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Accurate, Finite-Volume Methods for 3D MHD on Unstructured Lagrangian 
Meshes(U) 

D. C. Barnes and C. L. Rousculp 
Los Alamos National Laboratory 

Previous 2 0  methods for magnetohydrodynamics (MHD) have contributed both to development 
of core code capability and to physics applications relevant to AGEX pulsed-power experiments. 
This strategy is being extended to 30 by development of a modular extension of an ASCI code. 
Extension to 30 not only increases complexity by problem size, but also introduces new physics, 
such as magnetic helicity transport. We have developed a method which incorporates all known 
conservation properties into the difference scheme on an Lagrangian unstructured mesh. Because 
the method does not depend on the mesh structure, mesh reJinement is possible during a calculation 
to prevent the well known problem of mesh tangling. Arbitrary polyhedral cells are decomposed 
into tetrahedrons. The action of the magnetic vector potential, A. 61, is centered on the edges of this 
extended mesh. For idealjow, this maintains V - B = 0 to round-ofjerror, Vertex forces are derived 
by the variation of magnetic energy with respect to vertex positions, F = -dWB/dr. This assures 
symmetry as well as magneticjux, momentum, and energy conservation. The method is local so 
that parallelization by domain decomposition is natural for large meshes. In addition, a simple, 
ideal-gas, finite pressure term has been included. The resistive diffusion part is calculated using 
the support operator method, to obtain an energy conservative, symmetric method on an arbitrary 
mesh. Implicit time difference equations are solved by preconditioned, conjugate gradient methods. 
Results of convergence tests are presented. Initial results of an annular 2-pinch implosion problem 
illustrate the application of these methods to multi-material problems. (U) 

Keywords: Magneto-hydrodynamics, Z-pinch, Lagrangian Unstructured-mesh 

Introduction 

The magneto-hydrodynamical (MHD) approximation is applicable to a wide variety of plasma 
environments, including pulsed power experiments. Numerical modeling is essential for the un- 
derstanding of such an environment because limited diagnostics and the cost of involved in single 
experiment. 

MHD is naturally three-dimensional (3D) (Biskamp 1993). Up til now, most computational 
treatments have been one or two dimensional (1D,2D) out of economic necessity. However, be- 
cause of the exponential increase in computing power in the last decade, full 3D computations are 
now possible on workstations rather than mainframe supercomputers. This means that it is now 
possible to extensively investigate MHD phenomenea that manifest only in three-dimensions. 
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With the added dimsionallity comes added complexity. It is easy to assume that 2D methods 
carry over to 3D simply by changing geometric constructs. One such potential problem is when 
surface normal vectors to a computational cell are used. In 2D, surface normals are well defined 
either in the plane by the normal to the line connecting two vertices or as perpendicular to the plane. 
In 3D however, a surface normal is only well defined for a surface described by three points, since 
only three points are necessarliy coplaner. Therefore, a 2D method that relies on anything, but 
triangular computational cells, will be ill defined in 3D. 

Mathematical Model 

We consider here the single fluid, approximation to MHD (Polovin and Demutskii 1990). The 
relevent equations in Lagrangian form are, 

dv ~ - = J x B - V V ~  
dt 

= (v-V)B-VxE dB - 
dt (3) 

E = -V x B + l J  (4) 
PoJ=VxB. 

Here p is the plasma mass density; B is the magnetic field; p is the fluid pressure; v is the fluid 
velocity; J is the electric current density; E is the electric field; and PO is the permeability of free- 
space. Eqn. 1 is conservation of mass equation. Eqn. 2 is conservation of momentum equation. 
Eqn. 3 is Faraday’s Law. The first term on the right-hand-side comes from the definition of the 
material derivitive [d/dt = a/&+ (v .  V)]. Eqn. 4 is Ohm’s Law for an resitive conducting fluid, 
where fl is the resistivity of the fluid. Eqn. 5 is Ampere’s Law for low frequencies ( O / O p e  < 1, 
O p e  is the electron plasma frequency). Eqn. 6 is the isentropic, gamma-law eqation of state, where 
y is ratio of specific heats. 

For an infinte, uniform (p = const) plasma, in the ideal case ( p  = 0 and q = 0), the above 
equations may be linearized [v(r, t )  + vl(r, t )  and B(r, t )  -+ Bo + Bl(r, t)], Fourier transformed 
(d/dt + -io, V + ik), and combined to give a dispersion realation for the normal wave modes. 
The dispersion relation is 

o2v1 = VA[$vI - kll (k. vl)b - kll (b - vl)k+ (k-vl)k], (7) 

where VA = B/&$ is the Alfven velocity, b = Bo/& is a unit vector in the direction of the 
background magnetic field, and kll= k -  b is the parallel component of the wave vector, k. 
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The two eigenvalues/freqencies of Eqn. 7 are 

October 1998 

with positivehegative roots of each o2 corresponding to backwardforward traveling mode. The 
associated polarizations or eigenvectors are 

A third mode, the slow mode, is non-propagating in the p = p/(B2/2p0) = 0 limit. For finite p, it 
becomes the the slow magneto-sonic wave. The two non-zero modes are the fast magneto-sonic 
wave and the shear wave. Their frequencies can differ in value by several orders of magnitude, if 
k is highly oblique (kll/k << 1). 

Discretization errors of the ideal equations can lead to the phenomenea of spectral pollution. 
In Fig. 1, ofast and ashear are plotted as a function of wave vector angle for k = const. It is 
seen that for a highly oblique angle, afast >> ashear.  In the discritized case, the value of ashear 
is increased or polluted by the value of ofast. In an inhomogeneous (p # const) or non-infinite 
geometry, oscillations can become instabilites when the frequencies are imaginary (a2 < 0). Since 
instabilities eventually dominate the dynamics of a particular configuration, discretization errors 
can lead to non-physical numerical solutions. Hence, if a MHD method is to be robust for different 
plasma geometries and conditions, a dicretization method free of spectral pollution is essential. 
The finite volume method described in the following section meets this requirement. 

In the highly resitive limit (q >> ,UOV,& i.e. low Lundquist number), but still with p = 0, 
the fluid remains motionless (v = 0), while the magnetic field diffuses though it. The reduced 
equations are 

= - V X E  dB 
dt 
- 

?l E = - V x B .  
PO 

These equations (with the V - B = 0) can be combined into a single vector diffusion equation. 
However, the above form emphisizes that the two curl operators have different domains and ranges, 
which is readily apparent in the discretized case, where B and E do not have the same centering. 
The important property of these equations is the adjoint relation between the two curl operators. 
This property must be preserved in the discretized case if accurate results are desired (Shashkov 
and Steinberg 1996). 

Mesh 

A 3D, unstructured mesh is employed in our method. The vertices are stored as a simple linear 
array of points. Computational cells can have an arbitrary number of faces and these faces can 
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Figure 1: Disperion relations for the fast and shear MHD modes as a function of the angle of k. 
For highly oblique angles (black line), ofasf >> ashear which can lead to spectral pollution. 
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Figure 2: (a) An eight faced computational cell. (b) Decompositon of the cell into 36 unique 
tetrahedrons. Four tetrahedrons are remove to show the interior. 

have an arbitrary number of edges. A diagram of a eight faced cell is shown in Fig. 2(a). Fortran 
90 data types for the cells and faces are defined. A single cell consists of an allocatable array of 
indices of faces, while a single face consists of an allocatable array of indices of vertices. For 
each cell and face the geometric center is computed and added to the list of vertices. By then 
connecting the original cell vertices to the cell center, and the face vertices to the face center, the 
cell is decomposed into a set of tetrahedrons (tets). This decomposition is shown in Fig. 2(b). 
In a single cell, the number of unique, non-overlapping tets is ntds = &f=l neif, where n f is the 
number of faces that make up the cell, and neif is the number of edges of a face. For the eight- 
faced cell in Fig. 2, there are 36 tets per cell. For a standard six-faced, rectangular hexahedron 
there are 24 tets per cell. While the cell vertices are updated by the equation of motions, each 
computational cycle, the cell and face centers are forgotten then recomputed geometrically each 
cycle. Note that the vertex mass, rn, is a constant in time because of the Lagrangian dynamics 
formulation. The limitation on the original mesh is that each cell have positive initial volume and 
that the cell center be located within the cell. At this point, the meshing algorithm is not smart 
enough to recognize degenerate hexahedral cells (prisms, pyrimids, or tets) in the original mesh 
and so will decompose them unnecessarily. However, degenerate hexahedral cells do not place a 
restriction on the differencing scheme. 

n f  
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Differencing Scheme 

Ideal. The finite volume differencing of the MHD equations is described here. The method is 
Lagrangian; this means that the mesh verticies move with the magneto-fluid flow. The method 
is explicit so that, xt+l = f '(Al)2/m + 2x' - xt-'. The magnetic vector potential (A, such that 
V x A = B) is introduced. It is stored as an edge-centered scalar Ai, = A - 1, where 1 is a vector 
directed along an edge connecting two vertices. In terms of the tetrahedral mesh, the quantity is 
defined on every unique edge of a tetrahedron, as indicated by the subscript ie. For each face of 
a tetrahedron, a magnetic flux is defined in terms of Ai,, by the discrete form of Stoke's theorem, 
@if = x;e,l Ai,. Fig. 3 shows the centering of the variables in a single tetrahdron. If A is initialized 
such that V . B = 0, then it will remain for the entire caclulation since dAi,/dt = 0, which implies 

In terms of these quantities, magnetic forces, J dVJ x B, are calculated at each of the dynamical 
d@if/dt = 0. 

vertices using a finite volume approximation. 

where fiv is force on vertex, iv. B i  is a zone centered approximation to the magnetic energy. sif is a 
directed surface of tetrahedron, it. Bif is a face centered approximation of the magnetic field. The 
sum is over all tets that contain vertex, iv. The first term in Eqn. 14 represents magnetic pressure. 
Consequently, B i  + B i  +pjz for non-zero fluid pressure. The second term in Eqn. 14 is unique to 
MHD and represents forces generated by curvature of magnetic field lines. 

Diffusion. The resistive diffusion, Eqn. 12 is handled by an implicit, pre-conditioned Conjugate- 
Gradient (CG) solver (Saad 1996). The method is symmetric and postitive definite, which ensures 
energy conservation. It also preserves flux conservation so that V - B = 0. 

Numerical Examples 

MHD Modes. A 10 x 10 x 10 hexahedral cell mesh is generated. The mesh spacing is Ax = Ay = 
0.1 m and & = 1 m. A Bo = 1 Vdm2 is aligned along the z-axis with uniform mass density of 
p = 3 x 10-7kg m-3. This gives an Alfven velocity, VA = 1.629 x lo6 d s .  A wave vector of k = 
2n( 1 , 0,O. 1) (single oscillation in x and z directions) gives an obliqueness factor of kll/k = 0.099 
or an angle between k and b of 0 = cos-'(kll/k) = 84.3'. Boundary conditions are periodic in all 
three dimensions. Explicit time-stepping is used so that At = 1 x lo-' < min(Ax, Ay, Az)/vA. This 
setup is shown in Fig. 4. 

In order to generate a standing fast magneto-sonic wave, v, = k l  is set with a sinusoidal spatial 
distribution with a maximum value of 10-3v~ = 1.629 x lo3 d s .  In the top-left inset of Fig. 4, 
a plot of v, at the origin over time shows a perfect sinusoidal oscillation within one percent of the 
theoretically predicted fast wave frequency, ofast = VAk = 9.65 x 10' s-l. 



A .  ie E. ie 1 ie 

Cell Center 

Edges 

0 Cell Face Center 

0 Dynamical Points 

e Tetrahedral Face 

Figure 3: A tetrahdon with the edge-centered (red dots) vector potential Ai,, electric field Ei,, and 
edge length, lie. The magnetic flux, @if is centered at the face of a tet (blue dot). The force, 
velocity, position and mass, Fi,,, vi,,, Tiv, mi,, are located at the dyamical points (green dots). The 
cell center (black dot) and cell face center (yellow dot) are also shown. 
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k,, / k  = 0.1,8 = 84" 

Figure 4: A 10 x 10 x 10 hexahedral cell mesh with a 1O:l  aspect ratio is generated. Either v, or 
vy is set with the sinusoidal standing wave pattern to give either a fast or shear polarization of a 
highly oblique wave vector. The other components of v are set to zero. The top-left inset is a plot 
of v, for the fast wave polarization, at the origin. Over time it shows a perfect sinusoidal oscillation 
within one percent of the theoretically predicted fast wave frequency, ofust = VAk= 9.65 x lo8 s-l. 
The bottom-right inset is a plot of vy for the shear wave polarization, at the origin. Over time it 
shows a perfect sinusoidal oscillation within one percent of the theoretically predicted shear wave 
frequency, asheur = v~kll  = 9.56 x lo7 s-l. 
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' In order to generate a standing shear wave, vy = k x b is set with a sinusoidal spatial distribution 
with a maximum value of 10-3v~ = 1.629 x lo3 d s .  In the lower-right inset of Fig. 4, a plot of vr 
at the origin over time shows a perfect sinusoidal oscillation within one percent of the theoretically 
predicted fast wave frequency, Oshear = ~ ~ k l l  = 9.56 x lo7 s-l. 

Z-pinch. This methods are applicable to the modeling of pulsed power experiments. Specifically, 
multi-material, magnetically-driven, liner implosions. In this geometry, the plasma is unstable 
since the radial force does not serve to straighten the azimuthal magnetic field lines (Biskamp 
1993). Fig 5 shows a model of a multi-material @inner = 5.69p,,er) annular liner undergoing this 
instability. A constant current in the z-direction is applied. Vectors show the azimuthal magnetic 
field as well as the radial velocity. 

Diffusion. A unit hexahedral mesh is constructed with unit aspect ratio. It is given a sinusoidal 
perterbation (rperturb = ro sin(m) sin(ny)), where ro is the magnitude of the pertubation, in the 
z-direction. The plasma has p = 3 x 10-7kg m-3 and q = 5 x (Q s)-'. At time t = 0, B = 0 
inside the mesh. An electric field E = q/,uo(x, -y, 0) is applied on the x,y boundaries, while the 
problem is periodic in the z-direction. After 15 s, the magnetic field has diffused into volume and 
asymtotically approaches the analytic solution, B, = 2xy. In Fig. 6, the smoothly perturbed mesh 
is shown colored with the value of B,. The inset of Fig. 6 shows the time evolution of the B, at the 
point (-0.5,-0.5,O.O). 

Results of convergence studies of the diffusion method are shown in Fig. 7. The unit mesh, 
metioned above, is refined from 53 to a lo3 to a 203. A rootemean-square (RMS) error from the 
analytic solution are calculated and a log-log plot versus the number of cells in one dimension 
(5,10,10). Fig. 7(a) shows that the method is 2nd order convergent for the smoothly perturbed 
mesh. A similar unit mesh is constructed, only the perturbation of each vertex is randomized and 
normalized to the intermesh spacing. Once again, the mesh is refined and an RMS error from the 
analytic solution is plotted. In Fig. 7(b) the convergence is shown to be only first order. 

: 

Conclusions 

Finite-volume, MHD methods for use in single fluid plasma approximation has been demonstrated. 
In the ideal case, the fast and shear waves have been accurately modeled and show no spectral pol- 
lution. An numerical example was given to show how this method could be used to model multi- 
material, pulsed-power, liner implosions. In the resitive case, the method is second-order con- 
vergent on a smoothly perturbed mesh, while it is first-order convergent on a randomly perturbed 
mesh. The method utilizes an unstructured mesh where computational cells can be composed of 
any number of faces and faces can be composed of any number of vertices. Because these MHD 
methods are not based on mesh structure, they can easily be incorporated as a module in the ASCI 
Shavano Project. 
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Figure 5: A mulit-material annular liner subjected to a constant axial current density. The magnetic 
field is azimuthal, while the velocity is radially inward. 
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Figure 6:  The diffusion of the magnetic field into a unit test volume. The analyitc solution is 
B, = 2xy. The inset shows the time evolution of B, at the point (-0.5,-0.5,O.O). 
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Figure 7: Results of convergence studies for (a) a smoothly perturbed mesh and (b) a randomly 
perturbed mesh. Errors are RMS from the analytic solution B, = --2xy. n is the number of cells in 
one dimension (5,10,20). 
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