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Abstract 
We review the derivation of moment equations which include the effects of 

space charge and dispersion in bends first presented in ref [l] These equa- 
tions generahze the famihar envelope equations to mclude the dispersive effects 
of bends TTe review the application of these equations to the calculation of the 
change m emrttance resulting from a sharp transition from a straight section to a 
bend section, usmg an energy conservation constramt Comparisons of detailed 
2D and 3D snnulatrons of intense beams m rmgs using the WARP code (refs 
[2;3]) are made with results obtamed from the moment equations We also com- 
pare the analysis carried out in ref [I], to more recent analyses, refs [4,5] We 
further exammr self-consistent distributions of beams m bends and discuss the 
relevance of these distributions to the moment equation formulation 

Introduction 
There are many apphcations in which beams havmg non-neghgible space 

charge forces are transported through bends In heavy ion fusion (HIF), recir- 
culating mduction accelerators (recirculators), with large tune depressions, and 
with rapid acceleration through resonances, are being considered to ignite iner- 
tial confinement fusion targets Even in linac approaches to HIF, designs of the 
final transport to the target usually include transport. through 180 degrees or 
more of bend section In some Acclerator Production of Tritium designs, a final 
bent transport section is being considered as part of an upgrade option For the 
application of studymg high energy density m matter, a beam pulse m a stor- 
age rmg will be longitudinally compressed, reachin, n tune shifts for short periods 
much larger than allowed by the Laslett-tune shift lmnt, Even m traditional 
s!-nchrotrons and storage rings obeying the Laslrtt hmrt, it is useful t,o have a 
framework m which space charge and dispersion are both mclnded 

In the HIF apphcation, the normahzed emittance of the beam must remain 
small to be able to focus the beam on a small spot The growth of the normalized 
emittance of an accelerated beam is also of interest for many other applications in 
which high brightness is required The concept of transverse energy conservation 
xas used in ref [l] to study emrttance growth m bends This built upon earher 
studies which have calculated changes in emittance also using a transverse energy 
constraint For example, ennttance growth associated with non-uniform space- 
charge distributions was examined in refs [8]- [lo] Emittance growth due to 
mitial beam displacements and mismatches with and without space-charge and 
momentum spread has been studied in, refs [ll-13,171, and references therein 

In the work reviewed here the beams propagate in continuous or alternating 
gradient focusing channel, with phase advances that are depressed due to space 
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chaIge In addition, bends are present, which provide a displacement in the 
center of oscillation for ions which are off of the design momentum Moment 
equations are employed to estimate emittance growth arising from the transition 
from straight sections to bends (See also ref [14] foI an estimate of emittance 
growth due to the transitlons in the absence of space charge.) On a transition from 
a bend to a straight section, or from a straight section to a bend, if the transition 
is sufficiently sharp, the beam becomes mismatched. We assume that small non- 
linear forces act to phase mix particles, and we find the asymptotic emittance of 
such a beam Further, if we assume that the process of phase mixing is completed 
before the beam goes through another straight/bend transition, we may calculate 
the rmittance growth through a “racetrack” configuration consisting of two 180” 
bends and two straight sections, even wlthout a detailed knowledge of the rate 
at which the phase mixing occurs 

Model Equations of Motion 

The force equation in the radial (bend) direction using cylindrical coordmates, 
(P,~,Y) is 

2 
i; - $. zz Fbbend - ~~k,k,(p - PO) + &k(p- < P >I (1) 

Here, p is the radial coordinate of a particle in a bend, B is the azimuthal coor- 
dmate, y is the vertical coordinate and zig s pi is the azimuthal velocity, and $zz 
is a defocusing constant of the assumed linear space charge force in the radml 
direction (defined below) For simplicity, non-relativistic kinematics are assumed 
Also, p. 1s the nominal radius of a particle with the azimuthal component of the 
design momentum p0 and design velocity v,, E PC. 
The component of the bending force Fbend in the radial direction is given by 

Here y 1s the ion charge state (+1 for protons), e is the proton charge in Coulombs, 
A is the ion mass in amu, m, is the atomic mass unit in kg B, is the vertical 
bending field (for magnetic bends) or E, is the radial electric field (for electric 
lxmls) 

We let T 3 p p. and define the inclement in path length along the design 
mlxt ds E pod8 The equations of motion ale then given by, 

y” = -k&y + k;,(y ~ yc) - afL”;;’ ‘) (4) 

K 
I;:= q q&2 + (Az2*y2)l,2)’ 

k2 c I< 
sy 2(Ay2 + (Az~A?/“)‘/~) (5) 

Here, .z is the in-plane deviation from the design orbit and y is the vertical co- 
ordinate m a particular transverse shce of the beam The beam travels in the 
+s dIrectIon, and prime (‘) indicates derivative with respect to S, &, and lcpoy 
can Iepresent either alternating gradient focusing (if they are s dependent) or 
they can represent the focusing effects in the smooth approximation, in which 
case, kBOr = kPov = Q/Z.L where co is the undepressed phase advance, and L 
is the half-lattice period. Dispersion effects enter through the term z,,,, where 



zm fE (l/kj,,po)(6p/po) for magnetic focusing and z, =Z (2/k&,po)(6p/po) for elec- 
tric focusing The quantity &p/p0 is the fractional difference between the longitu- 
dinal moment,nm of a particle and the design momentum pO, and I< = 2q1/(P3AI,) 
is the perveance Here I,, E 4?rcOm,c3/e is the characteristic proton current (~31 
MA) Fmally, for generality! we have included an unspecified external non-linear 
potential h,r that is a function of z,~, and possibly s 

We adopt the notation of ref [l], throughout this paper in which the quantity 
A is reserved for the two argument operator in which centroid quantities are 
subtracted off Aa& G< ab > - < a >< b > (e g AZ* z< zz > - < 2: >2), where <> 
mdicatcs average ovet all particles m a slice, zc --< 2 >, and gc =< y > 

These equations are identical to the equations found in ref. [l], except here 
we no longer assume lipoz, rl-poU, and po to be independent of s, nor do we require 
kpuz = kp”, In derivmg the moment equations in ref [l], no use was made of the 
assumed constancy or equality of kpo. and kpov noI the constancy of ~0, so the 
generahzation simply amounts to a relabeling of the focusing constants 

Eqs (3) and (4) represent, in an approximate way, the effects of linear 
focusing, lmear space charge defocusmg, dispersion in a bend, and external non- 
linearities in the focusing field. The physical approximations that have been 
made include the following. (1) Eqs (3) and (4) h ave been linearized in the small 
quantities kpo+, kpoy, and @/pa (The non-linear term h,, has also been included in 
some of the derivations) (2) Th e non-linearity is small ( lhnrl << lk&,z2[, lk&,,$j) 
(Terms which are non-linear in &/pa, such as kpo+6p/p0, have been neglected.) (3) 
Space charge forces depend only on lowest order moments (We have used the KV 
formula for the electrostatic potential, which is equivalent to assuming uniform 
density elliptical beam Centroid position and semi-major axes are, however, 
allowed to vary with s). (4) The beam is coasting. (pO, p, and 6p are constants) 
(5) The beam is non-relativistic (,f? << 1) 

Let f(z, z’, y, y’, b, s) = dN/dzdz’dydy’d$ where dN is the number of particles 
within incrementalPGhase volume dzdc’dydy’ dz For the model equations (3).(5) 
the Vlasov equation becomes, 

N = fdl:fdr’SdySdy’Sd~l(l,r’,y,~‘,~,s) 
Following ref [7], we take all second order moments of the Vlasov eq (I?), 

yieldmg eight (first-order with respect to s) coupled moment equations 
&AZ’ = 2A.x.z’ 

&A& = (~‘Ik;,,, + 2k&.)Azz’ + 2kjorAz’z,,, - 2A(z’3$) 

&A.& zr Ad2 ~ k&Ax2 + kf,Az+ + k;ozAxzm - A(&$$) 

$Ay’ = 2Ayy’ 

$Ay” = (-2k;,, + 2k3Ay$ - 2A(y’9) 

$Ayy’ = Ay’* - k;,,Ay= + k&Ay2 - A(y%) 

$Azzm = AZ’s,, 

$Az’z,,, = -k&Am,, + k:,Axxc, + k&Ax& -A@,,,*) (7) 

r 



Similarly, the fhst order moments of eq (6) yield the following 
& = XL 

&: = -k;,,z:, t k& < zm > ~ < 9 > 

k;Yc= c d _" 
&y: = -k&y,- < e > (8) 

Note that if h,, = 0, eq (7) forms a closed sets of 8 equations, and eq (8) forms 
two sets of two closed equations If h,, # 0, eqs (7) and (8 
of an infinite hierarchy of moment equations 

) form the beginning 

For the case of alternating gradient focusing, and when the bends occupy only 
a fraction of the lattice, the focusmg constants J&, kj&, and the bend radius of 
curvature pO are dependent on s This s-dependence of the external forces implies 
that there will not be a constant energy-like quantity However, as in ref [l], if 
lipO~,~pOy, and p. are constants representing average quantities, we may define a 
transverse energy H: 

2u = k&,Ax2 + k;,,Ay2 t AZ” + Ay’” - Zk&,,Azz, - I( ln((Azz)‘~2 t (Ay2)1/2) 

Use of eqs (7) and (8) shows that 

$=&h,,,. 

Thus if h,, is not a function of S, H is an invariant 

Emittance Growth 
We define sepalate z and y emittances 

c: zz 16(A~~Az? Azz?), c; E 16(Ay2Ay” Ayy”) 

(9) 

(10) 

(11) 

Usmg eqs (i); the following emittance evolution equations can be derived 

&i; = 32k&,(Az2Az’z, - AdAm,,,) t 32(A(r$$Ar& Az’A(d$)) (12) 

kc; = 32(A(y %)A& - Ay’A(yI %)) (13) 

Thus the emlttance would he constant If nowlmeantles were not present (/L,, = 0) 
and the momentum spread were absent (z,,, = o for all particles ) Eqs (12) and 
(13) are valid for both continuous and alternatmg gradient focusing 



Equilibrium Beam 
In the continuous focusing approximation, the left-hand-sides of eqs (7) and 

(8) can be set to zero to obtain the following equihbrium (constant moment) 
conditions 
Ad2 = (k;,, - k&)Az2 - k&.Azz,,, + A@$‘$) 

W2 = (k;,, - “&)Ay2 + A(?&) 

Azz’ = Ayy’ = Adz, = A(z’e) = A(y’%) = 0 

2: = 2/, = 0 (14) 
Assuming that h,, = zC = yC = 0 the transverse energy (9) in equilibrium (H = H,,) 
reduces to 

ZH,, = (Zk&,, - 
3k$,,A& 

k,2,P~2 + (‘Jk;,, - k:JAy2 - k;oz _ k2 - Ii ln((A~~)“~ + (Ay2)lj2) (15) 
sz 

Note that for a given He,, the ratio of Az2 to Ay2 is still unspecified A further 
assumption is required to specify the final state of the beam. It is often reasonable 
to assume that transverse energy equipartition results in a beam in which the two 
transverse temperatures are equal, i.e. AZ I2 = AY’~. (Note that we have implicltly 
assumed that the timescale for complete equipartition [AZ” = Ay12 = A(6p/p0)~] is 
much larger than timescales of interest ) The condition that Ad2 = Ay” can be 
expressed as a relation between Ay2 and At2. 

(16) 

When kpnz = kpay = kpo and AZ& << Ax2 this result reduces to. 
Ay’ ‘Z Ar’ ~ 2k;,Az:,2,/ (k2(k2 + kg”)) , 

wheie k2 E k;, - 1</(4Ar”) 
(171 

Rings 
Suppose a beam is in equilibrium m a straight section, and then enters a 

continuous bend (i e a rmg) If the lattice palametels (such as the bend Iadius 
of curvature) abruptly change to new values, the beam becomes mismatched 
to the bend Physically, paI ticks that are not on the design momentum fol 
the bend initially become spatially separated, creating non-linear space-chaIge 
forces, allowing phase nuxmg of the coherent mismatch oscillations until a new 
equlhbrmm 1s reached For concreteness, we consider a lattice m which koos = 
kpou E kpor and also assume that kpo is the same both m the straight se&on 
and m the bend section Thus, in this example, we assume the contribution to 
focusmg from the bends is included in kpo We assume that the mltial beam 
(subscript 0) is matched to the straight section Thus Ayi = AZ& and Azh” = Ayh’ 
= k;Ax;, and all other moments are equal to zero The initial transverse energy 
satisfies 2Ho = (2kga + 2k2)Azi - I<I~[Z(AZ~)‘~~] To calculate the final eqmlibrium 
beam parameters, we set the final transverse energy equal to the initial transverse 



energy, and sunultaneously solve this constramt with the equalized temperature 
constramt, eq (16) Thus, there are two equations m two unknowns (AZ’ and 
Ay’), yleldmg the final equilibnum values of Ax2 and Ay’ in the bend From the 
equihbnum values (eq 14), all other second order moments may be calculated, 
Including the emittance 

In ref [3], comparisons of the results of the continuous focusing theory were 
made to 2D WARP PIC simulations of the transition from straight to bend for 
parameters of a small recirculator experiment being built at Lawrence Livermore 
N&anal Laboratory The relevant parameters of the simulation were the ion 
specxs was smgly charged Potassmm, (mass 39), at an energy of 80 kV, and a 
curreut of 2 mA, leadmg to a perveance I< of 3 54 x IO-~ 
constants are kpoz = kpoy = 189 m-l, 

The average focusmg 
corresponding to a phase advance of 78 

degrees and half-lattxe perlod L = 0 36 m The average bend radius of cwvatule 
1s p0 = 2 29 m. The normalized emittances t,, E r& and cny = -y/3<, (where y 1s 
the Lorentz factor of the beam) were both set to o 03 mm-mrad at inJection mto 
the Img. 6p/pu,,, = 7 2 x 10e4 was assumed 

Theory 

, (no damping) , 

’ ; . . 5 =*==“ls ~sirn~~~tl~~ - 
I 1 I I 
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Figure 1. Comparison of WARP sunulatlons with model results (from ref (31) 
z and y emlttance evolution m a rmg geometry, after mlt&zatlon m a straight 
sectIon, as calculated by WARP, by direct integration of the moment equations 
@lament Theory, no dampmg) and the asymptotic value usmg energy conserva- 
t1on 

In Figure 1, (from lef [3]), we plot the WARP simulations of the normalized 
3: and y emlttances over 3 laps of the small recirculator. In addition, we plot 
the mltlal evolution of the emittance as predicted by direct mtegratlon of the 
moment equations, (indxated as Moment Theory (no damping)) m the figure 
The simulations include all of the details of alternating gradient lattice including 
frmge fields and image effects, as well as the non-linear space charge fields The 



theory calculations use only the uniform focusing and bendmg approxmlation 
Also, because the moment equations do not include non-1ineaIitles and the as- 
sociated non-linear phase mixing, the amplitude of the x-emittance oscillations 
remam constant and the y-emittauce does not grow In the slmulatmns, small 
non-linearities cause the oscillations to damp and the y-emlttance to gradually 
grow closer to the z-emlttance Although direct integration of the moment equa- 
tions does not capture the damping of the oscillations in the z-emittance or the 
growth in the y-emittance, the moment equations accurately predict the initial 
am$tude and frequency of the oscillations Also shown on the figure are the 
final equillbrmm results (mdlcated as x-lmut theory, and y-limit theory) calcu- 
lated using the prescrlptwn indicated above, which 1s based on using the moment 
equations to calculate the transverse energy and assuming equality of the final 
velocity spreads in the t and y dlrectlons As ran be seen, the theory closely 
predicts the asymptotic values of the z and y emittances as found by the fully 3D 
simulations, and also captures the simulation result that the y-emlttance equi- 
librates to a value less than the z-emlttance Simulations of the Umvers~ty of 
Maryland Rmg (ref [15]) shows a slmllar mcrease in emlttance with an ultimate 
saturation. 

yx-limit theory 
c y-limit theory 

0 -0.30 mm-mr 
0 0.05 0.10 0 15 0.20 025 value entering bend 

Axial velocity spread (% Fp/porms) 

Figure 2. Comparison of \\7.4Rl’ snnulatlons wth model resu1t.s (from 1ef [3]) 
T and y emlttauce after t.hc 90 degree bend and asymptotic results as a fun&on of 
the fractIona momentum spread (m percentage), after mltializatlon m a stlalght 
sect.lon, as calculated by W.4RP, by direct integlatlon of the moment equations 

I 
x- and y- theory $00 bend) and the asymptotic value using energy consecration 
z- and y- hmlt theory) 

In Figure 2, (from ref [3]), we plot th e emlttance at the end of nmety degrees 
of bend and also the asymptotic values of the emmttance, all as a fun&on of 
(A(bl~a)~)“~ = ~plmrms This quantity 1s largely unlcnown in the expenment, and 
it could range anywhere from the value expected from acceleratrve cooling (see e g 
ref (161) of the longltudmal momentum spread induced by the -0 1 eV ion somce, 
which results in a spread of oldel IO-~, or if the fractional error in the Injector 
diode voltage errors 1s as large as 0 005 (at high enough frequency), the resulting 
induced fractIona momentum spread, 6p/p OrmJ would be as large as z 5 x IO-~ 
A third possible source of momentum spread comes from instabilities associated 



with an amsotropx velocity distribution (ref [22]) If this instabihty heats the 
longitudinal component until it is of the same temperature as the transverse, the 
resulting moment spread would be 6p/P,a7,,,. cz c,/~(Az~)‘/~ % 7 2 x 1OP 
complete discussion cf ief 13)) 

(For a more 
A s can be seen from the plot, direct integration 

of the moment equations closely captures the simulation value of the emittance 
after 90 degrees (during the initial emittance oscillation) and closely matches the 
mean TXS in emittance and difference between the z and y ernittances 

When kooz = koOy, and when the change in emittance is much less than the 
ongmal rmittance, one may analytically estimate the change in emittance squared 
in an abrupt transition from straight to bend 

Eqs (18) are valid only for small changes in emittance, and so are not applicable 
to the parameters of figure 1 

Racetracks 
In a recirculator that is composed of two 180” bends connected by two straight 

sections in the shape of a racetrack, if phase mixing is rapid enough the equilib- 
rium can be reached before each transition Transverse energy is conserved as a 
beam enters a bend from a straight, but since the beam acquires a finite Azz,,, as 
it finds equilibrium in the bend, the transverse energy will be discontinuous enter- 
ing a straight from a bend, (where pa becomes infinite, and hence Am,,, abruptly 
changes to zero ) The quantities Azz, At”, by 2, Ayf2 are, of course, continuous at 
all transitions A new value of II is calculated which is again constant through- 
out the straight section At the beginning of the bend the process repeats In 
Fig (3), we have applied this formulation to a small scale racetrack recirculator, 
which is not undergoing acceleration This prescription for calculation of the 
emittance was carried out numerically, and compared with the 3-D version of the 
WARP code As can be seen, the emittance growth is tracked ckxely although 
the higher frequency oscillatory behavior associated with lattice and mismatch 
oscillations are, of course, not seen (For small values of A(6p/po)‘, or large values 
of u/m0 the prescription overestimates the emittance growth, since the assumption 
of complete phase-miumg between transitrons is not achieved ) 

r 

Number of laps 
Figure 3. Emittance growth m a racetrack. The parameters are CO = 72”, c = 8”, 



p = 3 6m, Ana,P*c*/2 = loMeV, 
section 7 

(A(6p/pa) 2 I” = 0 0079 ) The length of each straight 
was 2 m 

Conrparison to Other Recent Work 
Recently, m ref [4, 181, envelope equations which include the same physics 

(i e dispersion linear m 6p/poJ and space charge with an assumed elliptical sym- 
metry) as the moment equatrons (eqs. 73) were derived Venturini and Reiser 
found a generalized emittance <dz which, when expressed in terms of the notation 
of this paper can be written as 

c&,=(~~~~22-~22~)(~z~~2'2-~~'~~)-(~z~~~~'-A~2,~~'2,)2 (19) 

By taking the derivative of & and using eqs (7), it IS straightforward to show 
that ~2, is constant. By using the constancy of cd= and G,, two of the eight 
first order moment equations could be eliminated, leaving six first order moment 
equations, equivalent to the three second order equations of ref [4] Thus the 
envelope equations in ref [4] contain the same physical content as the previously 
derived (ref. [I]) moment equations. In ref. [4], it is suggested that it would be 
possible to eliminate much of the growth in emittance by matching the envelope 
and the dispersion function D(S) = (~~@/p,,)/~(6p/p~)~ (as defined in ref. [4]). This 
is equivalent to finding the matched periodic solution of the moment equations 
in the ring, and then constructing the section which injects the beam into the 
ring such that the values of the moments match those of the matched periodic 
solution within the ring In order to prevent mismatch oscillations of the cent&d, 
the centroid equations (8) must also be matched on the transition from straight 
to bend Another method (ref [l] of preventing emrttance growth is by slowly 
varying the radius of curvature, 1’ al owing an adiabatic transition into the bend. 

Also, recently in ref [5], vertical and horizontal dispersion functions are de- 
rived The horizontal dispersion function derived by Lee is identical to that of 
ref [4], except that horizontal/vertical coupling is allowed such as can occur if 
there are quadrupole rotation errors (see e g ref [19]) The vertical dispersion 
function is identical to that of a straight lattice, but again with the inclusion of 
horizontal/vertical coupling The envelope equations derived are not consistent 
with the moment eqs (73) or the envelope equations of ref [4], however, due to 
additional approxnnations 

Self-consistent distributions 
Recently, m ref [20], a self-consistent KV solution to the Vlassov-Poisson 

system m a bend was obtained. The solutions m the non-relativistic case are of 
the form 

f(a:> x1> y, Y’,JPIPo) = fi(HI)ex~[-(61~lPo)“lSoZl (20) 

Here 2HI = r’2+y’L+li~0x~+li~0y2+2q~/ m+2(t/po)6p/p0 In ref. [20], generalizations 
to the IiV distribution were investigated of the form fi(HI) = f&(Hl-lfo) In ref 
[21] thermal eqmhbrium distributions of the form fL(HL) = f. exp(-Hl/kaT) have 
been examined. Figure 4 illustrates the two distributions for the parameters 
of the University of Maryland electron ring experiment (ref. [20]) (kg, = 17437 
n-2, current = 105 mA, energy = 10 keV, p0 = 182 m, with k/lzoO = 0 33, and 
W~or,n~ = 01 ) W~or,n~ = 01 ) 

The moment eqs The moment eqs require averages over zE, and yE, where E, and Ey are require averages over zE, and yE, where E, and Ey are 
the electric field components due to space charge Although m ref [I], an ellipse the electric field components due to space charge Although m ref [I], an ellipse 
with uniform charge density was used to calculate E, and E,,, as pointed out with uniform charge density was used to calculate E, and E,,, as pointed out 
in ref [7], the results also apply if the density is a function only of x2/Ax2 + in ref [7], the results also apply if the density is a function only of x2/Ax2 + 

r 

I 



y2/Ay2, i e constant on nested elliptical surfaces (ref [4]) As can be seen for 
the generalized KV distribution, the assumptmn of a density distribution that 
1s constant on nested elhpses is poor for the KV distribution, but appears to 
be a better approximation for thermal equilibrium beams, which underlies the 
calculation of asymptotic emittance growth above This may, in part, explain 
why the WARP simulation results agree well with the moment model. 

a). KV distribution b). Thermal equilibrium distribution 

(Ax’)*‘= 0.510 cm 
(Ay’)‘” = 0.506 cm 

(Ax2y2 = 0.509 cm 
o oI (AY’)“~ = 0.501 cm 

Figure 4. Self consistent beam density dlstrlbutlons in bends a) Surface plot 
(upper) and contour plot (lowe 
15) Thermal distribution (ref [21 ) I 

of generalized KV distribution (ref [20]), and 

Discussion 
Emittance growth from sharp transitions, as discussed above, provides one 

source of emittance growth Others, such as misalignments of quadrupoles, field 
strength errors, non-linear applied fields, etc , provide additional mechanisms 
to degrade the emittance In the recirculator design of ref [6], an insertion 
and extraction region occurs 0x1 a 100 m long straight section, which gives the 



machme some of the features of the racetrack in that equililxation can occur on 
passing from bend to stIalght and from straight to bend Since the energy is 
increasing on each lap it would be difficult to design the ins&Ion/ extraction 
section which is “matched” at all energies Assuming abrupt transitions, use of 
the moment equations together with the parameters of the beam at the exit of 
the High Energy Ring of ref [6] lead t o an estimated emittance growth by a 
factor of about 2 Since the entrance beam parameters lead to a much smaller 
emittance growth, the normalized emittance will grow by less than a factor of 2 
This 1s within the emittance “budget” in the design of ref [6] It is also possible 
that the transItIons between bends and straights can be made gradual enough 
so that eqmhbria are reached adlabatically, with little associated growth m the 
no1 mahzed emittance 

Conclusions 
We have reviewed the derivation of moment equations in which focusing, 

space charge, and dispersion in a bend, are included We have shown that the 
moment equations derived in ref [I], using the average bend and continuous fo- 
cusing approximation, accurately predicts the initial amphtude and frequency of 
emittance oscillations which occur at a sharp transition from a straight section to 
a bend (ref [3]) We have also reviewed the method of estimating the asymptotic 
value of the emittance growth due to straight/bend mismatches from considera- 
tions of transverse energy conservation as the beam equilibrates. By assuming the 
transverse energy of the beam is conserved during the equilibration, and assum- 
ing that the beam reaches equilibrium, and also that the equilibrium transverse 
velocity spread is the same in 2: as it is m y we can calculate all moments and thus 
the change in emittance In racetracks, in which foul such transitions are made 
per lap, we have calculated the emittance growth under the assumption that the 
equilibrium state is reached between each transition In small scale rings the 
analytic result agreed well with 2-D and 3-D WARP simulations when u/u0 was 
small and the velocity spread was sufficiently large (so that the assumption of 
phase mixing between transitions was realized). In the High Energy Ring of ref 
[6], this prescription yielded an emittance growth of less than a factor of 2 

References 
1 J J Baznard, H D Shay, S S. Yu, A FrIedman, and D P Grate, “Emittance 

Growth m Heavy-Ion Re( lrculators,“1992 Lmear Accelerator Conference PIO- 
ceedings 1992 August 24-28, Ottawa, Ontano: Canada, C R Hoffman, ed 
(1992) AECL 10728 (AECL Research, Chalk River, Canada) p 229 

2 A F~ledman, D P Grate, D A Callahan, A B Langdon, I Haber, “3D 
PaI title Sunulatlons of Axally Confined Heavy Ion Beams Usmg the WARP 
code Transport Around Bends,” Particle ilccelerators, 37, 131, (1992) 

3 S M Lund, J J Barnard, G D Craig, A Friedman, D P Grate, H S Ho kins, 
T C. Sanyter, W M SharE, S Eylon, T J Fessenden, E Henestroza, Yu, !zi 
and I Ha er, “NumeIlcal unulation of Intense-Beam Experiments at LLNL 
and LBNL,” Nuclear Instruments and Methods A (m press) 

4 Mazlco Venturini and Martm Relser, “RMS Envelo e E uatlons in the Pies- 
ence of Space Charge and Dispersion,” submittec? to 8hys Rev Letters 
(1998) 

5 S Y Lee and H Okamoto, “Space Charge Dominated Beams in Synchro- 
trons,” these proceedmgs (1998) 

G J J BarnaId, F Deadrick, A Friedman, D P GIole, L V Griffith, H C 
Kirbie, V Ii Nell, M A Newton, A C Paul, W M Sharp, H D Shay, R 0 
Bangertel, A Faltens, C G Fang, D L Judd, E P Lee, L L Reginato, S S 



Yu, and T F Godlove, “Recirculating Induction Accelerators as Drwers for 
Heavy Ion Fusion,” Physics of Fluids B Plasma Physics, 5,2698 (1993) Also, 
“Study of Recirculating Induction Accelerators as Drivers for Heavy Ion Fu- 
sion,” Lawrence LivelmoIe National Laboratory UCRL-LR-108095 (1992) 

7 F J Sacherer, “RMS Envelope Equations with Space Charge,” IEEE Trans- 
actions on Nuclear Science NS-18, 1105, (1971) 

8 P. M Lapostolle, “Possible Emittance Increase through Filament&ion Due to 
Space Charee in Continuous Beams.” IEEE Transactions on Nuclear Scwnce. 
k-18, 116, (1971) 

9 T P Wan ler, I< R Crandall, R S Mills, and M Reiser, “Relat,ion Be- 
tween Flel 2 Energy and RMS Emittance in Intense Particle Beams,” IEEE 
Transactlolls on Nuclear Science, NS-32, (1985) 

10 0. A Anderson, “Internal Dynamics and Emittance Growth m Space-Chalge- 
Dominated Beams,” Particle ilcclerators, 21, 197, (1987) 

11 J J. Bxnard, “Anharmonic Betatron Motion in Free Electron Lasels” Xu- 
clear Instruments and Methods in Physics Research A296 (1990) 

12 M Reisel “Free Energy and Emlttance Gtowth in Nonstationary Charged 
Particle Beams,” Journal of Applied Physics 70, 1919 (1991). 

13 0 A Anderson, “Emittance Growth Rates for Displaced or Mismatched High 
Current Beams in Nonlinear Channels,” Proc of the Fourth NPB Techn 
Symp , Argonne National Laboratory, (1992) 

14 I< T Nguyen “Emittance Growth and Energy Bandwidth in the IFRR,” 
Proceedings of the 1990 DARPA/ SDIO/Services Annual Charged Part 
Beam Review, p 71, Nav Res Lab., Washington D C (1991) 

15 R A Kishek, I Haber, M Venturini, and M Reiser,. “PIC Code Simulations 
of the Space-Charge-Dominated Beam in the Umverslty of Maryland Electlon 
Ring,” these proceedings 

16 M Reiser, “Theory and Design of Charged Particle Beams,” (Wiley & Sons, 
New York, 1994) 

17 J J Barnard, J. Miller, I Haber, “Emittance Growth in Displaced Space 
Charge Dominated Beams with Enerrv Spread.” Proceedings of the 1993 Par- 
ticle Accelerator Conference, Washl$ton, D (? , May 1993; 5, 3612 (1993) 

18 M Venturini,,R A Kishek, and M Reiser, “Dispersion and Space Charge,” 
these plocecdmgs (1998) 

19 John J Barnard “Ennttance Growth Gem Rotated Quadrupolcs 111 Heav:- 
Ion Accrlel atol s:’ Ploceedmgs of t,he 1995 Part,icle Accclelator ConfeIcnw. 
Dallas TX, held May l-5, 1995 (5), 3241 (1996) 

20 M Venturnu and M Re~ser, “Self-couslstent beam distributions with space 
charge and dxperslon in a cncula~ Iing lat,tlce,” Phys Rev E, 57 4725. 
(199s) 

21 John J Barnard, and Bojan LOSIC, “Enut,tance Growth from Bend/Straight 
transitions for Beams approaching Thermal Equilibllum,” Proceedings of the 
1998 Lmear Arcelelator Conference,” In Pleparatlon (1998) 

22 I Habel, D A Callahan, A F~xxlman, D P Grate, S M Lund, T F Wang: 
“Characteristics of an Electlostatlc Instablhty Drlvrn by Transverse- 
Longitudmal Temperalwc ilmsotropy”, Nuclear Instruments and Methods 
A, in pless (1998) 



T
echnical Inform

ation D
epartm

ent  • Law
rence Liverm

ore N
ational Laboratory

U
niversity of C

alifornia • Liverm
ore, C

alifornia  94551


