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Review of experiments and calculations of the
compressible Richtmyer-Meshkov instability horn a
single-mode, nonlinear initial pert urbat ion

T.A. Peyser~ S.D. Murray, P.L. Miller, D.R. Ihrley, L.M. Logory, P.E. Stry, K.S.
Budil, E.W. Burke
Lawrence Livermore National Laboratory
P. O. Box 808, L-22, Livermore, California, 94551, USA

Abstract: We review experiments and calculations of the compressible Rlchtmyer-Meshkov
instabilityy from a singh+mode, nonlinear initial perturbation. These experiments were per-
formed using the Nova laser. Measurements of the time-evolution of the mixing region were
reported previously. We compared the experimental measurements with numerical simulations
[1,2]. We found both experiment and simulation to be in good agreement with recent theories
for the nonlinear evolution of the instability [3,4].

Experimental results beyond those previously presented provide additional support for the
use of two phase flow models to describe the flow in the nonlinear regime. These experiments
include measurement of the mixing region at additional times, including times earlier in the
evolution of the instability than previously reported. We have also carried out experiments to
examine the difference in the evolution of the instability from initial perturbations consisting
of circular sawtooth grooves as well as rectilinear sawteeth. Our previous twodimensional
numerical simulations approximated the experimental linear grooves as circular grooves. We
reasoned that the difference between the two cases would be small, based on scaling arguments,
and limited to a very small region near the centerline. New experimental and numerical results
confirm this. Finally, we discuss some additional issues in the derivation of the tw~phase flow
model used previously in describing the growth of the Richtmyer-Meshkov instability in the
nonlinear phase relevant to other work presented at this meeting [5,6].

1. Review oft he experiment

The experiments used a miniature beryllium shock tube mounted over a 700pm diameter
hole made at the center of the side of a 3 mm-long, 1.5 mm-diameter cylindrical gold Nova
Hohlraum [7]. The shock tube was 2200 ~m long, 700pm in diameter with a 100pm wall
thickness. The working material of the shock tube consisted of a 500pm -diameter, 300 pm -long
section of a high-density (1.22 g/cm3) brominated polystyrene ablator and a 500pm diameter,
1900 pm long low-density (O.1g/cm3) carbon resorcinol foam payload. A schematic of the
Hohlraum and the attached shock tube can be obtained elsewhere in these proceedings and in
the literature [1,2,5,6]. Thermal x-ray radiation from the interior Hohlraum walls incident onto
the exposed brominated polystyrene results in a rapid ablation of material and the generation of
a strong shock (85 Mbar) which travels down the shock tube towards the perturbed plastic-foam
interface. A rectilinear sawtooth pattern was machined into the high density plastic with a high
initial amplitude (a. = 10pm) relative to the dominant wavelength (A = 23pm). The large
amplitud~t~wavelength (so/A = 0.43) initial perturbation was chosen so that the instability
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would make anearly transition into the nonlinear stage. Themixing region width was measured
with high-speed gated x-ray framing camera diagnostics using radiography side-on to the shock
tube cylinder axis [1,2,5,6].

2. Effect of Mach number on the spike and bubble amplitude

High-power laser-driven experiments make it possible to achieve extremely high Mach number
shocks. At the time the shock is incident on the interface, the Mach number is greater than or
equal to 20. This is important since experiments at high Mach number exhibit the effects of
compressibility more strongly than low Mach number experiments.

The experiments were simulated using CALE, a two-dimensional arbitrary Lagrangian-
Eulerian (ALE) hydrodynamics code [8]. In ALEtype codes, the mesh moves with the flow,
giving added resolution in regions of high compression. Unlike purely Lagrangian codes, how-
ever, advection is allowed so as to avoid mesh tangling. For the simulations presented here, we
use an initially rectilinear grid (unless otherwise noted) with 1 micron square resolution near
the material boundary. The resolution decreases away from the boundary. Because the grid
moves with the flow, however, high resolution of the mix region is maintained. The numerical
simulations include the cylindrical region containing the plastic, the foam, the beryllium sleeve
and a portion of the gold support ring. The effects of the laser drive are simulated by applying
a temperature source to the edges of the plastic which extend into the hohlraum.

Previously, we found excellent agreement on the time evolution of the mixing region between
the 2D CALE simulations and the measured results of the experiment. Fig. 1 shows the time
evolution of the material interface during the growth of the instabilityy. The calculations suggest,
in contrast with incompressible or weakly compressible flows, that the Mach numbers of the
present flows result in spike and bubble amplitudes of roughly comparable magnitudes [9]. As
shown in Fig. la, the instabilityy is well within the nonlinear regime by 4 ns (approximately
0.5 ns after the shock was incident on the interface). The similarity in the morphology of the
spikes (heavy material) and bubbles (light material) is readily apparent at this time. The spikes
and bubbles shapes and amplitudes in subsequent material plots at 5, 6 and 7 ns continue to
appear highly symmetric as shown in Figs. lb, lc, and Id.

A detailed comparison of the instability with a simulation of a smooth, unperturbed inter-
face allows us to obtain quantitative estimates of the spike and bubble amplitudes as shown
in Fig. 2a. The spike zmd bubble amplitudes in the perturbed calculation are determined by
analysis of the material plots as in Fig. 1 above and comparison with the location of the un-
perturbed interface at the same time in the problem. We have followed the same procedure
as in our earlier work and removed the effect of the axial target decompression to facilitate
comparison between experiment and calculation on the one hand and nonlinear theory on the
other hand [1,2]. Fig. 2b shows the growth of the overall mix region represented by the sum of
the spike and bubble amplitudes (see below). The initial interface location for the unperturbed
calculation was chosen to be 290pm, i.e., at the centerline of the 20pm peak-t~valley saw-
tooth perturbation, so as to conserve the total mass of the high-density brominated polystyrene
in the calculation. We assume that the presence of the instability does not significantly alter
the overall hydrodynamic trajectory of the interface. This is consistent with estimates from
the numerical simulations suggesting that the kinetic energy in the mix region is much less
than 0.05 of the kinetic energy in the axial flow. We find that the spike and bubble amplitudes
are roughly comparable (although not identical) for the duration of the calculation and the
experiment.
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Figure 1. Density plots showing the time evolution of the material interface, from 2D CALE simul>
tions, at (a) 4 ns, (b) 5 ns, (c) 6 ns, and (d) 7 ns
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Figure 2. (a) Approximate spike and bubble amplitudes (corrected for axial target decompression),
es a function of time, from comparison of perturbed and unperturbed 2D CALE simulations of the
experiment; (b) Comparison of experimental data, 2D CALE simulations and results of a simple two-
phsse flow model for the nonlinear evolution of the instability using two values for the coefficient of
drag
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3. A simple two-phase flow model for nonlinear Richt myer-Meshkov
growth in the high Mach number regime

There are now numerous models for growth of the Rlchtmyer-Meshkov bubbles in the nonlinear
regime which suggest that the evolution of the bubble velocity goes inversely with time for a
singl~mode perturbation. It follows accordingly that the bubble amplitudes in these models
have a logarithmic time dependence [10-13]. As shown above, for conditions in the present
experiment, the spike and bubble penetrations are roughly equal. The spikes are remarkably
bubble-like in their appearance and time evolution, hence the total mix width for the single
mode problem under these conditions can be approximated by a single, simple logarithmic time
dependence [1,2].

We repeat here our derivation of a simple tw~phase flow model with a clearer statement
of the assumptions and the parameters in the model than provided earlier [1,2]. The equation
of motion for a bubble of low density pP displacing a heavier fluid of density p= can be written
as

( AA
v pc~

)

dU
+PP ~=F’a –ticdpcu2 (1)

where V is the volume of the bubble, AA/2 is the added mass coefficient, A is the frontal
area (A = md2/4 for bubble of diameter d) and cd is the coefficient of drag. Numerous
experiments on bubble rise beginning with the work of Davies et al. in the early 1950s have
shown that the bubble front retains its spherical character during its rise [14]. This is consistent
with more recent compilations of bubble geometry at high Reynolds numbers applicable to this
problem [15]. Since we are invoking nonlinear theory only when the amplitude and wavelength
are comparable, it is permissible from the assumption of sphericity as well as from general
dimensional analysis to treat the ratio of area to volume in Eq. 1 as a characteristic scalelength
given by the wavelength A of the single mode perturbation. In the high velocity limit, the added
mass coefficient AA/2 is equal to one. Finally we assume further that there are no additional
forces (gravity, pressure gradient terms etc.) acting on the system. Eq. 1 then becomes

dU

()

cd pC ~2——
-z-= ~ Pc+pp

(2)

Eq. 2 can be rearranged and integrated to give the following expression for the bubble’ velocity

u=
Uo

1 + Uo?nt
(3)

where

()

cd p=
rn=—

~ Pc+Pp
(4)

Finally, a further integration of Eq. 3 gives

a =*+ +Lu[l+nzuo(t – to)] (5)

where ~ is the initial nonlinear amplitude, m is given by Eq. 5 above and depends on the
coefficient of drag, the densities of the material and the wavelength of the perturbation, U.
is the initial relative velocity of the bubbles (compared to the nominal interface location)
after the passage of the shock and is the time at which the nonlinear phase of the instability
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begins. Given the similarity between spike and bubble amplitude growth in the high Mach
numbers of the present problem, Eq. 5 can be rewritten as an equation for the total mix width
evolution w where WOis equal to two times the instantaneous nonlinear amplitude and UOis
the instantaneous spike (or bubble) velocity relative to the nominal interface at the time of
onset of nonlinearityy.

w = WO + ~ln[l +mUO(t–tO)] (6)

~
Since we do not know the values of the initial nonlinear amplitudes, relative velocities or time
of onset of nonlinearity either a priori or directly from the experimental data, we make use of
the 2D numerical simulation to obtain estimates of these quantities. An examination of the
calculations suzzests that the instability begins to exhibit nonlinearity at approximately 3.8 ns

.“

to 4.3 ns. Fig. 3 shows the density and velo&y plots at 3.8 ns from the 2D CALE simulations.
. .

At thk time, we find from the simulations that the total mix width wo = 18pm and the velocity
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Figure 3. Density and velocity plots at 3.8 ns showing onset of nonlinear amplitudes from 2D CALE
simulation

of the spike and bubble relative to the nominal interface UO= 14pm /ns. A least squares fit of
the data shows further that the behavior of the measured mixing region admits a logarithmic
time dependence with m = 0.096 pm’1. Assuming densities in Eq. 4 of p. = 0.4 g/cm3 and

PP = 1.6 g/ems consistent with the numerical simulation, we find a value for the appaent
coefficient of drag C.j x 2.8 + 0.4 where the uncertainty is due to the scatter in the data as
well as the simplifying assumption used in the model. Predictions from the nonlinear theory
for two vrdues of the coefficient of drag are shown above in Fig. 2b. Interestingly, the coefficient
of drag thus inferred from this experiment is consistent with published vrdues for an air bubble
in water at high Reynolds numbers [15].

4. Additional experimental data on the nonlinear mix width
Measurements from additional experiments carried out subsequent to the results reported pre
viously are shown in Fig. 2b above. As with the previous results, the total mix width is inferred
from a detailed analysis of the 5 – 95% transmission of x-rays across the nominal mix region.
The experimental data (squares) are in good agreement with both the numerical simulation
(circles) and Eq. 6 above using the quoted parameters. These data points were all obtained
with initial perturbations that were rectilinear in nature as shown in a high-resolution scanning
electron microscope image in Fig. 4a. We have also plotted the measured mix width from ex-
periments in which the initial perturbations were circular in nature as shown in Fig. 4b. There
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Figure 4. High-resolution scanning electron microscope image of (a) the original rectilinear sawtooth
perturbations and (b) the curvilinear perturbations

appears to be little difference between the two perturbation types which affirms the use Of a two-
dimensional axisymmetric code to simulate the instability growth from the non-axisymmetric
perturbations used in the experiment. We have also found little difference in the growth of the
mix region between numerical simulations having cylindrical and Cartesian geometries. Thk
is not surprising from simple dimensional considerations since the radius of curvature in the
calculations is large compared with the amplitude and wavelength of the perturbation.
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