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Abstract

We review the dervation of moment equations which include the effects of
space charge and dispersion in bends first presented in 1ef [1] These equa-
tions generalize the familiar envelope equations to wciude the dispersive effects
of bends We review the application of these equations to the calculation of the
change 1n emittance resulting fiom a sharp transition from a straight section to a
bend section, using an energy conservation constrant Comparisons of detailed
2D and 3D simulations of intense beams in rings using the WARP code (refs
[2,3]) are made with results obtained from the moment equations We also com-
pare the analysis carried out in ref [1], to more recent analyses, refs [4,5] We
further examine self-consistent distributions of beams in bends and discuss the
relevance of these distributions to the moment equation formulation

Introduction

There are many apphcations in which beams having non-neghgible space
charge forces are transported through bends In heavy ion fusion (HIF), recir-
culating induction accelerators (recirculators), with large tune depressions, and
with rapid acceleration through resonances, are being considered to ignite iner-
tial confinement fusion targets Even in linac approaches to HIF, designs of the
final transport to the target usually include transport through 180 degrees or
more of bend section In some Acclerator Production of Tritium designs, a final
bent transport section is being considered as part of an upgrade option For the
application of studying lugh energy density in matter, a beam pulse 1n a stor-
age ring will be longitudinally compiessed, reaching tune shitts for short periods
much larger than allowed by the Laslett-tune shuft hinut  Even in traditional
synchrotrons and storage rings obeving the Laslett linut, 1t 1s useful to have a
framework 1n which space chaige and dispersion are both included

In the HIF apphication, the normalized emittance of the beam must remain
small to be able to focus the beam on a small spot The growth of the normalized
emittance of an accelerated beam is also of interest for many other applications in
which high brightness 1s required The concept of transveise energy conservation
was used in ref [1] to study emittance growth in bends Tlus built upon earler
studies which have calculated changes in emittance also using a transverse energy
constiaint For example, emuttance growth associated with non-uniform space-
charge distributions was examined in refs [8]- [10] Emittance growth due to
mitial beam displacements and mismatches with and without space-charge and
momentum spread has been studied in, refs [11-13,17}, and references therein

In the woik reviewed here the beams piropagate in continuous or alternating
gradient focusing channel, with phase advances that are depressed due to space
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chaige In addition, bends are present, which provide a displacement in the
center of oscillation for ions which are off of the design momentum Moment
equations are employed to estimate emittance growth arising from the transition
from straight sections to bends (See also ref [14] for an estimate of emittance
growth due to the transitions in the absence of space charge.) On a transition from
a bend to a straight section, or from a straight section to a bend, if the transition
is sufficiently sharp, the beam becomes mismatched. We assume that small non-
linear forces act to phase mix particles, and we find the asymptotic emittance of
such a beam Further, if we assume that the process of phase mixing is completed
before the beam goes through another straight/bend transition, we may calculate
the emittance growth through a “racetrack” configuration consisting of two 180°
bends and two stiaight sections, even without a detailed knowledge of the rate
at which the phase mixing occurs

Model Equations of Motion

The force equation in the radial (bend) direction using cylindrical coordinates,
(p,6,y) 15 \
a [
P~ ; = Fyend — v3k305(p — po) + v5kI (0~ < p >) (1)

Here, p is the radial coordinate of a particle in a bend, ¢ is the azgimuthal coor-
dinate, y is the vertical coordinate and v = pd is the azimuthal velocity, and 7,
is a defocusing constant of the assumed linear space charge force in the radial
direction (defined below) For simplicity, non-relativistic kinematics are assumed
Also, po 15 the nominal radius of a particle with the azimuthal component of the
design momentum p; and design velocity v = Be.

The component of the bending force Fy..s In the radial direction is given by

Frong = ( ge ) {vgBy (magnfatic bends) -

Am, E, (electric bends)

Hetre ¢ 15 the ion charge state (+1 for protons), ¢ is the proton charge in Coulombs,
A 1s the ion mass in amu, m, is the atomic mass umt in kg B, is the vertical
bending field (for ma.gnetlc bends) or E, is the radial electric field (for electiic
bends)

We let = = p — py and define the inciement in path length along the design
o1bit ds = pedé The equations of motion aze then given by,

_ ahnl(a"; y)

2 = —kf;g,;(ﬁﬂ - -'Um) + kfx(d, - =) B (3)
Ohai(x,
' = Kl + k(g ) - LotlEnt) @
)
k2, = o B2, = is (5)
= = 2aa? 1 (AP A7) v Ay 1 (AaPAy?)T7)

Here, z 15 the in-plane deviation from the design orbit and y is the vertical co-
ordinate 1n a particular transverse slice of the beam The beam travels in the
+s direction, and prime (') indicates derivative with respect to s, kg, and kg,
can Iepresent either alternating gradient focusing (if they are s dependent) or
they can represent the focusing effects in the smooth approximation, in which
case, kgox = kpoy = o0/2L where oy is the undepressed phase advance, and L
is the half-lattice period. Dispersion effects enter through the term z,,, where



2m =2 (1/k30,p0)(6p/po) for magnetic focusing and zn, =2 (2/kjo,p0)(6p/po) for elec-
tric focusing The quantity ép/pe is the fiactional difference between the longitu-
dinal momentum of a particle and the design momentum py, and K =2¢1/(8°AlL,)
18 the perveance Here I, = 4megm,c®/e is the characteristic proton current (=31
MA) Fimnally, for generality, we have included an unspecified external non-linear
potential h,; that is a function of z,y, and possibly s

We adopt the notation of ref [1], throughout this paper in which the quantity
A is reserved for the two argument operator in which centroid quantities are
subtiacted off Aab=<ab> —<a><b> (eg Ax?=<2?> - <z>?%), where <>
mdicates average over all particles m a slice, zc =<z >, and y. S<y >

These equations are 1dentical to the equations found in ref. [1], except here
we 1o longer assume kgoz, ksoy, and po to be independent of s, no1 do we require
kpoz = kgoy In deriving the moment equations in ref [1], no use was made of the
assumed constancy or equality of ks, and kg, nor the constancy of po, so the
generalization simply amounts to a relabeling of the focusing constants

Egs (3) and (4) iepresent, in an approximate way, the effects of linear
focusing, linear space charge defocusing, dispersion in a bend, and external non-
linearities in the focusing field. The physical approximations that have been
made include the following. (1) Eqs (3) and (4) have been linearized in the small
quantities kgez, ksoy, and ép/p; (The non-linear term h,,; has also been included in
some of the derivations) (2) The non-linearity is small ([h,| << [k3o,.2%, (k30,471
(Terms which are non-linear in 8p/po, such as kgozép/po, have been neglected.) (3)
Space chaige forces depend only on lowest order moments (We have used the KV
formula for the electrostatic potential, which is equivalent to assuming uniform
density elliptical beam Centroid position and semi-major axes are, however,
allowed to vary with s). (4) The beam is coasting" (po, 8, and ép are constants)
(5) The beam is non-relativistic {8 << 1)

Let f(z,2',y, y’,g-%,s) = dN/da;da:’dydy’dg% where dN is the number of particles

within incremental phase volume dzds’dydy’ d22 For the model equations (3)-(5)
the Vlasov equation becomes,

Shar 8f ,0f
5 5wV By

o,

Ohnyy Of
Os ) 0

=) i =
(6)

e
2’ 8—;{;—%‘(-k%or(.’ﬂ—l}m)'*"kfx(lt—fﬂc)— +(_k;230yy+kfy(y_yc)

The average of a vamable £ over the continuous distribution 1s given by
<&>(s) = [da fda [dy [dy' fdE¢f(z, 2’y ¢, E,8)/N,
where
N= fdxfdx’fdyfdy’fd%f(x,z’,y,y’,ﬁ%,s)
Following 1ef [7], we take all second order moments of the Vlasov eq (6),
yielding eight (first-order with respect to s) coupled moment equations
LAr? = 2Azx/

LA = (~2h%, + 2h2,)Axa’ + 2Uho Ax'zy — 20(z' Fnt)
LAz’ = Ap? — k?}ozA:CQ B2 Az + kéuzA-’Eﬂim _ A(m%)

%Ayz = 2Ayy

LAyt = (*Qkéoy +2k2 ) Ayy — zA(y'Qg_;L)

%Azxm = Az'zy,

L A2 e, = ki Az, + k] Avzm + k5o, Azl — NE) (7



Similarly, the first order moments of eq (6) yield the following

Ao =2

Lol = bl me + kfgy < 2m > — < Fat >

gyc =Y.

e = —kjoyye— < Zhnk > (8)

Note that if b, =0, eq (7) forms a closed sets of 8 equations, and eq (8) forms
two sets of two closed equations If hy,; # 0, eqs (7) and (8) form the beginning
of an infinite hierarchy of moment eq11at1ons

Transverse Energy Conservation

For the case of alternating gradient focusing, and when the bends occupy only
a fraction of the lattice, the focusing constants k3., k%, and the bend radius of

curvature py are dependent on s This s-dependence of the external forces implies
that there will not be a constant energy-like quantity However, as in ref [1], if
kposskpay, and py are constants representing average quantities, we may define a
transverse energy H:

2H = k3o, Az? + ko, Ay* + Az + Ay? — 2% Azzy — K In((A2?)? + (Ay7)!/2)
+2 < hat > +hfo,? + ko, vl + 28 +ud (9)
Use of eqs (7) and (8) shows that

d d
'&*;H = 'a“;'( hn[ > (10)

Thus if h,; is not a function of s, H is an invariant

Emittance Growth
We define sepatate z and y emittances

2 = 16(Ax*A2" — Azz'?), € = 16(AAY? — Ayy?) (11}

Using eqs (7), the following emittance evolution equations can be derived

hr
i = 3G (A2? A2’z — Azd’Azzy,) + 32(Az ahm)A:ca:' — Az’Ax 663:! )) (12)
C
d b ,Gh,
EE = 32(A(y I)f—\yy —~ Ayt ALY yl ) {13)

Thus the emittance would be constant if non-linearities were not present (A, = 0)
and the momentum spiead were absent (z,, = 0 for all paiticles ) Eqs (12) and
(13) are valid for both continuous and alternating gradient focusing



Equilibrium Beam
In the continuous focusing approximation, the left-hand-sides of eqs (7) and
(8) can be set to zero to obtain the following equilibrium (constant moment)
conditions
Az = (kGy, — ki )Az? — kEUxAzx,,, + A(a;%’i)
Ay? = (kpoy — k3,)09° + Ay %;t)
k2, Az ~Alr,, Tpit)

Arz,, = u
kﬁu,r"' k?::

. 1 al
To =< Em > g < R
Dz

. 1 dhyy
Ye = _;.,Tg < 8y >
Azz' = Ayy = Az'zy, = A(m’%‘-) = A(yfagy )=0
o=y =0 (1)

Assuming that k. = z, = y. = 0 the transverse energy (9) in equilibtium (# = H.,)
reduces to

3k% oAz,
Dy = (o~ KL+ (0, ~ H)A5" — U — Kn(807) 12+ (A7) (19
Oz 5T

Note that for a given H,,, the ratio of Az? to Ay? is still unspecified A further
assumption is required to specify the final state of the beam. It is often reasonable
to assume that transverse energy equipartition results in a beam in which the two
transverse temperatures are equal, i.e. Az = Ay?. {Note that we have implicitly
assumed that the timescale for complete equipartition [Az? = Ay’? = A(6p/po)?] is
much larger than timescales of interest ) The condition that Az = Ay® can be
expressed as a relation between Ay* and Az

(Efox — ki) kfo
Ayt = —EZ T Ag? LA&:; (16)
(k{ﬂmy - kgy) (k{%(): - kszz:)
When kpor = kpoy = ko and Az2 << Az? this result reduces to-
Ayl = AT — ZEEDA:{:?R/ (kz(kz + 'l"‘{giu)) , (17}

where &% = k3, — K/(4Az7)
Rings

Suppose a beam is in equilibrium 1n a straight section, and then enters a
continuous bend (ie amng) If the lattice paiameters (such as the bend 1adius
of curvature) abruptly change to new values, the beam becomes mismatched
to the bend Physically, patticles that are not on the design momentum for
the bend initially become spatially separated, creating non-linear space-chaige
forces, allowing phase muxing of the coherent mismatch oscillations until a new
equilibiium 1s reached For concreteness, we consider a lattice i which kg, =
kgo, = kpo, and also assume that kg is the same both mn the straight section
and 1n the bend section Thus, in this example, we assume the contribution to
focusing from the bends is included in kg We assume that the imitial beam
(subscript 0) is matched to the straight section Thus Ayl = Azj, and Azf = Ayy
= k2A22, and all other moments are equal to zero The initial transverse energy
satisfies 2Hp = (2k%, + 2k%) Az} — K n[2(Az?)/?] To calculate the final equlibrium
beamn parameters, we set the final transverse energy equal to the initial transverse



energy, and sunultaneously solve this constramt with the equalized tempeiature
constramnt, eq (16) Thus, there are two equations 11 two unknowns (Az? and
Ay?), yielding the final equilibrium values of Az? and Ay?® in the bend From the
equilibrium values (eq 14), all other second order moments may be calculated,
including the emittance

In ref [3], comparisons of the results of the continuous focusing theory were
made to 210 WARP PIC simulations of the transition from straight to bend for
parameters of a small recirculator experiment being built at Lawrence Livermore
National Laboratory The relevant parameters of the simulation were the ion
species was singly charged Potassiun, {(mass 39), at an energy of 80 kV, and a
current of 2 mA, leading to a perveance K of 354 x 10-* The average focusing
constants are kgo, = kpo, = 189 m~!, corresponding to a phase advance of 78
degrees and half-lattice period L = 036 m The average bend radius of curvatuie
15 pp = 229 m. The noimalized emittances e, = v8e; and ¢,y = vf¢, (where v 15
the Lotentz factor of the beam) were both set to 003 mm-mrad at injection into
the 1ing. 6p/porms = 7 2 x 107* was assumed
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Figure 1. Comparison of WARP simulations with model results (from ref [3])
z and y emittance evolution 1 a 1ing peometry, after mitiahzation 1n a straight
section, as calculated by WARP, by direct integration of the moment equations
(Moment Theory, no damping) and the asymptotic value using energy conset va-
tion

In Figure 1, (from 1ef [3]), we plot the WARP simulations of the normalized
» and y emuttances over 3 laps of the small rearculator. In addition, we plot
the 1mtial evolution of the emittance as predicted by direct ntegration of the
moment equations, (indicated as Moment Theory (no damping)) 1n the figure
The simulations include all of the details of alternating gradient lattice including,
fringe fields and image effects, as well as the non-linear space charge fields The



theory calculations use only the uniform focusing and bendmmg approximation
Also, because the moment equations do not include non-linearities and the as-
sociated non-linear phase mixing, the amplitude of the z-emittance oscillations
remain constant and the y-emittance does not grow In the simulations, small
non-linearities cause the oscillations to damp and the y-emmttance to gradually
grow closer to the z-emiftance Although direct integration of the moment equa-
tions does not capture the damping of the oscillations in the z-emittance or the
growth in the y-emittance, the moment equations accurately predict the initial
amplitude and frequency of the oscillations Also shown on the figure are the
final equilibrium results (indicated as x-limit theory, and y-limit theory) calcu-
lated using the prescription indicated above, which 1s based on using the moment
equations to calculate the transverse energy and assuming equality of the final
velocity spreads in the z and y directions As can be seen, the theory closely
predicts the asymptotic values of the z and y emittances as found by the fully 3D
simulations, and also captures the simulation result that the y-emittance equi-
librates to a value less than the z-emittance Simulations of the University of
Maryland Ring (ref [15]) shows a similar increase in emittance with an ultimate
saturation.

0‘25 T 1] T T
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Figure 2. Companson of WARP smulations with model results (fiom 1ef {3])
r and y eumttance after the 90 degree bend and asymptotic results as a function of
the fractional momentum spread (1in percentage), after imtialization n a straight
section, as caladated by WARP, by direct integiation of the moment equations
g:u- and y- theory 90° bend) and the asymptotic value using energy conservation
z- and y- hmat theory)

In Figure 2, (from ref [3]), we plot the emittance at the end of ninety degices
of bend and also the asymptotic values of the emittance, all as a function of

(A((Sp/pg)z)]/ * = §p/porms Tlus quantity 1s lax gely unknown in the experiment, and
1t could range anywhere from the value expected from accelerative cooling (see e g
ref {16]) of the longitudinal momentum spread induced by the ~0 1 eV ion souice,
which results in a spread of oider 10-%, or if the fractional error in the injector
diode voltage errors 1s as large as 0 005 (at high enough frequency), the 1esulting
mduced fractional momentum spread, ép/porms would be as large as 25 x 1073
A third possible source of momentum spread comes from instabilities associated



with an amisotropic velocity distribution (ref [22]) If this instabihty heats the
longitudinal component until it 1s of the same temperature as the transverse, the
resulting moment spread would be 6p/porms = € /4(Az*) /2 2 72x107% (For a more
complete discussion ¢f 1ef [3]) As can be seen from the plot, ditect integration
of the moment equations closely captures the simulation value of the emittance
after 90 degrees (during the initial emittance oscillation) and closely matches the
mean rise m emittance and difference between the z and y emittances

When kpo. = kgoy, and when the change in emittance is much less than the
origmal emittance, one may analytically estimate the change in emittance squared
in an abrupt transition from straight to bend

ki o(2k30 + k2)
k23, + k2)

K6

e AzZAn? 1
R, + koA (19

2 2 e
EI—"EIU—-I ms

AziAz] - =16
Egs {18) are valid only for small changes in emittance, and so are noi applicable
to the parameters of figure 1

Racetracks

In a recirculator that is composed of two 180° bends connected by two straight
sections in the shape of a racetrack, if phase mixing is rapid enough the equilib-
rium can be reached before each transition Transverse energy is conserved as a
beam enters a bend from a straight, but since the beam acquires a finite Azz,, as
it finds equilibrium in the bend, the transverse energy will be discontinuous enter-
ing a straight from a bend, (where py, becomes infinite, and hence Azz,, abruptly
changes to zero )} The quantities Az?, Az, Ay?, Ay? are, of course, continuous at
all transitions A new value of If is calculated which is again constant through-
out the straight section At the beginning of the bend the process repeats In
Fig (3), we have applied this formulation to a small scale racetrack recirculator,
which 1s not undergoing acceleration This prescription for calculation of the
emittance was carried out numerically, and compared with the 3-D version of the
WARP code As can be seen, the emittance growth is tracked closely although
the higher fiequency oscillatory behavior associated with lattice and mismatch
oscillations are, of course, not seen (For small values of A(8p/po)?, or large values
of o/ay the prescription overestimates the emittance growth, since the assumption
of complete phase mixing between transitions 1s not achieved )
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p = 36m, Am,8%c2/2 = 10MeV, (A((ﬁp/pg)E)I'r2 = 00079 The length of each straight
section was 72 m

Comparison to Other Recent Work

Recently, m ref [4, 18], envelope equations which include the same physics
(ie dispersion linear in ép/po, and space charge with an assumed elliptical sym-
metry) as the moment equations (eqs. 7,8) were derived Venturini and Reiser
found @ generalized emittance ¢z, which, when expressed in terms of the notation
of this paper can be written as

3 = (A;}:ﬁmsz - Arz;)(AmfnL\r'z -~ Ax'z?) — (A2l Azz’ — Axa;mAw’zm)2 (19)

By taking the derivative of €2, and using eqs (7), 1t 18 straightforward to show
that ¢ is constant. By using the constancy of e, and ¢, two of the eight
first order moment equations could be eliminated, leaving six first order moment
equations, equivalent to the three second order equa.tmns of ref [4] Thus the
envelope equations in ref [4] contain the same physical content as the previously
derived (ref. [1]) moment equations. In ref. [4], it is suggested that it would be
possible to eliminate much of the growth in emittance by matching the envelope
and the dispersion function D(s) = (Axép/po)/A(6p/po)? (as defined in ref. [4]). This
is equivalent to finding the matched periodic solution of the moment equations
in the ring, and then constructing the section which injects the beam into the
ring such that the values of the moments match those of the matched periodic
solution within the ring In order to prevent mismatch oscillations of the centroid,
the centroid equations (8) must also be matched on the transition from straight
to bend Another method (ref [1]3 of preventing emttance growth is by slowly
varying the radius of curvature, allowing an adiabatic transition into the bend.

Also, recently in ref [5], vertical and horizontal dispersion functions are de-
rived The horizontal dispersion function derived by Lee is identical to that of
ref [4], except that horizontal/vertical coupling is allowed such as can occur if
there are quadrupole rotation errors (see e g ref [19]) The vertical dispersion
function is identical to that of a straight lattice, but again with the inclusion of
horizontal /vertical coupling The envelope equatlons derived are not consistent
with the moment eqs (7,8) or the envelope equations of ref [4], however, due to
addstional approximations

Self-consisteni distributions

Recently, 1n ref [20], a self-consistent KV solution to the Vlassov-Poisson
system 1n a bend was obtained. The solutions in the non-relativistic case are of
the form

f(z,2' 0,4, 8p/po) = Fo(H ) exp[—(6p/po)’ /8]] (20)

Hete 28 = 2 +y" + kv’ +k5oy" +2q0/mvd—2(z/po)bp/po In ref. [20], generalizations
to the KV distribution were investigated of the form f, (H,) = fo6(H L — He) In ref
[21] thermal equilibrium distributions of the form fi(H,) = foexp(—Hi/kT) have
been examined. Figure 4 illustrates the two distributions for the parameters
of the University of Maiyland electron 1ing experiment (ref. [20]) (k3, = 17437
m~? current = 105 mA, energy = 10 keV, po = 182 m, with k/kgo = 033, and
ép/pﬂrm.s = 01 )

The moment eqs require averages over zE, and yE, where E. and E, are
the electric field components due to space charge Although 1n ref [1], an ellipse
with uniform charge density was used to calculate E, and E,, as pointed out
in 1ef [7], the 1esults also apply if the density is a function only of =?/Az? +



v’ /Ay*, ie constant on nested elliptical surfaces (ref (4]) As can be seen for
the generalized KV distiibution, the assumption of a density distribution that
15 constant on nested ellipses is poor for the KV distribution, but appears to
be a better approximation for thermal equilibrium beams, which underlies the
calculation of asymptotic emittance growth above This may, in part, explain
why the WARP simulation results agree well with the moment model.

a). KV distribution b). Thermal equilibrium distribution

(Axi)m =0.510 cm (AxH)Y2 = 0.509 cm
(AyH2 = 0.506 cm vl (AYHY¥2=0.501 cm

N
-0 02 -0 01 o 001 0 02 -0 0z a o) a o a0 0 02

X X

b 02

Figure 4. Self consistent beam density distributions in bends a) Suiface plot
(upper) and contour plot (lower) of generalized KV distribution (ref [20}), and
b) Thermal distribution (ref [21])

Discussion
Emiftance growth from sharp transitions, as discussed above, provides one
source of emittance growth Others, such as misalignments of quadrupoles, field
strength errors, non-linear applied fields, etc, provide additional mechanisms
to degrade the emittance In the recirculator design of ref [6], an insertion
and extraction region occurs over a 100 m long straight section, which gives the




machine some of the features of the racetrack in that equilibiation can occur on
passing from bend to stiaight and from straight to bend Since the eneigy is
increasing on each lap it would be difficult to design the insertion/ extraction
section which is “matched” at all energies Assuming abrupt transitions, use of
the moment equations together with the parameters of the beam at the exit of
the High Energy Ring of ref [6] lead to an estimated emittance growth by a
factor of about 2 Since the entrance beam parameters lead to a much smaller
emittance growth, the normalized emittance will grow by less than a factor of 2
This 15 within the emittance “budget” in the design of ref [6] It is also possible
that the transitions between bends and straights can be made gradual enough
so that equilibria are reached adiabatically, with little associated growth in the
notmalized einittance

Conclusions

We have reviewed the derivation of moment equations in which focusing,
space charge, and dispersion in a bend, are included We have shown that the
moment equations derived in ref [1], using the average bend and continuous fo-
cusing approximation, accurately predicts the initial amplitude and frequency of
emittance oscillations which occur at a sharp transition from a straight section to
a bend (ref [3]) We have also reviewed the method of estimating the asymptotic
value of the emittance growth due to straight/bend mismatches from considera-
tions of transverse energy conservation as the beam equilibrates. By assuming the
transverse energy of the beam is conserved during the equilibration, and assum-
ing that the beam reaches equilibrium, and also that the equilibrium transverse
velocity spread is the same in = as it is in y we can calculate all moments and thus
the change in emittance In racetracks, in which four such transitions are made
per lap, we have calculated the emittance growth under the assumption that the
equilibiium state is reached between each transition In small scale rings the
analytic result agreed well with 2-D and 3-D WARP simulations when o/oq was
small and the velocity spread was sufficiently large (so that the assumption of
phase mixing between transitions was realized). In the High Energy Ring of ref
[6], this prescription yielded an emittance growth of less than a factor of 2
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