J90 CPU times (min). 

6 HNH-h 21.7 4.6 2.1 8.8- 1328 
7 HNH-nh 21.9 4.6 2 . 1 ~ 1 0 - ~  8.8. lo-* 2407 
8 ADIprc 21.0 4.6 2.1 8.9. 1900 

Table- 2: As in Table 1 but for three different explicit semi-Lagrangian anelastic models. 
Runs 6 and 7 are for the hydrostatic and nonhydrostatic options of the model based on the 
hydrostatic first guess, and run 8 is for the alternate nonhydrostatic model with an ADI-type 
preconditioner of the 3D elliptic pressure solver; At = 150 s. 

can be easily reduced by a factor of about 2 by using dissipative filters in polar regions (a 
common practice in global circulation models). At the large time step employed here, most 
of the computational effort is already in the elliptic solver, so that overall model efficiency 
strongly depends on such technical issues as stopping criteria (Smolarkiewicz et al., 1997) 
and effective preconditioning (Skamarock et al., 1997). We believe that further improvement 
in the latter will lead to substantial acceleration of the model. 

In order to establish the solution dependence on model design and on the numerical scheme 
employed, as well as on alternate formulations of the governing equations of motion, we have 
performed a series of simulations like that in Fig. 1. The results of this sensitivity study are 
summarized in Tables 1 to 5. 

Tables 1 to 4 collect various runs in a certain logical order. Table 1 contains semi-Lagrangian 
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~ ~ ~~~ ~ ~ ~ ~ 

9 EXPL 20.3 4.6 2.1 ' 8.9.  loA4 704 
10 IMPL 20.3 4.6 2.1 8.9.  lo-* 437 

Table 3: As in Table 1 but for the explicit and semi-implicit nonhydrostatic semi-Lagrangian 
anelastic models; At = 1200 s with a heavy dissipative filter near the poles. 

11 INCM 19.7 4.6 2.1 9.0 - 677 
12 ELAS 20.1 4.6 2.1 - loe2 9.0- 356 

Table 4: As in Table 1 but for the incompressible Euler and elastic Boussinesq governing 
equations, simulated using explicit nonhydrostatic semi-Lagrangian models; At = 1200 s 
with the heavy filter near poles. 

and Eulerian runs of the semi-implicit model (section 2.2.4) at different time steps; run 3b 
is identical to run 3 except for the order of magnitude tighter convergence criterion in the 
GCR pressure solver. Table 2 contains hydrostatic and nonhydrostatic runs using explicit 
(with respect to internal gravity waves) variants of the model (section 2.2.1). Since the 
explicit model runs are unreasonably expensive, further applications of the explicit models 
(Tables 3 and 4) incorporate a heavy dissipative filter in polar regions [in (la)-(ld), a = d 
increases linearly from 0 to 1/150 s-l over the six grid intervals near each pole] to allow 
for a substantially larger time step. Thus, runs 9 and 10 in Table 3 were designed to make 
runs 8 (Table 2) and 4 (Table 1) directly comparable. Finally, Table 4 collects results of the 
simulations using alternate governing equations of motion (la)-( le). 

Run INCM in Table 4 uses the fully nonlinear incompressible Euler equations, and so ad- 
dresses the impact of the Boussinesq approximation inherent in the anelastic model (la)-( le). 
The conversion from the anelastic to incompressible equations is achieved easily within the 
framework of the explicit numerical model (section 2.2.1). In detail (cf. Rotunno and Smo- 
larkiewicz 1995), the conversion: a) replaces the pressure gradient terms &r/arci terms with 
O-'dn/azi terms, and the buoyancy term gQ ' /8  with -gO'/Q term; b) removes depen- 
dence on p from (le); and c) exploits 0 field for the fluid density p(x, t). Run ELAS, in 
turn, addresses the impact of incompressibility inherent in the anelastic model by admitting 
a finite speed of sound while retaining the Boussinesq approximation. This is a particularly 
simple alteration of the model (either explicit or implicit), merely replacing the anelastic 
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A(3,4) 3.3 0.79 1.2 3.8. 
A(3,2) -- 2.8 0.66 1.2 - 3.6 
4(3,3b) 3.0 0.71 2.3. lod3 8.9 - 
A(l ,2)  2.2 0.49 6.8 - 2.6 - 
4(4,5) 2.3 0.44 6.4 - 2.6 + 

A(7,8) 2.1 0.49 2.3 - lod3 1.7 - 

A(l,5) 1.5 0.35 4.1 - 1.6. low4 
A(6,8) 2.0 0.49 2.2 .10-3 1.7 a 10-4 

A(ll ,9) 0.9 0.15 2.1 -10-3 1.5 - 10-4 
A(2,4) 0.8 0.19 2.0 -10-3 8.7.10-5 

A(9,lO) 0.9 0.14 2.3.10-3 7.7.10-5 

A(6,7) 0.9 0.06 7.9 - 1 0 - 4  7.9 10-5 
A(l2,9) 0.7 0.17 6.6. 6.1 

Table 5: Difference analysis of various runs collected in tables 1 to 4. 

mass continuity equation (le) with 

where c, is the speed of sound (taken here at 300 ms-l). In effect, the Poisson equation for 
pressure (cf. Appendix B) is transformed into an appropriate, slightly better-conditioned 
Helmholtz equation. 
All four tables list L ,  and Lz norms of the meridional and vertical velocity fields-natural 

perturbation fields with respect to the ambient flow (7)-as well as the computational ex- 
pense of the model measured by the CPU time (in minutes). As evidenced by the values 
collected in tables, all the listed solutions agree to within about 10%. In fact, they are all 
similar to that shown in Fig. 1 and are hardly distinguishable in the figures. In order to 
quantify the differences between various experiments, we have performed analyses of the 
appropriate difference fields. The results are summarized in Table 5.6 
Table 5 leads to a number of interesting conclusions. We draw attention to a few points 

that are especially noteworthy. The largest differences observed are due to the six-fold 

'Our intention was to order the analyses of the difference fields in the decreasing magnitude of the 
differences. In some cases, this required a subjective judgement, since not all the norms used decrease at the 
same rate. 
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difference in At (using semi-Lagrangian semi-implicit model from section 2.2.4), while the 
smallest differences are between the hydrostatic and nonhydrostatic model formulations. 
For illustration, in Fig. 2, we show the respective 6w difference fields (cf. plate a in Fig. 1). 

The corresponding Sv fields are not shown because: a) they mostly mimic the wave field 
in plate b of Fig. 1, so the numeric values of the 6v norms in Table 5 adequately describe 
the differences; and b) the vectors of the flow difference already give a sense of Sv field. In 
general, “physical” differences [hydrostatic vs. nonhydrostatic A(6,7), elastic vs. anelastic 
A( 12,9), incompressible Euler vs. Boussinesq A(ll ,9)]  appear much smaller than those 
due to truncation errors of the finite-difference approximations, For a sufficiently small 
At, the difference between the explicit and implicit A(9,lO) model formulations are small. 
Surprisingly, it is the implicit model that is computationally more efficient (see Table 3), 
which is most likely due to the better conditioning of the elliptic pressure operator in the 
implicit model formulation. 

3.2 Idealized climates 

The orographic planetary flow discussed in the preceding section, is fairly laminar and 
deterministic. The relevant results generated with many different variants of the model 
closely match each other, documenting both the hydrodynamic stability of the flow and 
robustness of the model design. The example considered in this section is very different 
in nature. Simulations of the idealized climates of Held and Suarez (1994) bear striking 
resemblance to large-eddy simulations (LES) of convective boundary layers (Nieuwstadt et 
al., 1992), where small differences in model setups can lead to totally different instantaneous 
flow realizations, and where different model designs can lead to quite divergent integral flow 
characteristics. In other words, these simulated flows are both turbulent and chaotic. 

Figure 3 illustrates the overall complexity of the flow. It shows instantaneous vertical cross- 
sections in the equatorial plane and surface plots of the isentropes 0 and isolines of zonal 
velocity u, after 3 years of simulated flow. The results displayed typify the response of an 
initially stagnant and uniformly stratified fluid to the diabatic forcing attenuating 0 and v 
to, respectively? the prescribed equilibrium temperature QEQ( 191, r’) and vlrl<zt = 0 (here, 
zi represents a height of the boundary layer) in a manner mimicking the long term thermal 
and frictional forcings in the Earth atmosphere (see section 2 in Held and Suarez, 1994, for 
details). The corresponding forcing functions augment the governing equations of motion 
(la)-( Id) with appropriate Rayleigh friction and Newtonian cooling/heating terms. 
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Figure 2: The vertical velocity difference field 6w for the first A(3,4) and the last A(6,7) 
entry in Table 5 (plates a and b, respectively). The contouring convention is the same as in 
Fig. 1. 
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The original forcing functions of Held and Suarez are expressed in the normalized pressure 

coordinates a = p / p ,  (where p ,  and p denote, respectively, the full thermodynamic pressures 
at the surface and in the atmosphere aloft), so their diabatic forcing may evolve in time. In 
the anelastic model, only gradients of the perturbation pressure are meaningful and the full 
thermodynamic pressure is, in essence, unavailable. In order to avoid cumbersome procedures 
attempting to recover the true a coordinate in our anelastic model, we have simply assumed 
a standard atmosphere with the density scale of 7 km to evaluate the fixed forcing functions. 
The significance of such a simplification can be verified easily within the framework of a 
a-coordinate model. 

In section 3.1, we assumed a shallow fluid and used the Boussinesq approximation p(zc) = 

po and = 0,. Here we consider a deep atmosphere and, therefore, solve the anelastic 
equations (la)-( le) with the variable reference density and potential temperature implied by 
N = s-l Brunt-Vaisalla frequency assumed for the reference state (cf. section 2b in 
Clark and Farley 1984). The implicit numerical model (section 2.2.4) is employed, and the 
environmental profiles v, = 0 and 0, = OE~( l l /2 ,  T’) are assumed. The globe is covered 
with uniform spherical mesh with nx x ny = 64 x 32 grid intervals (no grid points at the 
poles) and the H = 32 - lo3 m deep atmosphere is resolved with n z  = 40 uniform grid 
intervals. ‘The time step of integration is At = 900 s. The dissipative filter in the polar 
regions assumes Q! = zi! increasing linearly from 0 to 1/86400 s-l over the four grid intervals 
near each pole. Also, in lieu of the biharmonic diffusion used in the original Held-Suarez 
experiments, we exploit the implicit viscosity of the advection algorithms by employing the 
first-order upwind scheme at every 6th time step of the model (cf. Liska and Wendroff, 
1996) in both the Eulerian and the semi-Lagrangian sim~lations.~ The particular simulation 
depicted in Fig. 3 used the massively parallel version8 of the Eulerian model algorithm with 
the standard and linearized nonoscillatory MPDATA transport schemes for, respectively, 0’ 
and momenta (Smolarkiewicz and Margolin, 1998). 

Figure 4 contrasts the complexity of the instantaneous flow in Fig. 3 with the display of 
the resulting “climate”, i.e., zonally-averaged three-year means of u and 8. This figure 
corresponds to the results in Figs. 1 and 2 of Held and Suarez (1994). [Note that their 

7 0 ~ r  semi-Lagrangian remapping procedure is built on nonoscillatory advection transport schemes similar 
to those used in the Eulerian model; Smolarkiewicz and Pudykiewicz 1992, Smolarkiewicz and Grell 1992. 

‘The parallelization strategy adopted in the global model (a single program multiple data, SPMD, 
message-passing approach with an explicit 2D horizontal grid decomposition) closely follows that used in the 
small-scale anelastic model (Anderson and Smolarkiewicz 1997, Anderson et al. 1997), a precursor of the 
present code. 
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Figure 3: Instantaneous solutions of the idealized climate problem after 3 years of simulation. 
Plates a' and a show 0 field in the vertical equatorial plane and at the surface, respectively. 
Plates b' and b display the zonal velocity, respectively, in the equatorial plane and at the 
surface. Contour extrema and intervals are shown in the upper left corner of each plate (in 
plate a' we used a variable contour to capture 8 variability in the troposphere). Negative 
values are dashed. Maximum vector lengths are shown in the upper right corner of plates b' 
and b. 
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Figure 4: The zonally averaged %year means of potential temperature (plate a) and zonal 
velocity (plate b) for the simulation highlighted in Fig. 3. Contouring convention is similar 
to that used in Fig. 3. 
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plots are in the a-coordinate.] The agreement of the two solutions is merely qualitative, 
which is not necessarily surprising taking into account the substantial differences between 
the models employed. Our trade winds and equatorial easterlies aloft are somewhat weaker, 
but our subpolar easterlies are more pronounced. Our westerlies are about as strong but 
shifted somewhat toward the equator. Although the Held-Suarez original solutions are for 
the primitive equations, we do not believe (based on the results of the preceding section) that 
either hydrostaticity, compressibility, or simplified Coriolis and metric forces are responsible 
for the differences observed. Among “physical” factors, perhaps the Boussinesq linearization 
of the pressure gradient terms may be important, but even this seems unlikely in the light 
of the following results. 

We have performed numerous experiments addressing the sensitivity of Held-Suarez climates 
to various aspects of the numerical model design. Among these, we have tested sensitivities 
to the initial and ambient conditions, selected reference state, definition of the a-coordinate 
in the forcing functions, spatial and temporal resolution, model depth, strength and spatial 
extent of polar filters, various viscosities in the model (in particular, the relative viscosity in 
the entropy and velocity equations, i.e., Prandtl number), flux versus advective (i.e., Eulerian 
versus semi-Lagrangian) model formulation, and linear z versus mass 0 (recall Sp N pSz) 

vertical coordinate representation (the latter has been achieved by an exponential stretching 
of the vertical coordinate mimicking CT coordinate for the standard atmosphere with the 
density scale height of 7 km). 

We have found that the tropospheric climate is fairly robust (with details depending both on 
the model resolution and characteristics of polar filters), while the stratospheric solutions are 
quite sensitive even to fine details of the model design. For instance, the simulation identical 
to that summarized in Fig. 4, except using the linearized (a somewhat less viscous) option of 
the MPDATA advection scheme not only for momenta but for Q’ as well, results in weaker 
equatorial easterlies aloft and reduced stability of the stratospheric solution manifested by 
a slow O(year) meridional oscillation. Also, a similar simulation but using semi-Lagrangian 
advection, produces westerlies whose magnitude increases monotonically with height (no 
closed jets). However, both models tend to reproduce the solution in Fig. 4 when the model 
depth is doubled and stretched “mass” coordinates are employed with a vertical gravity- 
wave absorber activated at the top of the model. Experiments with enhanced viscosity 
in the vertical transport terms (a crude convection parameterization) demonstrate another 
strong sensitivity of the solutions. More such examples could be easily found. 
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The picture emerging from our sensitivity study-consistent with some other reported re- 

sults (Chen and Bates 1996, Untch et al. 1998)-is that the simulated Held-Suarez climates 
strongly depend on the viscous properties of the numerical models employed, regardless 
whether those come via explicit parameterizations or implicit effects of the truncation er- 
rors. In our experience, the lesser the viscosity of the model, the less robust are the climate 
simulations. The latter may appear discouraging as it suggests a need for an LES approach 
to climate modeling-clearly beyond the reach of the present computational technology. 
However, this is a point where nonhydrostatic global models may turn out to be helpful. 
Restoring less constrained forms of the Navier-Stokes’ equations allows rescalings of the 
global problems that are unattainable in models based on the primitive equations. This 
opens new possibilities in climate research and modeling. To illustrate, Fig. 5 compares 
zonally-averaged instantaneous zonal winds after 90 days of simulationg on four abstract 
planets (starting in plate a with an Earth-like planet from Figs. 3 and 4) whose radius and 
temporal scales of diabatic forcings decrease by factor of 10 while the planetary rotation 
increases at  the same rate to keep the Rossby number fixed. Thus, the planet in plate d, 
has a radius 6371.22 m and one day lasts there 86.4 s. The results for the 10 and 100 
times smaller planets already capture some of the characteristic features of the Earth cli- 
mate. Thus, such rescaled globes could be employed to investigate effect of certain small- 
and mesoscale phenomena (e-g., gravity wave breaking, moist convection) on global flows 
and vice uemz. 

4. SUMMARY REMARKS 

In the global atmospheric/oceanic modeling community, there is an apparent trend toward 
replacing the traditional hydrostatic primitive equations with less constrained nonhydrostatic 
forms of the Navier-Stokes’ equations (Semmazi et al. 1995, Marshall et al. 1997, Cullen et 
al. 1997). The few existing nonhydrostatic global models differ in analytic formulation and 
numerical design, reflecting their different purposes and origins. 

We have extended our Cartesian NFT small-to-mesoscale model (broadly documented in the 
literature) to a mountaineous sphere and, consequently, have dispensed with the traditional 
geophysical simplifications of hydrostaticity, gentle terrain slopes, and weak rotation. 

The results so far are encouraging: a) our nonhydrostatic global models preserve flow 

’In our experience, zonal averages after about 2 months of simulation already give an adequate sense of 
the long-term mean climates. 
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Figure 5:  The zonally averaged instantaneous zonal velocity after 3 months of idealized 
climate simulations on rescaled planets with Rossby number kept constant. The Earth-like 
solution ( ding to that in Fig. 4) is shown in plate a. Plates b, c, and d display 
the solutions for planets with the radius 10, 100, and 1000 times smaller, respectively. The 
contouring convention is the same as in Fig. 4 
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hydrostaticity; b) their computational expense is comparable to that of present hydrostatic 

models, and can be greatly reduced by further acceleration of elliptic solvers. In light of 
these results, pursuit of the nonhydrostatic global approach seems well justified-at least in 
research models-especially in that nonhydrostatic models are more general, conceptually 
simpler, and more well posed. 

The present model offers a number of opportunities for further development. Our immediate 
plans include extensions to non-Boussinesq compressible forms of the governing equations as 
well as incorporating more realistic thermal forcings, subgrid-scale parameterizations, moist 
processes, etc. 
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APPENDIX A GENERALIZED CONJUGATE-RESIDUAL APPROACH 

Here we describe the preconditioned GCR(k) algorithm used in this study, special cases of 
which are discussed extensively in section 3 of Srnolarkiewicz and Margolin (1994, hereafter 
SM94). We assume a general linear elliptic equation 

with variable coefficients A,  CIJ, D’, R, and either periodic, Dirichlet, or Neumann boundary 
conditions; and adopt the following notation. The discrete representation of a field on the 
grid is denoted by the subscript i; the discrete representation of the elliptic operator on the 
lhs of (Al)  is denoted by Ci(4); and the inner product ( I C )  = Ebb. The preconditioner P 
is a linear operator that approximates C to a greater or lesser degree and CP-’ is definite’’. 
The GCR(lc) method of Eisenstat et al. (1983) may be derived via the same variational 

arguments as those adopted in SM94 for the CR2 scheme-i.e., GCR(1) with P 3 Z, where 

i 

“An operator A is said to be definite if (<A(<)) is either strictly positive (positive definite) or strictly 
negative (negative definite) for all <. 
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Z is the identity operator. Starting with a kth-order damped oscillation equation 

in lieu of Eq. (2) in SM94, and proceeding with the formalism of sections 2 and 3 therein" 
leads to the following algorithm. 
For any initial guess 4!, set rf = Ci(4O) - Ri, p! = Pi -1 ( r  0 ); then iterate: 

For n = 1,2,  ... until convergence do 

for v = 0, .., k - 1 do 

end do , 

(A3h) 

(A34 

end do 

The GCR(k) scheme in (A3a)-(A3j) assumes a negative definite but not necessarily self- 
adjoint operator C.I2 Direct evaluation of the elliptic operator on the grid takes place only 
once per iteration in (A3f). 

"In essence, we discretize the oscillation equation in a pseudo-time r, form the affine discrete equation for 
the progression of the residual errors T ,  and determine the optimal parameters T I ,  .., Tk-1 and integration 
increment AT (variable in 7) that assure minimization of the residual errors in the norm defined by the inner 
product (TT) .  

12An operator A is said to be self-adjoin' ;f (€A(<)) = (<A(<)) for all < and C. 
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APPENDIX B COEFFICIENTS OF THE ELLIPTIC PRESSURE 
EQUATION 

The formulation of the elliptic pressure equation follows a standard projection procedure 
(cf. Chorin 1968, Clark 1977, Kapitza and Eppel 1992, Smolarkiewicz and Margolin 1997). 
Here, the discrete counterparts (3) of equations (6) and (la)-(lc), are first manipulated 
algebraically to provide closed form formulae for u, and w. This is straightforward due 
to the nonstaggered grid employed. The resulting formulae are then inserted in the discrete 
version of (le) using the transformation (2). This leads to the elliptic pressure equation in 
the form 

The equation (Bl) has the form of the generalized elliptic equation (A3f )  in Appendix A, 
where the coefficients A = D 3 0, the rhs R (here V . pG€13)13 is included under the 
divergence operator, and where the entire equation has been premultiplied by -At/(-&). 
The factor (-1) assures the formal negative-definiteness of the elliptic operator on the Ihs 
of (Bl); further normalization by At/(-@) gives the residual errors of (Bl) the sense of 
the divergence of a dimensionless velocity on the grid. The latter compares directly to the 
magnitudes of the Courant and Lipschitz numbers and facilitates the design of a physically 
meaningful stopping criteria (Smolarkiewicz et al., 1997). The coefficients E ,  V' and CrJ 
appearing in (Bl) are as follows. 
The multiplicative factor E is 

where 

&* E 0.5At6 , cy* = 0.5Ata, and f2 and f3 are equal to f̂  and f from (la), respectively. 

13Note that C(3 - ...) in (Bl) is the updated transformed velocity (u, v, ~ ) ~ + l ,  so the impermeability 
condition wn+' = 0, at the model surface and lid, translates into the implicit Neumann boundary conditions 
for pressure V 3  = C3J(an/azJ); see Smolarkiewicz and Margolin 1994, for details. 

J=1, 3 
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The auxiliary fields V r  can be compactly written as 

13 1 V3 = G i l p + G  V +G23V2,  where 

p = NU* +ZV* + R(l +F:)W*. 

The coefficients A to Z are equal to 

* -1 A = R + ( l + a )  G d 2 ,  

0 = R33 + (1  + a*)-'G(F28@ + & 8 ~ )  , 
C = -R33 - (1  + a*)-'GF382 , 
27 = R(1+ 3;) + (1 + a*)-10(-F28, + 82) , 

and the'velocities u*, V*, and W* are defined as 

V* G LE(i7) + 0.5At(c~v, + f3ue) 

W* L E ( 6 )  + c8' + 0*5At(awe - f 2 ~ e )  , 

where @ = 8 - Oe, = 0 . 5 h t g 8 - 1  (1 + Zi*)-l , and R = (1 + Z i * ) ( l +  a*)-'. 
The coefficients C I J  take the explicit form: 

C" = RG" + (1 + a*)-1GG1182 , 
C12 

C13 = R(G13 + G2333 - GO'32) + 
= RG22F3 + (1 + C X * ) - ~ ~ G ~ ~ ( F ~ . S ~  + 338,) , 

(1 + a*)-lg [G23328y + (G13 + G2333)d2] , 
C21 = -RG1'F3 - (1  + CX*)- 'GG' '~~ , 
C22 = RG22(1 + 3;) + ( 1  + C Z * ) - ~ ~ G ~ ~ ( - F ~ Z C ) ,  + 8 2 )  , 
C23 = R [-G1333 + G23(l + 3;) + Gi1F2F3] + 

(1 + a*)-% [-G23F$9, + (G23 - G13F3)192] , 
C3l = RG'l [G13 - G2333 + Gi13'] + 

r 
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(1 + a*)-'GG1' [-G,'29, + Gg1F3dy + (G13 - G23F3)29z] , 
C32 = RG22 [GI3& + G23(l + Fi) + Gt1F2F3] + 

(1  + CX*)-'GG~~ [-(F2G23 + G;'F3)& + (GI3F2 - G,')6, 

+(G13F3 + G23)6z] , 
C33 = R [(G13)2 + (G23)2(l +.E;) + (Gi1)2(l  + F') + 2G,'G23F2F3] + 

a*)-% [- ((G23)2F2 + G,7'G13 + Go -1 G 23 F3) 6z (1 + 
+ (G'3G23F2 + G,'GI3F3 - G,1G23) 29, 

+ ((G13)2 + (G23)2) 6.1 . 

For 6, = 29, = 6, = 0, the above expressions simplify to those of the explicit model. 
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-7 anelastic equations of motion in a terrain-following curvilinear framework, and contains par- 
d allel implementations of semi-Lagrangian and Eulerian approximations 7 

3 selectable by the user. The model 

has been employed in a variety of applications; the quality of results suggest that modern 
nonoscillatory forward-in-time (NFT) methods are superior to the more traditional centered- ,2’ 
in-time-and-space schemes, in terms of accuracy, computational efficiency, flexibility and 

. .  
. .  

robustnespj-mm . .  I ; is- 
@have extended the Cartesian NFT model to a mountaineous sphere and, consequently, 
have dispensed with the traditional geophysical simplifications of hydrostaticity, gentle ter- 
rain slopes, and weak rotation. In this paper, =discuss the algorithmic design, relative 
efficiency and accuracy of several different variants (hydrostatic, nonhydrostatic, implicit, 
explicit, etc.) of the NFT global model. We - substantiate et# theoretical discussions with 
the results of simulations of idealized global orographic flows and climates. 

& 

2. MODEL DESCRIPTION 

The small-scale numerical model used as the basis of the global model discussed in this 
study has been described in Smolarkiewicz and Margolin (1997). It is representative of a 

class of nonhydrostatic atmospheric models that solve the anelastic equations of motion in 
standard, nonorthogonal terrain-following coordinates. The extended global model results 
from a composition of two mappings: it can be derived by either transforming the small- 
scale model equations to spherical coordinates, or by transforming the anelastic variant of 
the Navier-Stokes’ equations on a rotating sphere (cf. section 4.12 in Gill (1982)) to terrain- 
following coordinates. Below we comment briefly on the essential aspects of the design of 
the extended global model while referring the reader to earlier work for further details. 

2.1 Analytic formulation 

In this paper, we focus on an inviscid, adiabatic, density-stratified fluid whose undis- 
turbed, geostrophically-balanced “ambient” state is described by the potential temperature 
0, = Oe(x) and the velocity v, = v,(x). The nonorthogonal terrain-following system of CO- 

ordinates [z, y, z] = [RX, R+, H ( r - h ) / ( H - h ) ]  assumes a model depth H and an irregular 
(but at least twice-differentiable) lower boundary h = h(z,  3). Here T ,  R, A, and q5 denote, 
respectively, the radial component of the vector radius, sphere’s radius, longitude, and lati- 
t n d ~ .  The coordinate transformation enters the governing equations of motion through the 


