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1 Introduction

Adaptive optics offers the possibility of correcting dynamic wavefront errors due to sources
ranging from thermal aberrations in laser systems to atmospheric blurring in astronomical
telescopes [1]. Advances in real-time control, sensors, and computation are making it pos-
sible to address challenging wavefront control problems at high levels of performance. The
general wavefront correction approach is shown in Figure 1. An aberrated wavefront enters
the system and is reflected from a correction element, most commonly a deformable mirror.
The modified output wavefront is sampled and its wavefront measured; a typical approach
is a Shack-Hartmann sensor which measures local tilt components. The measured output is
compared to a reference which represents the desired output wavefront. The difference, the
wavefront error, is used by a closed loop control system to modify the deformable mirror
shape to drive the error to zero.

An important calibration in the use of an adaptive optics system is the determination of
the reference wavefront. Usually, the objective is to make a diffraction limited image on the
imaging sensor. Many AQO systems, particularly those that use existing science instruments
not specifically designed for AO-based observations, will have optical components after the
wavefront sampling point. These optics are termed non-common-path optics in Figure 1
because any aberrations that they introduce cannot be measured by the wavefront sensor.
Non-common-path wavefront errors will be transferred directly to the science image.

Our objective in this report is to develop methods to determine the output pupil wave-
front using intensity measurements directly from the science detector. This wavefront can
then be used to determine a reference wavefront which will precorrect for the non-common-
path aberrations and produce the desired wavefront at the science detector. The general
approach to this calibration method is
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Figure 1: Block diagram of general wavefront correction approach for an adaptive optics
system.

e Insert a point source at the system input, close the DM control loop, and set the
reference to a flat wavefront; the image on the science detector represents the effects
of non-common-path aberrations;

e Measure the output wavefront using phase retrieval from intensity images; the algo-
rithms are described in detail in Section 2;

e Set the reference wavefront to the conjugate of the measured output wavefront; this
should produce a flat wavefront at the science detector.

In this report we will describe two phase retrieval algorithms that can be used and a
set of simulation studies of AO system calibration. We will present the initial experimental
results of applying this technique in calibration of the Lick Observatory laser guidestar AO
system in a later paper.

2 Phase retrieval approaches

There are a number of methods for performing phase retrieval presented in the literature,
and they can be classified into two basic approaches. The first of these phase retrieval
approaches uses a single intensity image measured at the focal plane of the optical system
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Figure 2: System diagram of phase retrieval concept. The intensity image at I; is taken in
focus. If phase diversity is to be employed, a second intensity image at I is recorded with
a known defocus. ’

along with at least some knowledge of the pupil plane intensity distribution to estimate the
aberrating wavefront [2] [4] [6]. The second phase retrieval approach incorporates phase
diversity, which means that a second intensity image measured at a known defocus is also
utilized in order to estimate not only the aberrating wavefront but the unknown object as
well[3] [5] [7]. Figure 2 illustrates an optical system diagram for phase retrieval with and
without phase diversity. The phase diversity approach has been used to correct the effects
of atmospherically induced aberrations on systems which do not employ adaptive optics[8].

Even though for calibration of an adaptive optics system we are not necessarily interested
in obtaining the unknown object, which would be a point source, both methodologies should
provide us with an estimate of the aberrating wavefront. Therefore, we will investigate a
common technique from each approach. We now give a brief explanation of each technique
followed by simulation results which will be given in the next section.

The first phase retrieval technique we will investigate is commonly known as the Gerchberg-

Saxton algorithm (GS) or the error-reduction algorithm [2] [4]. The iterative algorithm
involves transforming back and forth between the pupil plane and the image plane and ap-
plying either measured data or known constraints at each plane. The intensity at the image
plane is known because it is measured, but knowledge of the pupil plane is often limited to
its region of support or aperture size. Of course, the more information you know about the
pupil, such as if the intensity can be considered uniform over the aperture, the faster the
algorithm will converge. A block diagram of the algorithm is depicted in Figure 3. Since the
image plane data is measured at the focal point, it is possible to perform the propagation
between planes using forward and inverse Fourier transforms.

The second phase retrieval technique we will investigate, which uses phase diversity, is
a least-squares technique (LS) that leads to a maximum-likehood estimate for the phase
aberrated wavefront [7]. Since we can describe the wavefront as a set of Zernike polynomials,
we solve for the Zernike coefficents that minimize some error function. As with least squares
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Figure 3: Block diagram of Gerchberg-Saxton error-reduction algorithm

techniques, the error function is the sum of the squared errors in the difference between
the observed and estimated in and out of focus images. A simplified block diagram of the
iterative procedure is shown in Figure 4 For a detailed explanation of this algorithm see
reference [7].

3 Simulation results

For the phase retrieval simulations, it is necessary to define the optical system parameters as
well as the known phase aberration that we will try to estimate. One useful way to describe
a phase aberration is in terms of Zernike polynomials and coefficients, which makes the
aberration straightforward to generate with the computer. The phase aberration that we
will be using in the simulations is composed of several Zernike polynomials with coefficients
given in Table 1; the phase image is shown in Figure 5.

In order to make the simulation more realistic we have added random noise to the
intensity image measurement. Since the GS algorithm is iterative, the more iterations
performed, the more accurate the results will be. A proof that the squared error can only
decrease (or stay the same) is given in [4]. A plot of the mean squared error (MSE)
between the estimated image magnitude at each iteration and the actual measured image
magnitude is shown in Figure 6(a). In the plot, we can see that the MSE drops rapidly
for the first ten iterations and then drops more slowly thereafter. In Figure 6(b) and (c)
we also show the estimated phase aberrations after 50 and 100 iterations. If we perform a
Zernike decomposition on each of the phase aberration estimates we can see quantitatively
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Figure 4: Block diagram of least squares phase diversity algorithm.

Zernike mode number | Coefficient
3 0.30

4 0.80

5 -0.20

i 0.50

11 0.10

all others 0

Table 1: Table of Zernike coefficients that compose the phase aberration

Figure 5: Image of the phase aberration used in the simulations. The image size is 128
pixels by 128 pixels. The aperture size is 46 pixels in diameter.



Zernike mode number

Actual Coefficient

50 Iterations

100 Iterations

3

4

5

7

11

all others

0.30
0.80
-0.20
0.50
0.10
0

0.054
0.66
-0.32
0.51
0.10
<0.15

0.28
0.79
-0.21
0.49
0.10
<0.015

Table 2: Table of Zernike coefficients estimated with the GS algorithm for 50 and 100
iterations compared with the actual coefficients.

Zernike mode number | Actual Coefficient | 4 Iterations
3 0.30 0.30

4 0.80 0.80

5 -0.20 -0.20

7 0.50 0.50

11 0.10 0.10

all others 0 <0.0013

Table 3: Table of Zernike coefficients estimated with the LS algorithm after 4 iterations
compared with the actual coefficients.

how the GS phase retrieval algorithm did for each case; the results are given in Table 2.
From examining the Zernike coefficient values, we can see that 100 iterations gives a better
estimate of the phase aberrations than 50 iterations does, mainly for the lower order modes.
Applying the LS algorithm requires an out of focus intensity (or phase diversity) image
along with the in focus image. For the simulation, we use an image observation that is
out of focus by one wave of focus(rms). For the LS algorithm, which is also iterative,
convergence occurs much faster than for the GS algorithm, only four iterations on our
simulated data. The resulting estimated phase aberration is displayed in Figure 7. Unlike
the GS algorithm that estimates the phase aberration image directly, the LS aberration
estimate is smooth because it estimates Zernike coefficients, which limit spatial frequency
content. The estimated Zernike coefficients from the LS algorithm are listed in Table 3.
To fully and accurately compare the two algorithms it is necessary to consider that a
single iteration of the LS algorithm requires on the order of a minute to run in its current
implementation on our fastest computer, while an iteration of the GS algorithm requires
on the order of a second. Thus, hundreds of GS iterations can be done in the time it takes
for a few LS iterations. Possible methods for speeding up the algorithms include taking
advantage of the native FFT routines provided on our machines as well as parallelization.
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Figure 6: Mean squared error between estimated and measured image at each iteration is
shown in (a). Estimated phase aberrations after 50 and 100 iterations are shown in (b) and
(c), respectively.



Figure 7: Estimated phase aberration after 4 iterations of the LS algorithm.

For the next simulation, we will demonstrate the effects of undersampling the measured
intensity images. This is a situation we expect to encounter with real data, such as with
the LIRC II camera on the Lick adaptive optics system. At a wavelength 2.1 microns and
a telescope diameter of 3.0 meters, the LIRC II camera has a pixel size of 0.125 arcseconds
per pixel, which is 1.7 times larger than what Nyquist requires. Given that information,
we will simulate the same phase aberration as before, only this time the detected images
will have a pixel size 2.0 times the Nyquist pixel size requirement. Because the phase
retrieval algorithms require at least Nyquist sampled data to run properly, we must first
upsample the poorly sampled data to Nyquist. The interpolation method appears to have
a small, but noticeable effect on the results. For our case, a spline interpolation worked
the best. Inputting the upsampled data into the two phase retrieval algorithms, we obtain
results as shown in Figure 8 and Table 4. Clearly, the estimated aberrations are not in

Zernike mode number | Actual Coefficient | 400 GS Iterations | 10 LS Iterations
B 0.30 0.20 0.28

4 0.80 0.71 0.62

5 -0.20 -0.02 -0.14

7 0.50 0.47 0.49

11 0.10 0.13 0.09

all others 0 <0.11 <0.08

Tms error 0 3 2

Table 4: Table of Zernike coefficients for the undersampled data estimated with 400 iter-
ations of the GS algorithm and with 10 iterations of the LS algorithm. Bottom row gives
the rms wavefront error in radians for each case.



(b)

Figure 8: Phase aberration estimation with undersampled data. (a) Actual phase aberra-
tion, (b) phase aberration estimated with 400 iterations of the GS algorithms, and (c) phase
aberration estimated with 10 iterations of the LS algorithm.

perfect agreement with the actual phase aberrations, as some coefficients are estimated quite
accurately and others are not. This makes sense, because if the measured intensity images
are not properly sampled, the effects of certain phase aberrations will not necessarily be
imaged with the detail fully needed to detect them. Also, various unwanted Zernike modes
could be introduced as a result of upsampling the data.

4 Conclusions

Based on the results from the simulations, we can see that phase retrieval can be a useful
tool in helping to determine and correct static phase aberrations in adaptive optics systems.
Even if the system is undersampled, a great deal of the aberration can still be measured
and corrected.

Acknowledgments: We would like to thank Scott Acton of Keck Observatory who pro-
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