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INTRODUCTION 

R.ecently, we developed the perturbative hypernetted-chain (PHNC) integral eyua- 
tion which can predict reliable thermodynamic and structural data for a system of par- 
ticles interacting with either short range or long range (Coulomb) potential.‘1 2 The 
present work extends this earlier work to mixtures. This is done by employing a 
reference potential which is designed to satisfy a thermodynamic consistency on the 
isothermal compressibility as described in the next section. 

We test the present theory in Sec. III by applying it to plasma mixtures interacing 
with either an unscreened or a screened Coulomb potential. We made comparisons of 
results from the present theory with those from the best available theory, i.e., Rosen- 
feld’s density functional theory (DFT).3 The DFT was shown to give internal energy 
with three to five fignre accuracy compared to a wide range of Monte Carlo data.“? 5, 6 
Meanwhile, small deviations of excess internal energy from the so-called “liner mixing 
rule” ( LMR)71 a are better predicted by a less sophiscated theory like the hypernetted- 
chain (HNC) equation. This rule relates thermodynamics of an unscreened mixture 
to those for individual components in a strongly coupled regime where the potential 
energy of a constituent particle is much larger than its kinetic energy. 

We also apply the present thoery to a H2 + H mixture interacting with Morse 
potentials. For this sytem, comparison of thermodynamic properties and radial dis- 
tribution functions from the present theory will be made with those -from another 
successful theory of dense fluid, i.e., the HMSA equation of Zerah and Hansen97 lo. 
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FORMULATIONS 

The PHNC integral equation for a multi-component mixture employs a closure 
relation: 

&j(T) = @j,&), (1) 

where Z&,(T) and a,,,( T) d enote the bridge function for a system of interest and that 
for a reference system, respectively. The PHNC chooses the reference system so that 
the range (Xij) of the reference potential between species i and j depends on the tem- 
perature T and density. p. For a one-component system X = Min(af,,, T$) was shown to 
give a reliable result, where a&= 2”/6/p1/3) is the nearest neighbor distance at a given 
density for the face-centered cubic lattice and Trj is the interatomic distance where the 
potential Kj (T) is the minimum. 

For a mixture composed of N, (> 1) species, we need a more sophiscated choice. 
Namely, &i (i = 1, N,) is chosen so that the partial isothermal compressibility d(PP)/api 
from the compressibility relation, 

(2) 

gives the same result as that obtained from the virial equation, 

(3) 

Here ,f? = l/kT, where t? is the Boltzmann constant; cij(r) is the direct correlation 
function between species i and j, respectively. We choose Xij (i # j) to be additive, 
i.e., Xij = (Xii + Ajj)/Z. For a plasma system, Eqs. (2) and (3) need to be modified to 
include contributions by the compensating background. This is done by replacing Q~(T) 

and $Jij(T) by Cij(T) f,O~ij(T) and +gij(T) - 1, respectively. Other details for choosing the 
reference potentials are similar to those described in Refs. 1 and 2. For example, it is 
assumed that the perturbation potentials are linear functions of T at T < Xij and have 
continuous first derivatives at Xij. 

Once the reference potentials are defined, Bij,o(T) is determined from%he numerical 
solution of another set of coupled integral equations for the reference systems, using 
Ballone ,et al’s closure relation” 

&j,o(T) = [I + SY~~,O(T)]“’ - 1 - Y~~,o(T), (4 
with s = 15/8. Here nj,o(T) = hij,o(r) - ij, ( ) c 0 T , w h ere hij,o(T) = g;j,o(T) - 1 is the total 
correlation function between the species i and j. In summary, Eqs. (I) - (4) constitute 
a self-consistent cycle. 

RESULTS AND DISCUSSION 

Two-component plasma (TCP) corresponds to a simplest model of plasma mixture 
where ions with charge (in units of e) ZI and 22 move in a uniform background. 
Parameters describing this system are the coupling parameter l? = e2/(IcTa), ZL, 22, 
and the mole fraction x of the species 2, where a(= 3/47rrp)‘i3 is the ion-sphere radius. 
Instead of l?, alternative description is possible in terms of lYe = e”/(K?a,), where 
ue(= 3/47rpp3 is the electron radius and ,Q~ is the electron density. 
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Table 1. Comparison of the excess internal energy 
for the TCP: the Monte Carlo data,4y 5y 6 the PHNC 
(this work), and Rosenfeld’s DFT.3 22 is the ionic 
charge of species 2 (2, = 1); re = (e2/u,kT), where a, 
is the electron sphere radius; x is the mole fraction of 
species 2. 

22 re X Exact '- PHNC DFT 
3 15 0.05 -15.79068f0.00026 -15.78471 -15.7850 

15 0.1 
15 0.2 
15 0.5 
20 0.01 
20 0.05 
20 0.1 
20 0.2 
20 0.5 

5 10 0.01 
10 0.05 
10 0.1 
10 0.2 
10 0.5 

-19.265 f 0.001 
-26.212f0.001 
-47.066 f 0.002 

-17.60188zt0.00026 
-21.31834~0.00019 

-25.963 f 0.001 
-35.260f 0.002 
-63.145 + 0.002 

-9.20414f0.00015 
-14.02753&0.00015 
-20.05840f0.00017 
-32.12399f0.00023 
-68.33913zkO.00032 

-19.26000 -19.252 
-26.20914 -26.199 
-47.05487 -47.057 
-17.59037 -17.6033 
-21.31049 -21.3100 
-25.95929 -25.948 
-35.25469 -35.237 
-63.13663 -63.126 
-9.20216 -9.20326 
-14.03313 -14.0081 
-20.06820 -20.0301 
-32.13566 -32.0974 
-68.34210 -68.3609 

8 10 0.01 -10.75698zkO.00018 -10.76172 -10.7466 

Table 1 compares the excess internal energy U” for the TCP calculated from the 
PHNC, computer simulations,4, 5~ 6 and the DFT.3 Note that 2, = 1 and Z2 > 2,. It 
shows that the PHNC is generally more accurate than the DFT, unless the species 2 
is present at a very small mole fraction (= 0.01). And yet, more detailed calculation 
shows that the deviation from the LMR is not accurate enough. Figure 1 shows that 
the PHNC also gives accurate partial radial distribution functions, which is at least as 
accurate as the DFT. [See Fig. 5 of Ref. 3.1 

Next, we briefly mention our results of the PHNC calculation on the Yukawa 
system, which is a more realistic model for the plasma than the one-component plasma 
(OCP) or the TCP. For a two-component Yukawa mixture composed of ions with 
charges 21 and 22, an interaction potential between the ions is represent&d by Kj(T) = 

&Zje2ednr/T. In the linear screening approximation, the screening .parameter K is 
inversely proportional to the Debye length of background plasma. The potential energy 
of this system depends on five parameters, i.e., I’, Z1, Z2,z, and IC. Although not 
shown here, excess internal energy of the one-component Yukawa system calculated 
from the PHNC is as accurate as those for the OCP in the entire range of K(< 1) 
investigated. This was confirmed by comparing the PHNC calculations with Monte 
Carlo data recently presented by Farouki and Hamaguchi.12 In addition, we have found 
that X which satisfies the self-consistency criterion is very close to ufcc at a wide range 
of density around the freezing point. Typically, the difference between the two is within 
5% of the latter for the Yukawa system. This is puzzling in that the weakly screened 
Yukawa system freezes to the body-ceptered cubic lattice. 

Table 2 gives a comparison of the potential energy between Yukawa charges (Up”) 
calculated from the PHNC and the HNC for the two-component Yukawasystem. Also 
shown are those from the Yukawa milting rule (YMR) l3 based on the calculations 
performed on the one-component Yukawa systems using the PHNC and the HNC. Here 
VP is related to the linear response energy Uli,L.resp. by 
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Table 2. Potential energy between Yukawa 
charges V’P calculated from the PHNC and the 
HNC at various values of the screening parameter 
TV at I? = 20, ZL = l,& = 3, and x = 0.5. Also 
shown are the results from the Yukawa mixing 
rule. PHNC-YMR denotes that the data are 
obtained from the rule based on the solutions of. 
the PHNC for appropriate one-component 
systems. Similar definition applies to HNC-YMR. 

pupp 

PHNC PHNC-YMR HNC 
or4 688.223 

HNC-YMR 
688.234 688.695 688.687 

0.6 279.2484 279.2531 279.7071 279.6985 
0.8 140.2371 140.2366 140.6827 140.6750 
1.0 78.7460 78.7468 79.1764 79.1688 

Table 3. Comparison of the compressibility factor ,BP/p and the 
excess internal energy U” of an eqimolar H + Hz mixture: Exact .data, 
the PHNC, and the HMSA.1° The exact data with standard deviations 
inside parentheses are obtained in this work using lo6 to 2 . lo6 
configurations, while values without standard deviations are taken from 
Ref. 10. 

PIP we 
T(K) ~(-4~~) Exact PHNC HMSA Exact PHNC HMSA 
1,000 0.06 3.123 3.124 3.110 0.675 0.674 0.664 

0.2 16.996(6) 17.086 17.053 7.518(4) 7.540 7.538 
5,000 1.0 35.31 35.32 35.37 24.07 24.09 24.17 

10,000 0.2 3.212 3.212 3.214 1.309 1.308 1.307 
10 18.410(l) 18.429 18.443 12.536(2) 12.548 12.549 

c 



almost constant and positive (M 0.008) at all K, values considered in the table. It will 
be interesting to check this relation at a strong screening condition (K >> l), where the 
HNC is generally considered to be inaccurate. 

Table 3 shows that the PHNC can predict reliable results for a mixture interacting 
with potentials for H + Hz mixtures. We note that it gives slightly better results 
than the HMSA equation of Zerah and Hansen. [The potential parameters used in 
this work are the same as those in Ref. lo.] This is further supported by the heights 
of the first peak in the Hz-H2 radial distribution function. They are 1.798 * 0.005, 
1.802, 1.69, and 1.72, for the Monte Carlo data obtained in this work, the PHNC, and 
the one- and two-parameter HMSA, respectively. In the two-parameter calculation, 
the HMSA determines two parameters in their “switching functions” from conditions 
of thermodynamic consistency of two partial compressibilities similarly to the PHNC. 
[The switching functions are used to mix the soft mean spherical approximation (SMSA) 
at small T and the HNC closure at large T.] On the one hand, the one-parameter HMSA 
calculation employs a single switching function and determines its parameter from the 
consistency in the total compressibility calculated from the virial theorem and the 
compressibility equation. 
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