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Abstract 
The plasma polarization shift computed with a Local Density 

Functional model of an ion-sphere model is compared with results 
calculated using an optimum cenh-al field effective exchange 
potential. Indications are that the bulk of the shift is an artifact of 
the approximate exchange functional describing the interaction 
between bound and continuum orbitals in the LDA. 



In a recent publication1 it was shown how the Local Density 
Functional Approximation (LDA) treatment of exchange could lead to 
errors in transition energies in spectral regions accessible by opacity 
experiments. In order to more accurately model these transition 
arrays, the Optimum Potential Method (OPM) of Talman and 
Shadwick2 was advanced as a viable alternative for generating 
atomic data bases used in opacity calculations. In the OPM, the 
configuration average (hyper-Hartree-Fock)3 total energy 
Em = C I I . E ~ + ~ C I I ~ ( I I ~ - I ) E ~ ~ + & C  1 n.n.Eij 

1 i r j  J 
1 1  i 

2 

Eqn(4) 
is variationally extremized under the constraint that the 
wavefunctions arise from a single central potatial4: 

-V2Ya + V(i)Ya = E a Y a  
Eqn(6) 

This approach is similar to the Parametric Potential Method 
(PPM)S employed by the STA codes, but differs in that the form of 
the OPM central field potential is wholly unconstrained. The 
resulting effective exchange potential, defined by the relation 

V(r) = -r + ~dS- - -p (rO)  + V,(r) 22 " 2  
0 r> 
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Eqn(7iT) 
has three features that are qualitatively different than the exchange 
potential predicted by the LDA (see Figure 1). It exhibits the correct 
Coulomb tail for isolated ions, exhibits quantal oscillations (associated 
with density gradients), and has a zero slope at the nucleus. The 
OPM total energies are markedly improved over LDA results when 
compared to Harbxe-Fock values. 

Implementing the OPM requires only a small additional 
computational burden over the LDA, consisting of computing the 
irregular radial waves for the construction of Greens functions and 
solving an integral equation (approximated as a system of linear 
equations). In fact this additional burden may be less than the PPM, 
which must fmd a minimum in a multiparameter space of 
exponential fitting functions. 

aE 
ani 

The OPM also fulfills Janak's theorem7 
-- - Ei 

Eqd8) 
where &i denotes the wave equation eigenvalues. Janak's theorem 
allows a quick evaluation of the Taylor series approximation to the 
total energy, which in turn allows many transition energies 
(including orbital relaxation effects) to be calculated without doing a 
separate SCF calculation for each parent/daughter configuration.* 

The OPM has previously been employed only for isolated ion 
calculations. In this paper we shall present a preliminary 
investigation of the effect of continuum electrons, and specifically 
use the results to test predictions of the Plasma Polarization Shift 
computed with the LDA. 

e -ode1 in Ulufpna 
free electron Amroximation 

A common description of a plasma is that of an ensemble of 
non-interacting ion spheres, with the radius of each sphere 
determined by the condition that the potential vanishes on the 
surface, and with the mean free electron density determined by the 
ensemble average? A further approximation, albeit crude (but 
widely used due to the computational simplifications that ensue), is 
that the free electrons form a uniform charge density. In this 
modello, the LDA expression to the total energy is formally the same 
as for an isolated ion 
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but with p denoting the total charge density. 

E9n( 10) 
The first term in Eqn(9) denotes the spherical average expectation 
value of the kinetic energy (T"), the second term the electron 
nuclear attraction energy, the second term the dassical electron- 
electron repulsion energy, and the last the electron-electron 
exchange energyll. Note that counter terms were added and 
subtracted to the Hartree-Fock direct and exchange energy terms to 
define the LDA exchange energy functionall*. The LDA system of 
equations are obtained by requiring stationarity of the total energy 
with respect to variations in the wavefunction (subject to 
normalization) 

Eq-W) 
which are then solved in a self-consistent manner. 

with free electron density as computed by the LDA model are 
exemplified in Figure 2. The specific transition (a 2s => 3p excitation 
out of the 1 ~ 2 2 ~ 2 2 ~ 6 3 ~ 2 3 ~ 2  bound configuration of Iron) was 
chosen because of the large discrepancy in the isolated ion limit 
(831.43 eV) when compared either to Dirac-Hartree-Fockl3~(856.13 
ev) or OPM (855.80 eV) results. Note that one of the orbitals 
involved in the transition is a highly localized inner core electron, 
which should be relatively non-influenced by the free electron 
environment. 

In order to analyze the LDA polarization shift results, we 
decompose the expression for the total energy into three components 
E = E( B) + E(F) + E( B ~ F )  

according to whether the contribution to the energy terms is solely 
from bound electrons ("B"), solely from free electrons ("F"), and a 

The linearly dependent "plasma shift" of transition energies 

Eqn( 12) 



component where the bound electrons interact with the free charge 
( VnF"). Explicitly we define 

Eqn( 13) 
E(F) = K(F) 

E q d  15) 
This decomposition is unambiguous for the kinetic and 

electron-nuclea-r energy terms (being one body operators) as well as 
for the classical coulomb repulsion term. However the exchange 
energy functional, being non-linear in charge density, was arbitrarily 
split in a judicious manner. The motivation for the particular choice 
is two-fold. First, the total energy for the bound charge sector should 
reduce to the expression for the isolated ion limit. Second, the 
functional form for the exchange energy of the free charge density 
should be an excellent approximation, for the functional form was 
derived to be exact in the limit of a uniform free electron gas s y s t a  

In a sense the major approximation made for plasma systems 
is in the remaining term for the exchange energy functional 
involving bound with free charge. In the LDA we assume it is 

LDA LDA = (P) - (PF) - Exc(pB) 
Eqn( 16) 

The numerical values for each component of each sector is provided 
in Tables 1 and 2. 

we have exactly 
Note that with the assumption of uniform free charge density 

~ Q F  +-+EE,(~) 34; Q F  S ~ Z R  4 3  pF 5R E(F) = K(F)- Zx 
Eqn(17) 

where Qf is the total free charge in the ion sphere. Obviously the 
free charge sector cancels in computing transition energies (for 



excitations of a given ionization stage) and so is irrelevant to the 
plasma shift. 

The LDA total energy arising from the bound charge sector can 
now be directly compared with OPM evaluations of the total energy 
under the following trivial modification. The effect of continuum 
electrons are now included in the OPM self-consistent system of 
equations by adding to the nuclear potential an external potential of 
the form 

6 

p R  4 3  p ,=Z*+l  

Eqns(l8) 
due to the uniform free charge distribution. 

correspondence between the LDA bound charge sector energy and 
the modified OPM energy. First, note that the OPM cell radius is 
determined by Z*+1 in order to cancel the coulomb tail, which is due 
to a proper treatment of exchange. It should be remembered that in 
the OPM the potential V(r) is that felt by the 'N'-th indistinguishable 
bound electron as it is removed to infinity. In contrast, the LDA cell 
radius is determined by charge neutrality of the ion sphere as felt by 
an external test charge. The disparities of the two approaches should 
manifest themselves more strongly for weakly ionized systems. 

Second, the LDA bound energy sector is evaluated with 
wavefunctions formed in a self-consistent potential that treated 
exchange effects of the continuum electrons with the bound. In the 
OPM only exchange &ects amongst bound electrons were 
incorporated into the potential generating the wavefunctions. 
However this turns out not to be a problem, as the bound sector 
energy value is determined by regions of the wavefunction that are 
insensitive to the omission of Exc(BnF) in determining the potential. 
This was verified by re-cakulating the LDA self-consistent field with 
those terms turned off. 

Despite these reservations a comparison between the LDA 
bound charge sector energy and the modified OPM energy should 
sti l l  be considered meaningful. This is because both are 
approximations to the same underlying physics, namely the 
contribution to the Hartree-Fock energy arising solely from bound 
wavefunctions in the presence of continuum electrons. 

Two objections could be raised at this point to the 
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Figures 3(a) and 3(b) present such a comparison for the initial 
and final configurations in the transition array of Figure 2. The 
striking feAture (aside from the discrepancy in the isolated ion limit 
due to the inadequate W A  treatment of exchange) is that the OPM 
results are density independent, in contrast to the LDA. This is me 
even though plasma effects are significant, as evinced by the 
perturbation of the eigenvalues with density (see Figure 4) , or as 
seen from the individual components (kinetic, nuclear attraction, 
Coulomb, and exchange) of the bound energy sector (see Figure 5) , 
which implies a perturbation on the bound charge density. 

One intriguing aspect of Figure 5 is that the changes in the 
kinetic plus direct Coulomb energies cancel the changes in electron- 
nuclear energies with density. This suggests a possible underlying 
scaling symmetry to the OPM analogous to the derivation of the virial 
theorem for non-relativistic systems. The density independence of 
the OPM bound sector exchange energy is a second surprising result, 
A theoretical understanding of both features is currently open to 
investigation. 

In spite of the density dependence of the LDA bound charge 
sector energy for the initial and final configurations, the transition 
energy arising from this sector remains relatively independent of 
density (See Figure 6). The plasma shift to the transition energy 
must therefore be ascribed to the BnF energy sector, and in that 
sector the direct Coulomb repulsion is approximately constant as 

E9n( 19) 
holds true to within a fraction of a percent for all cases presented 
here. Therefore the entire origin of the plasma shift can be 
attributed to the functional describing the exchange energy .between 
bound and free charge. This in itself is a surprising result,. 
considering the relatively small value this component makes to the 
total energy calculation. ~ 

summant 
Of course rigorous conclusions can not be drawn from the 

numerical comparisons presented here, but nevertheless they are 
supportive of certain hypothesis. 

to the functional form approximating the exchange energy between 
bound electrons and free charge. This impacts primarily an 

The first is that in the LDA, the plasma polarization shift is due 
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operational definition of a self-consistent field formalism, and has 
limited physical insight, because after all the distinction between 
direct Coulomb and Exchange energies in the LDA is somewhat 
artificial, 

Second, because the LDA transition energy differs from the 
OPM in the isolated ion limit (the latter being close to Harlree-Fock), 
and the LDA density dependence of the bound energy differs from 
the OPM, there is no reason to believe the density dependence of the 
LDA BnF exchange energy functional, Furthermore, based on the 
surprising density independence of the OPM bound charge exchange, 
it might be expected that an accurate model would exhibit no density 
dependence of the BnF exchange, and hence no plasma polarization 
shift. Certainly the exchange energy is not a functional of the total 
charge density, which is directly altered by continuum electrons, but 
of the shape of the wavefunctions which underlay the construction of 
a charge density. The latter are much more insensitive to 
perturbation, and would have to be preferentially changed between 
the initial and final configurations of a transition to produce a plasma 
shift. 
Work at LLNL was performed under the auspices of the U.S. Department of 
Energy, Contract No. W-7405-Eng-48. 
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Figure 2: LDA transition energies for the 1 ~ 2 2 ~ 2 2 ~ 6 3 ~ 2 3 ~ 2  to 
1 ~ 2 2 ~ 1 2 ~ 6 3 ~ 2 3 ~ 3  excitation of Iron, showing the linear in density 
plasma shift. The free electron number density range corresponds to 
aproximately 0.1 to normal solid density in Iron. 

Figure 3: LDA and OPM bound charge sector total energies for Iron as 
a function of free electron density. On the left is the initial 
1 ~ 2 2 ~ 2 2 ~ 6 3 ~ 2 3 ~ 2  codiguration, at right the fmal 1 ~ 2 2 ~ 1 2 ~ 6 3 ~ 2 3 ~ 3  
codiguration. 

Figure 4: OPM orbital eigenvalues versus free electron density. The 
eigenvalues are parametrized in the form of an effective Z using 
hydrogenic scaling. 

Figure 5: OPM bound charge sector energies by component (i.e. 
electron-nuclear attraction, exchange, direct Coulomb repulsion, and 
kinetic energy contributions) for the initial configuration. 

Figure 6: The LDA transition energy as a function of density, showing 
that portion of the plasma shift arising from contributions arising 
solely from bound charge. 
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Figure 1: The central field effective exchange potential computed by 
the OPM method as compared with the LDA result (top). The 
quantum oscillations of the OPM are correlated with extrema of the 
dimensionless density gradient parameter (bottom). 



10 

4For simplicity of presentation we have written the non-relativistic / 
Schroedinger equation limit. The relativistic generalization is 
straightworward and was employed in calculating the results of t h i s  paper. 

5M. Klapisch, Comput.Phys.Commun.2, p.269 ( 1971); M.Klapisch, J.Schwob, 
B-Fraenkel, and J.Oreg, J.0pt.Soc.Am.a p.148 (1977) 

6A. Bar-Shalom et al, Phys.Rev.a p.3 183 (1989); "Calculation of Emision and 
Absorption Spectra of LTE Plasm by the STA method", A. Bar-Shalom, J.0reg and 
W. Goldstein, in 'Radiative Properties of Hot Dense Matter', ed. W. Golstein, C. 
Hooper, J. Gautier, J. SeeIy, and Rke ,  World Scientific (1990) 

75. Janak, Phys.Rev.BL8, p.7165 (1978) 

8D. Libeman, J. Albritton, "Rapid Calculations of Properties of Plasma Atoms 
and Ions", UCRL-50021-84 (Lawrence Livermore National Laboratory Laser 
Program Annual Report 84) pp-3-66, (1984) 

91). Libeman, Phys.Rev. &211, p.4981 (1979), WJFERNO", Los Alamos Manual IA- 
10309-M (1985) 

l0D. Libeman, D.Cromer, J. Waber, Comput. Phys.Commun.2 p.107 (1971) 

lFor notational simplicity we write the basic Kohn-Sham form for the 
exchange energy functional. For actual calcudtions the Gunnarsson- 
Lundqvist form of the exchange-correlational energy functional was 
employed. For a more detailed description of the functional see 
O.Gunnarsson, b.Lundqvist, P h y s . R e v . ~  p.4274 ( 1976). 
To test the sensity of the results to the specific choice of correlational 
functional, calculations were rerun with the bare Kohn-Sham exchange 
functional. No qualitative changes in the results presented here were 
obtained. 

121. Lindgren, k Rosen, Case Studies in Atomic Physics $, p.93 (1974) 

13 K. Dayall et al, Comput.Phys.Commun.s, p.425 (1989) 



c 

9 
0 

.- 
0 

0 
9 



Figure 2 

833 

832 

83 1 

830 

829 

828 

827 

826 

6s< Max Bound Orbital 

5P 

4P 

0.1 PO PO 
I 1 I I 

Oe+O 2e+23 4e+23 6e+23 8e+23 

Free Electron Number Density (#/cc) 
1 e+24 



. .  

f) 

E a 
ii 
ul 

c 

c 
I 



d 
(u 

m 
N 

N 
N 

c 
(u 

0 cu a 
c 

tD 
e 

(u 
c 

0 
c 



n 



a 

a c 
0 

E? 

'0 
C 
0 
a 

4 

1 
m N 
0 m 
00 00 



KE 
E-NUC 
Direct 
Exc 
Total 

Direct * 
Exc 
Direct 
Exc 
Total 
Ceigs 
rcell 

- 
E-NUC * 

- 
- 
- 

E-NUC 
Direct 

Table 1 
LDA Energies (in Hartrees) for the configuration ls22s22p63s23p2 of Iron 

as a function of continuum electron density (grouped by BB,FF, BnF charge sectors). 
0 le+22 5e+22 le+23 2e+23 5e+23 le+24 

+1226.165 7 +12 26.5859 +1227.3600 +1228.0066 +1229.0044 +123 1.0927 +1233.492 7 

+3 16.0669 +3 16.0593 316,0273 +315.9866 +315.9055 +315.6591 +315.2356 
-2707.8359 -2707.8052 -2707.6778 -2707.5 178 -2707,1923 -2706.1965 -2704.5 114 

- 43.1948 - 43.1941 -4'3.19 11 - 43.1874 -43.1 7 99 -43.1569 -43.1 176 
-1208.7980 -1208.3552 -1207.4816 -1206.7120 -1205.4623 -1202.6016 -1198.9007 

-37.5692 -64.23 98 -80.9409 -101.9786 -138.4001 -174.3796 

-1.3820 -2.2405 -2.7577 -3.3 9534 -4.475 1 -5.5216 

-0.01 14 -0.047 1 -0.0859 -0,1546 -0.3 290 -0.5 73 7 
-1208.7980 -1220.1610 -1227.6029 -1232.0566 -1237.4266 -1246.1745 -1254.1787 
- 906.7138 - 886.5013 -872.1956 - 863.2785 -852.0882 -832.9082 -814.2681 

+6.936 1 +11.8596 +14.9440 +18.8268 +25.5504 +3 2.192: 

20.2208 34.5466 43.4954 54.7356 74.0809 93.0045 

00 12,457 7,2852 5,7820 4.5 892 3,3815 2,6838 

OPM Energies (in Hartrees) for the configuration ls22s22p63s23p2 of Iron 
as a function of continuum electron density (BB charge sector only). 

+ 1229.0406 + 1229.02 3 6 +1228.8631 +1228.1417 +1227.2183 

+316.0669 +316.2325 +316.1618 315.8422 +315.4286 

l o  le+22 le+23 5 ,e+2 3 le+24 

-2710.8347 -2710.8115 -2710.5862 -2709.5705 -2708.2621 

-44.93 18 -44.93 1 2  -44.925 1 -44.897 9 -44.86 2 7 
-12 10.4866 -12 10.4666 -12 10.4865 -12 10.4845 -12 10,4780 
-9 16.93 8 7 -8 95.3 98 2 -8 70.9289 -83 9.067 2 -825.2454 

00 12.7943 5.9386 3.4729 2.7565 



Table 2 
LDA Energies (in Hartrees) for the configurationls~2s~2p63s~3p~ of Iron 

as a function of continuum electron density (grouped by BB,FF, BnF charge sectors). 
0 le+22 5e+22 le+23 2e+23 5e+23 le+24 

KE +1194.6020 +1195.0238 +1195.7859 +1196.4338 +1197.3998 +1199.4264 +1201.7209 

Direct +298.3957 +298.3872 298.3524 +298.3082 +298.2195 +297.9509 +297.4896 

c 

E-NUC -2629.8588 -2629.8270 -2629.6875 -2629.5 116 -2629.1625 -2628.0882 -2626.2703 

Exc - 41.3826 - 441.3819 -4 1.3 7 85 - 41.3743 -4 1.366 1 -4 1.3405 -4 1.2 969 
Total -11178.2437 -1177.7975 -1176.9277 -1176.1439 -1174.9093 -1172.0514 -1168.3567 
E-NUC * -3 7.5 692 -64.2398 -80.9409 -101,9786 -138,4001 -174,3796 

Exc -1.3820 -2.2405 -2.7577 -3.3953 -4.475 1 -5.5216 

-0.3492 -0.6 113 Exc -0.0 11 8 -0.0494 -0.0904 -0.1633 
Total - 117 8.243 7 -1 189.605 2 -1 197.05 69 -1 20 1.505 7 -1 206.9050 -1 2 15.70 1 1 -1 2 2 3.7 860 
Ceigs - 893,2357 - 873.0283 -858.7269 - 849.8133 -838.6485 -819.5266 -800.9845 

+3 2,1923 Direct * +6.9361 + 11.8596 +14.9440 +18.8268 +25.5 504 

Direct 20.2 196 34,5410 43.4842 54.7 13 1 74,0245 92.8908 

eo 12.457 7.2852 5.7820 4.5 892 3.3815 2.6838 rcell 
Table 2a 

OPM Energies (in Hartrees) for the configuration 1 ~ 2 2 ~ 1 2 ~ 6 3 ~ 2 3 ~ 3  of Iron 
as a function of continuum electron density (BB charge sector only). 

0 le+22 le+23 le+24 
KE +1196.5747 +1196.555 8 +1196.3747 + 1 194.5 2 1' 

Direct 298.3847 298.3764 298.2984 297.49 18 
E-NUC -263 1.7945 -263 1.7680 -263 1.5 155 -2628.9151 

Exc -42.2 3 8 2 -4 2.2 3 74 -42.2 3 08 -42.16 18 
Total - 11 7 9.073 3 -1 179.073 3 -1179.0732 - 1 17 9.063 7 
Ceigs -903.2736 -88 1.7574 -857.301 1 -808.1 192 
rcell 00 12.7943 2 5.93 86 2.7565 


