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INTRODUCTION 

Throughout the history of neutron transport theory, the study of simplified 

problems that have analytical or semi-analytical solutions has been a foundation for more 

complicated analyses. Analytical transport results are often used as benchmarks or in 

pedagogical settings. Benchmark problems in infinite homogeneous media have been 

studied continually, beginning with the monograph by Case, DeHoffmann, and Placzek.’ 

A fundamental problem considered in this work is the Green’s function in an infinite 

medium. The Green’s function problem considers an infinite planar source emitting neutral 

particles in the single direction p‘. Recently, this Green’s function has been used to obtain 

solutions for finite media?-4 These solutions, which hinge on accurate and fast evaluation 

of the infinite medium Green’s function, use Fourier and Laplace transform inversion 

techniques for the evaluation?36 Until now, only absorbing media have been considered, 

and applications were therefore limited to non-multiplying media. In an effort to relax this 
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limitation, the infinite medium Green's function is numerically evaluated for an infinite 

multiplying medium using the double-sided Laplace transform inversion. Of course, no 

steady-state mathematical solution exists for an infinite multiplying medium with a source 

present; however, the non-physical solution in an infinite medium can be used in finite 

media problems where the solution is physically realizable. 

THE INFINITE MEDIUM GREEN'S FUNCTION 

Much effort has been dedicated to evaluating the infinite medium Green's function. 

In plane geometry, the Green's function, G(x-x',&'), is essentially the angular flux at 

(x,p) resulting from a planar source of neutral particles at x' emitting in the direction p'. 

The transport equation for the Green's function with x' = 0 (no loss of generality) is given 

by 

where c is the number of secondary particles per collision, and the boundary condition 

requires a bounded Green's function at infinity. A Fourier transform is applied to Eq. (1) 

and the uncollided portion is inverted analytically, leaving for the infinite medium Green's 

function 

The collided Green's function can be reformulated as3 

with 



3 

cL(k) 00 eikx 

= & 1 + i k p  1 - cL(k) ' 

where L(k) = tan-'k/k. Decomposing the Green's function into two components of the 

same function h(x,p) has the advantage of allowing inversion of the individual terms for 

each p and p', instead of inverting for the Green's function at every up'  combination. 

Given the form of EQ. (4b), the most straightforward means of evaluating the integral is to 

convert the infinite integral into semi-infinite integrals, convert these into infinite series of 

finite integrals, and evaluate the series? A further simplification is obtained by 

examination of Eq. (4a), which yields the useful properly h(x,p) = -h(-x,-p). Thus, two 

integrals must be evaluated to obtain full knowledge of the Green's function: K(x,p), and 

G,-Y) .  

A very useful alternative for evaluating Eq. (4b) comes by converting the integral 

along the real k axis to an integral along the imaginary k axis. This is accomplished by 

making the substitution s = ik, which results in 

i- esx cL(s) 
=&i I ds 1 + ps 1 - cL(s) s -icv 

The Fourier transform inversion has been converted to a Laplace transform inversion, or 

more specifically, a double-sided Laplace transform inversion, where the direct function is 

not limited tofit) = 0 for t c 0.7 

THE DOUBLE-SIDED LAPLACFi TRANSFORM INVERSION 

From the standard formula for the Laplace transform inversion, the double-sided 

inversion is given as 
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ep 
At) =zj dw eiWt F ( y  + i w )  , 

--Qo 

with ybeing the distance from the Bromwich contour to the imaginary axis. Separating the 

image function into real and imaginary parts and expanding the exponential into sines and 

cosines yields [forAt) real] 

flt) =..jwdo [cos(wt) ReF(y + iw) - sin(wt) ImF(y  + iw)] . 
" 0  

As usual, this integral may be recast as an infinite series of finite integrals and evaluated 

using the Euler-Knopp transformation to accelerate the convergence of the series. 

For c e 1, examination of the image function in Eq. (5) yields the following 

information: there is a branch cut resulting from the inverse tangent at s = -1 and extending 

to s = -00; there is a pole at -4, where -1 5 -fq, < 0, which is the zero of the infinite 

medium dispersion relation 

tan-'is l-c-=O ; 
1s 

there is a simple pole at -Up. Using the double-sided Laplace transform formulation, the 

Bromwich contour may be evaluated anywhere between -1 < Res 5 0. If the contour is 

evaluated between the pole and the imaginary axis, the individual contour integrals combine 

such that 

however, if the Bromwich contour is evaluated between the pole and the branch cut at s = 

-1, there are no poles inside the closed contour: 
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Combining Eqs. (7a) and (7b), it is easily seen that the original Bromwich contour ( y=  0) 

is the modified Bromwich contour plus the contribution of the pole: 

pi- 
ds (0) = ds (0) + 2ni Res-,, . 

The residue may be analytically calculated from the image function. The numerical result of 

calculating the inversion using the left or right hand side of Eq. (7c) is identical. This 

distinction may seem unnecessary; however, when the case for c 2 1 is considered, it 

becomes essential. 

When c c 1, there are actually 2 poles at s = +Q. As c approaches 1 the poles 

converge at the origin and then split again along the imaginary axis for c > 1. Now the 

standard Bromwich contour for the double-sided Laplace transform inversion, which lies 

along the imaginary axis, crosses over two poles. Shifting the contour as shown in Fig. 1 

and as discussed above allows evaluation of the integral through the shifted contour plus 

contributions from poles and contours around the poles as appropriate: 

This shifting of contours allows evaluation of the infinite medium Green's function for a 

multiplying medium. 

Using the Bromwich contour shift depicted in Fig. 1, the only contributions from 

the poles at fib come from the semi-circular contours around the poles. In the figure, the 

poles are not enclosed by the contour; therefore, the residues lie outside the contour and 

need not be evaluated. Using the standard limiting processes for contour integration for 

these contours, the expression for &,p) becomes 
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Note that these expressions are real (it can be shown that the contour integrals 

around the branch cut combine to a real term). In Ref. 1,  when discussing the solution to 

the isotropic point source solution in an infinite multiplying medium, the authors note that 

different solutions are obtained by using different contours. In this case, when the semi- 

circular contours are included in the closed contour (and residues where appropriate) E& 

(9) is obtained regardless of the path chosen. That is, both semi-circles can be taken to the 

left, right, or any combination thereof and the result is Eq. (9). However, if one of the 

poles is ignored, the result is effectively taking only one of the two pole contributions and 

an e*& term is obtained without a conjugate term to make the final result real. This 

produces an incoming or outgoing “wave” in the infinite medium, where the previous 

analysis produced a “standing wave.” Similar analyses as those above are undertaken to 

treat the cases where x = 0 and p = pi. 

NUMERICAL DEMONSTRATION 

With this analysis, we now have the means of calculating the infinite medium 

Green’s function for any homogeneous medium. Fig. 2 shows the scalar Green’s function 

as a function of distance from the source (x’ = 0, p‘ = 1). Note that for c c 1 the Green’s 

function appears as expected, and that as c approaches 1 the Green’s function increases 

without bound. At c = 1 the Green’s function is negative and asymptotically linear, and as 

c progresses above 1 oscillations becomes apparent. The Green’s function method may 

now be applied to problems which contain multiplying media, such as the critical slab 

problem or heterogeneous subcritical media with inhomogeneous source terms. 
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Fig. 1. Z(x,p) Laplace transform inversion contours for c > 1. 
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Fig. 2. The scalar Green's function as a function of distance from the source for source 
parameters x' = 0, p' = 1. 


