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EVALUATION OF HIGH-LEVEL WASTE PRETREATMENT PROCESSES WITH AN 
APPROXIMATE REASONING MODEL 

Terry. F. Bott, Stephen W. Eisenhawer and Stephen F. Agnew 
Los Alamos National Laboratory 
Los Alamos, New Mexico 87545 

(505) 667-9207 

ABSTRACT 

The development of an approximate-reasoning (AR)-based model to analyze pretreatment 
options for high-level waste is presented. AR methods are used to emulate the processes used by 
experts in arriving at a judgment. In this paper, we first consider two specific issues in applying 
AR to the analysis of pretreatment options. We examine how to combine quantitative and 
qualitative evidence to infer the acceptability of a process result using the example of cesium 
content in low-level waste. We then demonstrate the use of simple physical models to structure 
expert elicitation and to produce inferences consistent with a problem involving waste particle 
size effects. 

INTRODUCTION 

Removing high-level waste from storage tanks for long-term disposal typically involves four 
phases: retrieval, pretreatment, immobilization of the low-level activity waste (LAW) and high- 
level activity waste (HLW) and disposal. Many options exist for performing each of these 
phases, and therefore, there are many potential alternatives for the overall process. The individual 
phases interact strongly with one another, so it is not possible to optimize each phase 
separately, which complicates the design process considerably. An efficient design requires 
matching the phases to one another using an iterative approach. Detailed simulation of a process 
often is used in the search for an optimization design. However, this is not a practical approach 
at the current stage of the remediation process design for a number of reasons. First, there is 
considerable uncertainty about the characteristics of the waste in individual tanks. This strongly 
affects the choices for retrieval and pretreatment and the schedule in which the tanks will be 
retrieved. Second, the flowsheets for the individual phases are still subject to rapid and large 
changes. Finally, many of the process evaluation criteria are qualitative in nature and are not 
necessarily closely linked to the simulation results. 

In an earlier paper (l), we described a prototype of a tool called the Pretreatment Analysis Tool 
(PAT). The purpose of this paper is not a detailed description of the PAT. However, some 
background on its theory and application will make the specific cases we discuss more 
understandable. The purpose of the tool is the rapid assessment of the effect of pretreatment 
process changes on the overall removal process. The PAT is based on the theory of approximate 
reasoning (AR) (2). The PAT uses AR to emulate the evaluation of pretreatment options by a 
group of experts. The algorithm captures the knowledge and reasoning processes of experts 



through a series of linked rule bases. This is more efficient and practical than attempting to 
assemble a group of experts on a frequent basis. 

The requirement for expert evaluation of pretreatment options arises in the following way. A 
designer developing a pretreatment process might wish to concentrate his analysis within a small 
region in the parameter space. For example, a specific concern might be associated with waste pH 
or the decontamination factor for a specific isotope. However, optimization of a single parameter 
frequently leads to tradeoffs in other process characteristics that can be highly unfavorable. A 
designer would be less likely to make this mistake if he were able to consult a panel with the 
expertise to assess these tradeoffs. In the PAT, we explicitly consider tradeoffs associated with 
the acceptability of costs, waste loading, and decontamination factors as functions of the 
pretreatment option. The AR algorithms provide expert feedback to facilitate the exploration of 
the design parameter space and quickly identify pretreatment parameters that result in 
unacceptable outcomes. 

In this paper, we consider two specific technical issues encountered during the implementation of 
AR in the PAT. The first of these involves integrating qualitative judgments with numerical data 
to generate an evaluation of the acceptability of a process. We illustrate our solution to this 
problem with an example that considers the site’s sensitivity to the residual activity in the LAW. 
The second issue involves using approximate physical models to provide a logical structure to 
organize expert opinion. For this example, we present a simple model for particle-size distillation 
during retrieval and show how the model simplifies the elicitation process. 

OVERVIEW OF AN APPROXIMATE REASONING MODEL OF PRETREATMENT 

AR models are designed to emulate the deliberation processes used by subject matter experts in 
making a decision and are a special type of expert system. The primary characteristics of the AR 
model presented here are as follows. 

The relationship between data and models is defined explicitly by an inductive logic 
structure. 
The inference process is implemented using formal logical implication. 
All of the relevant data are transformed into natural language expressions called linguistic 
variables. 
A linguistic variable is represented in the model using fuzzy sets. The degrees of 
membership in fuzzy sets are used directly in the logical implication operations. 
Judgments about the importance or quality of data are also treated as linguistic variables. 
These judgments are incorporated explicitly into the inference model. 
Uncertainty is represented using standard Monte Carlo techniques for random variables. 
Ambiguity is treated using fuzzy sets. 
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Additional applications of AR in the areas of safety analysis and the evaluation of system 
reliability are described in Eisenhawer (3,4) and Bott (5) .  

The AR approach used in the PAT can handle both quantitative and qualitative parameters in the 
evaluation. Some quantitative pretreatment parameters evaluated in the PAT include 

HLWvolume, 
0 LAWvolume, 

HLWLAW weight ratio, 
137Cs loading in LAW, 
”Sr loading in LAW, 
TRU loading in LAW, and 

0 processing rate or schedule. 

Additional parameters are needed to represent the interface between retrieval and pretreatment 
properly, including the volume and activity of in-tank waste remaining after retrieval and the 
particle size distribution of the waste delivered by retrieval to pretreatment. This latter parameter 
is important because of the effect of waste particle size on the efficiency of certain pretreatment 
options and because it affects the likelihood of transfer-line plugging. Quantitative inputs to the 
PAT include both simple numerical values and mathematical expressions that use several input 
parameters. These quantitative inputs may be stochastic. Uncertainty is included by using 
probability density functions or intervals to describe the stochastic behavior. The qualitative 
inputs include such concepts as the site sensitivity to radionuclide content in the LAW. 

The basic output of the PAT is a qualitative measure called “the acceptability” of the 
pretreatment process. “The acceptability” is a linguistic variable that uses natural language 
expressions to describe how well a specific combination of retrieval, pretreatment, and disposal 
options meets the specifications for final waste form, waste removal rate, residual waste, and 
operability of the process equipment. The acceptability is a function of the waste characteristics, 
the site characteristics, and the various process parameters. 

The PAT algorithm is based on inductive logic models for the parameters needed to represent the 
pretreatment process. Each of the models evaluates the acceptability of some aspect of the 
pretreatment process. The individual acceptability evaluations are combined using a series of 
forward-chaining logical implications to infer the overall acceptability of a particular pretreatment 
option. This evaluation is based not only on how well the option meets the pretreatment phase 
design goals but on how it affects the retrieval and immobilization phases as well. 

EVALUATING A COMBINATION OF NUMERICAL AND QUALITATIVE INPUT DATA 

In designing the inductive logic raodels for PAT, it became clear that a consistent methodology 
for combining generic quantitative data with site-specific qualitative judgments of the data would 
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be necessary. For example, one metric for evaluating the performance of a pretreatment process is 
the activity level for specific isotopes in the LAW stream. If the loading is too high, the 
pretreatment option is unacceptable. This site sensitivity is a qualitative judgment based on 
expert elicitation and may vary among the sites because what is and what is not acceptable is 
site-dependent. For instance, a particular site may be especially sensitive to 137Cs because of 
groundwater conditions at the LAW storage site. Thus, the evaluation of the acceptability of the 
loading for a LAW stream depends on the well-defined measurement of activity in the LAW and 
the qualitative tolerance of each site for a particular radionuclide. We show here how to combine 
these two very different types of data in a reproducible and defensible manner. 

Logic structures specify how the input data combine to produce acceptability values. Such an 
inductive logic structure for evaluating the acceptability of the radionuclide levels in the LAW 
stream is shown in Fig. 1. The primary inputs appear at the left of the diagram. These primary 
elements are combined painvise to generate the initial acceptability measures for each species of 
interest . The species-specific acceptability measures then are combined as well. This forward- 
chaining continues until the final desired acceptability measure is generated. 

In the PAT, the radionuclides of concern are 137Cs, 90Sr, and transuranic isotopes (TRU). The 
acceptability logic submodule for each of the different radionuclides is identical in the current 
version of the PAT, so we use the cesium loading acceptability evaluation as an illustrative 
example. The two inputs to the evaluation are the 137Cs loading in the LAW and the site 
sensitivity to LAW cesium content. The LAW loading is a numerical value that describes one 
aspect of the performance of a particular pretreatment option. This is a quantitative input to the 
AR model and is treated objectively in the evaluation. As noted above, each site will have its own 
qualitative evaluation of how sensitive it is to the waste loading for a given radionuclide. The 
isotope loading and the site sensitivity are considered together to produce an acceptability 
evaluation for the pretreatment option with respect to LAW loading. The relationship between 
activity and site sensitivity is defined in the PAT by a series of “if-then” rules given in Table I. 
These rules are of the form 

Ifthe Loading is Li and the Sensitivity is 4 then the Acceptability is C, 

For example, the rule in the upper left corner of the rule base in Table I is 

Ifthe 137Cs loading is very low and the site sensitivity for 137Cs is high then the ‘37Cs 
acceptability is preferred. 

These statements are in the form of a logical implication. If we make the additional statement 

The Loading is Li and the Sensitivity is 4 
then it follows immediately that the acceptability is Ck. The combination of two propositions in 
the form of Statements 1 and 2 is the modus ponens tautology. It is the standard form of 
inferential reasoning used in AR models. 
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Figure 1. Inductive Structure for Evaluating Acceptability of Low Activity Waste 
Radionuclide Loadings 

Table I. Rule Base for Inferring Site-Specific 13'Cs LAW Acceptability from 13'Cs LAW 
Activity and Site Sensitivity 

All of the inputs and outputs in the rule bases are treated linguistically. The 13'Cs loading is 
described using a set of descriptors (Very Low, Low, Quite Low, Quite High, High}. Each of 
these descriptors is itself a fuzzy set. The set of descriptors used to represent a variable is called 
the universe of discourse (UOD) for that variable. The UOD for the site sensitivity is (Low, 
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Medium, High), and the acceptability is represented by (Ideal, Preferred, Acceptable, Tolerable, 
Unacceptable). 

Primary inputs, which may be numerical in nature, must be translated into their correct linguistic 
variable form so that they can be assigned membership in sets within the UOD for that variable. 
The translation of numerical input to linguistic variable uses a set of membership hc t ions  such 
as those shown in Fig. 2. There is a membership function for each element in the class of fuzzy 
sets that span the UOD for residual 137Cs activity. The degree of membership in each set is 
determined by the membership functions. These functions map a numerical value of the input 
variable into membership values in the fuzzy sets. Here the membership functions are meant to 
represent a consensus among experts from different sites on how the natural language descriptors 
should be related to numerical values for activity. Because the sets used in the PAT are fuzzy, a 
particular 137Cs activity can have membership in more than one set. To illustrate the use of the 
membership functions, consider a 137Cs LAW loading of 200 Ci/mL. From Fig. 2, a residual 
activity of 200 corresponds to memberships of 0.75 in the “Quite High” set, 0.25 in the “High” 
set, and 0 in the other sets. We denote the degrees of membership in the class of fizzy sets by a 
vector, p. Here p = [0, 0, 0,0.75,0.25]. 

Because of the uncertainty in waste properties and the performance of a particular pretreatment 
process, it will normally be the case that the 13’Cs LAW activity should be treated as a random 
variable. In this case, the degrees of membership also will be random. Monte Carlo simulation 
techniques are used to find the associated probability density functions (PDFs) for each element 

High 
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Figure 2. 13’Cs LAW Activity Membership Functions 
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in the p vector. Suppose that the activity is described by the PDF shown in Fig. 2. Each Monte 
Carlo trial generates a separate value for the residual activity and therefore separate degrees of 
membership in the residual activity sets. With a sufficient number of samples, PDFs and the 
associated quantiles for each residual activity can be estimated. For this example, the median 
degrees of membership are p(median) = [0, 0.0 1,O.  18,0.74,0.08] The natural language 
expression for this result might be “The 137CS LAW loading acceptability is rather high.” Degrees 
of membership for site sensitivity to 137Cs residual activity are assigned directly by an expert 
familiar with the site. As noted earlier, the UOD for site sensitivity is(Low, Medium, High), and 
for this example, we use a degrees of membership vector p = [0,0.75,0.25]. This set membership 
distribution represents a sensitivity that is meant to be somewhat above the average for all sites. 
The corresponding natural language expression might be “The site sensitivity for 137Cs LAW 
activity is fairly high.” 

With both the 137Cs loading and site sensitivity expressed as degrees of membership in the 
appropriate fuzzy sets, the rule base defined in Table I is used to infer the memberships in 
LLWLAW loading acceptability for the site. The degrees of membership for the acceptability 
sets are calculated using a max-min rule that operates on the antecedent degrees of membership 
for each rule in the rule base (Ross 1995). The median results from the Monte Carlo simulation 
are p (median) = [0,0.01,0.18,0.74,0.25]. The results of the AR algorithm are interpreted by 
examining these degrees of membership for the site acceptability. Comparing this vector with the 
one obtained above based on the numerical value of the cesium activity, p(median) = [0, 0.01, 
0.1 8,0.74,0.25], shows that consideration of site sensitivity has shifted the numerically larger 
degrees of membership toward the Tolerable and Unacceptable sets. The corresponding natural 
language expression for the result of the simulation might be “The site-specific acceptability of 
the 137Cs LAW loading is barely tolerable.” This shows the ability of an AR model to make 
expert-like qualitative judgments. 

The binary inference we have just examined (two inputs, one output) is the basic building block 
of the PAT model. Referring to Fig. 1, the same process is carried out for the 90Sr and TRU LAW 
activities. The site-specific acceptabilities then are combined using the rule base in Table 11. This 
rule base defines what inferences can be drawn when the separate acceptabilities are considered 
together. In this case, we have chosen to infer a combined cesium and strontium acceptability 
first. This acceptability then is combined with the TRU acceptability by applying the rule base a 
second time. An overall acceptability evaluation is performed by combining a series of logic 
submodules that consider other tradeoffs of concern. Examples of other submodules include those 
designed to infer the acceptability of the decontamination factors for the radionuclides and overall 
cost acceptability. The LAW loading acceptabilities inferred here also can appear in these other 
submodules. 
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Table 11. Rule Base for Inferring Two-Species Site-Specific LAW Loading Acceptability 
from Individual Species LAW Loading Acceptabilities 

EVALUATING COMPLEX PHENOMENA IN THE PAT 

Using a binary rule base is practical as long as the logical inferences can be represented reasonably 
with a series of forward-chaining, two-antecedent structures. There is a general preference for this 
two-dimensional structure because of the relative ease in eliciting the necessary information from 
the subject matter experts. However, in some cases, it is advantageous to construct rule bases of 
higher dimensions. In this section, we consider such a case and show how a model-based 
approach can be used to construct the rule base and structure the expert elicitation. 

An important parameter in most pretreatment processes is the particle-size distribution of the 
feed. The efficiency of pretreatment options is sensitive to particle size, and flowsheet variations 
might be required if this characteristic of the delivered waste changed significantly. This implies a 
close coupling to the preceding retrieval phase. Any change in the pretreatment option will 
require a re-evaluation of the particle-size distribution produced in the retrieval process. By the 
same token, placing too tight a limit on the particle-size distribution to simplify processing could 
lead to an unacceptable tradeoff relative to transfer-line plugging. Note that the particle-size input 
is not a simple numerical value as was the case for LAW activity level. The input used to 
describe particle size is a complicated h c t i o n  of several parameters. To show how such a 
situation can be evaluated, we consider an AR treatment of the particle-size distillation effect. 

Sluicing is planned in some options for retrieval. A phenomena known as particle-size distillation 
may occur during sluicing. Particle-size distillation occurs when different particle sizes with very 
different settling rates are suspended in a plenum from which the particles are pumped. If there is 
a finite settling time for the particles before sweep-out occurs, then smaller particles will be 
removed preferentially from the plenum and larger particles will settle back onto the undisturbed 
waste. Thus, the waste that is silbject to suspension will become enriched in large particles over 
time. 
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It is difficult for experts to directly judge the effect of particle distillation in a given situation on 
the acceptability of a pretreatment option. They base their judgement on the size distribution of 
the particles generated by suspension and by the settling fractions for the different sizes of 
particles. They then must internally evaluate the extent of size distillation that takes place. To 
facilitate their judgment, we developed a simple model for particle-size distillation in sluicing a 
tank. The purpose of this model is not high physical fidelity. It is to relieve the experts from 
directly estimating the effect of distillation on retrieval efficiency. 

The model used for particle-size distillation is most easily explained with reference to the diagram 
-in Fig. 3. The tank is modeled with flat waste surfaces and a volume of water added above the 
waste during sluicing. Sluicing is considered a batch process consisting of a series of steps. Each 
step includes a suspension phase in which waste is broken up and suspended in the plenum, a 
settling phase during which the waste particles remain in the plenum subject to settling, and an 
instantaneous transfer phase or sweep-out in which all the particles still in the plenum are 
discharged from the system and sent through the transfer lines. 

In our model, each sluicing step results in the suspension of a mass M of waste in the 
supernatant liquid plenum shown. This mass (see Fig. 3) is removed uniformly from the top of 
the waste. M is the sum of the distilled waste and some undisturbed waste particles called “fresh 
waste suspended.” Whenever any undisturbed waste material is suspended, it is assumed to be 
composed of two sizes of particles: A mass fraction, f, is composed of large particles and a mass 
fraction, 1 -f, is composed of small particles. During the settling phase of each step, a fraction, 
XL, of the large particles and a fraction, Xs, of the small particles settles uniformly from the 
supernatant liquid onto the surface of the undisturbed waste to form a layer of distilled particles. 
Normally Xs is much smaller than XL. The layer is called distilled because small particles have 
been removed preferentially. Of the unsettled particles that remain in the plenum, a fraction, 1 - 
XL, of the large particles and, 1 -Xs, of the small particles, is swept out through the discharge pipe 
and a new step begins. 

Suspension Volume --, 

Figure 3. Particle-Size Distillation Model 
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The picture of the removal process is of an initial transient phase during which a layer of large 
particles accumulates above the undisturbed waste. Eventually, this layer reaches a steady-state 
mass that remains constant until all the undisturbed waste is removed. Thereafter, the remaining 
mass, which is all large particles, is removed according to an exponential decay law because the 
amount removed at a given step is a fraction of the remaining mass. We will define waste removal 
efficiency as the ratio of the waste removed to the waste suspended during a sluicing step. In the 
appendix, we show that this efficiency is 

1 - x, - x, + x,x, 
Q,= 1-x,+(x,-x,)f - (3) 

Equation (3) is a simple approximate model that can be used to provide feedback between the 
retrieval and pretreatment phases. The behavior modeled here affects both the mass removal rate 
and the fraction of mass removed that is large particles. The removal rate is of interest because it 
determines the efficiency of the retrieval process. The fiaction of mass in large particles is 
important because it aflects the likelihood of plugging in the transfer lines. 

Because the model on which Eq. (3) is based is only approximate, we do not wish to treat CD as if 
it were a primary numerical input obtained from a detailed process model. Instead, it is 
considered to be an intermediate linguistic variable that is to be inferred fiom XL, Xs, and f. That 
is, 

where R is a three-dimensional implication rule base and all of the other symbols are now taken 
to be linguistic variables. To infer Q, from XL, Xs, md f, it is necessary to specify R. 

The first step in this process is to decide how the antecedents themselves are to be expressed 
linguistically. All three of the parameters in Eq. (3) and Q, take on values between 0 and 1. Each 
can be described with the same UOD {Low, Medium, High). This means that there will be a 
total of 27 rules in R. Membership in these sets may be either assigned directly by the subject 
matter experts as with the site-specific sensitivity in the previous example or by using 
membership functions such as those shown in Fig. 4. Here we use exactly these same 
membership functions for XL , f, and a. (This is for illustration purposes only.) In practice, the 
membership functions for each antecedent and the consequent may all be different. Their final 
forms are arrived at by iteration with the experts. The methodology described here helps facilitate 
the elicitation and reduce the number of iterations needed. It also ensures that the inferences in R 
are consistent with the physical model on which they are based. 

A rule base, R, that is consistent with Eq. (3) can be developed by evaluating the antecedent 
triplet (XL, XS, f) €or selected numerical values of each antecedent. For example, consider the 
triplet (0.9, 0.5,0.5). These values were chosen so that X, has membership 1 in {High), XS has 
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membership 1 in (Medium), and f also has membership 1 in (Medium}. If all three antecedents 
have degrees of membership in only a single fuzzy set, as is the case here, only one rule in R is 
necessary to infer Q,. The corresponding value of Q, from Eq. (3) is about 0.2. Again referring to 
Fig. 4, Q, = 0.2 has membership 1 in (Low). Therefore, the linguistic triplet (High, Medium, 
Medium) implies that @ has membership in (Low). By selecting numerical values for the 
antecedent triplet that correspond to the 27 distinct set combinations, the complete rule base can 
be constructed. This is shown in Table 111. Each level of this matrix shows the value of the 
efficiency Q, as a function of the removal fraction values XL and Xs for a given large particle 
fraction f. Each level in the matrix is for a different value off. 

This model allows the expert to input his judgments concerning the relative abundance of large- 
and small-sized particles in the suspended waste and the rates of settling for large and small 
particles during removal. These estimates are used to infer the effect of size distillation on 
removal efficiency . The inferential rule base emulates the experts' judgments concerning what 
constitutes an acceptable level of particle distillation for a given pretreatment process. In 
practice, other rule bases may be required to completely represent possible tradeoffs associated 
with sluicing. Additional inputs could include the degree of mixing achieved in a sluicing step and 
the number of steps required. 

SUMMARY AND CONCLUSIONS 

A number of system design tradeoffs must be evaluated in the design of a pretreatment process. 
The degree to which these tradeoffs are resolved needs to be judged before the efficacy of a 



Table 111. Rule Base for Waste Removal Efficiency 
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particular process can be determined. A prototype PAT was developed to demonstrate how 
these tradeoff considerations could be performed. The PAT uses AR techniques to provide 
immediate feedback about the effect of design changes on the overall process. PAT algorithms use 
fuzzy sets and implication rule bases to emulate the reasoning processes of experts familiar with 
the system tradeoff issues. The acceptability evaluations for specific aspects of the pretreatment 
process are aggregated using inductive logic structures to provide an immediate overall evaluation 
of the acceptability of a proposed design change. 

Several issues arose in the course of developing the prototype PAT. Some of the input data used 
in the evaluation are numerical values; others are highly subjective. Typically, a numerical value 
and a subjective evaluation of the importance of that value must be combined for an acceptability 
evaluation. Our approach to combining these inputs uses fuzzy set membership functions to 
convert the numerical data to linguistic variables that then can be combined with subjective data, 
also in linguistic form, to produce acceptability measures. The advantage of this approach is that 
the resultant acceptability judgment is consistent and defensible. 

In othei situations, input data first must be manipulated using mathematical functions before 
they are in the proper form to serve as antecedents to infer acceptability measures. Our approach 
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to this problem has been to develop approximate physical models that define a mathematical 
relationship between the known quantitative inputs. The inputs derived from the model are taken 
to be the antecedents for a linguistic variable that can be used directly in an acceptability 
inference. The dimensionality of the rule base is the number of quantitative inputs for the model. 
We convert these inputs to linguistic variables whose membership functions are obtained by 
expert elicitation. A methodology has been demonstrated to ensure that the rule base is consistent 
with expert opinion and the approximate model used to define the rule base. These two examples 
provide a methodology for treating a wide and commonly encountered class of problems. 

The application of AR as a decision analysis tool in waste management has great promise. The 
nature and complexity of the tradeoffs that are needed for HLW and other waste processing pose 
major difficulties for other, more deterministic, methodologies. The application of formal logic 
and fuzzy sets in the context of a natural language representation of the evaluation problem is 
well-suited to this class of problems. 
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APPENDIX 

Particle distillation results fiom the differential settling rates of large and small particles mobilized 
during sluicing. We will model the retrieval process as a series of steps, each with a suspension, 
settling, and removal phase. At the beginning of the first step in the removal process, all of the 
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waste is undisturbed. As a result of the suspension phase of this step, a mass, M, is suspended, 
consisting of a mass, N, of large particles and a mass, (1 -f)M, of small particles. In the settling 
phase of the first step, a mass of large particles, D(M, settles uniformly onto the undisturbed 
waste surface. Then in the removal phase of the step, all the remaining suspended mass of large 
and small particles is swept out of the plenum. At the end of the first step, the waste consists of 
a layer of large particles of mass fXM (which is less than the suspension mass M) lying on 
undisturbed waste. The next sluicing step is assumed to suspend all the large particles in the top 
layer of the waste plus enough undisturbed material to make a total suspended mass of M. 

Let us describe the mass of large particles lying on top of the undisturbed waste at step N by 
MN. In step N+1, all the mass, MN, of large particles lying on the waste, plus a mass, (M-MN), 
of the underlying undisturbed waste is suspended because a total mass of M is suspended at each 
step. Now out of this mass, all the MN plus a fraction, f, of the freshly suspended undisturbed 
waste mass (M-MN) is in the form of large particles. The total mass of suspended large particles 
is then 

Now a fraction, X, of this mass settles on top of the undisturbed waste during the settling phase 
of the step. Thus, the mass of large particles lying above the undisturbed waste at step N+l is 
given in terms of MN by 

MN+l = XM, + Xf ( M  - M,) . (A-2) 

The mass of large particles lying above the undisturbed waste will increase at each step until the 
amount of large particle mass removed at each step is equal to the amount suspended during that 
step. This will occur when 

(l- '>[ M N  + f (" - M N ) ]  = f ( M  - M N )  . (A-3) 

Solving Eq. (A-3) for MN gives 

Xf 
l - X + X f  

MN = (A-4) 

Thus, the picture of the removal process is an initial transient period during which a layer of large 
particles accumulates above the undisturbed waste. Eventually, this layer reaches a steady-state 
mass that remains constant until all the undisturbed waste is removed. The remaining mass, 
which is all large particles, is removed according to an exponential decay law because the amount 
removed at a given step is a fraction of the remaining mass. 

When steady state is reached, the mass removal for a step is 

(A-5) 



where M L ~ ~ ~  and Msrnd! are the suspended mass of large and small particles respectively. The 
expression of the suspended large particle mass is (A-1), whereas that for the small particles is 

~ S m N  = (1 - f P  - MN) - 
Substituting Eqs. (A-1) and (A-6) into Eq. (A-5) and simplifling leads to 

Mou, = (1 - JX)M - x(l- f ) M ,  . 

Substituting Eq. (A-4) into Eq. (A-7) for M N  and simplifling we get 

1-x 
M ,  l-X+Xf M o w  = 

n below the id 

(A-6) 

(A-7) 

(A-8) 

showing that the mass out flow is decreased by particle-size distillati a1 value of 
M in which all suspended particles are removed at each step. We define the waste removal 
efficiency, @, as the ratio of the mass suspended to that removed: 

1-x @ =  
l-X+Xf (A-9) 

If we assume that both the small and large particles settle out with fractions XS and XL, 
respectively, then the approach used in deriving the previous formulae can be used to generate 
new expressions. Now instead of one layer of large particles lying above the undisturbed waste, 
we have a layer of large and small particles. Two coupled expressions are derived for the masses 
of large and small particles at steady state analogous to Eq. (A-2). These expressions lead to 
expression for the waste removal efficiency: 

1 - x, - x, + X,X, @ =  
1-X,+(x , -x , ) f  - (A- 1 0) 

This waste removal efficiency is a measure of how much waste is removed during each step in the 
process compared with the mass suspended by the retrieval process. A perfectly efficient 
process would have a @ of 1,  and all of the suspended mass would be removed. 
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