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EXECUTIVE SUMMARY 

This report summarizes the work performed for the Office of the Chief 
of Naval Research (ONR) during the period of 1 September 1997 through 31 
December 1997. The primary objective of this research was aimed at 
developing an alternative time-frequency approach which is recursive-in- 
time to be applied to the Inverse Synthethic Aperture Radar (ISAR) imaging 
problem discussed subsequently. Our short term (Phase I) goals were to: 

1. Develop an ISAR stepped-frequency waveform (SFWF) radar 
simulator based on a point scatterer vehicular target model 
incorporating both translational and rotational motion; 

2. Develop a parametric, recursive-in-time approach to the ISAR 
target imaging problem; 

3. Apply the standard time-frequency short-term Fourier transform 
(STFT) estimator, initially to a synthesized data set; and 

4. Initiate the development of the recursive algorithm. 

We have achieved all of these goals during the Phase I of the project 
and plan to complete the overall development, application and comparison 
of the parametric approach to other time-frequency estimators (STFT, etc.) on 
our synthesized vehicular data sets during the next phase of funding. 

It should also be noted that we developed a batch minimum variance 
translational motion compensation (TMC) algorithm to estimate the radial 
components of target motion (see Section IV). This algorithm is easily 
extended to recursive solution and will probably become part of the overall 
recursive processing approach to solve the ISAR imaging problem. 

Our goals for the continued effort are to: 

1. Develop and extend a complex, recursive-in-time, time- I 
frequency parameter estimator based on the recursive prediction 
error method (RPEM) using the underlying Gauss- Newton 
algorithms. 

2. Apply the complex RPEM algorithm to synthesized ISAR data 
using the above simulator. 

3. Compare the performance of the proposed algorithm to standard 
time-frequency estimators applied to the same data sets. I 



I. INTRODUCTION 

When a radar signal illuminates a target, the signal that is received is 
the superposition of the energy reflected or scattered by the target. The 
reflectivity function of this target determines its major features: size, shape, 
orientation, etc. in terms of providing a radar image mapped onto a range 
plane. The demands of high resolution imaging require large transmission 
bandwidths which are directly related to resolution in range. Typical 
broadband transmission signals employed by high resolution radar systems 
include frequency-modulated chirps as well as stepped-frequency waveforms. 
Resolution in cross-range (transverse to propagation) is determined by the 
antenna’s beamwidth which is inversely proportional to its aperture. Larger 
apertures provide high cross-range resolution and therefore, more accurate 
radar images. Synthetic array radars include the synthetic aperture (SAR) in 
which the radar platform moves with fixed target position and its geometric 
inverse, the so-called inverse synthetic aperture (ISAR) in which the target is 
moving with the radar fixed [Cur91,Joh96,Rih96ab]. In this report we will 
concentrate our efforts on improved signal processing techniques for high 
resolution ISAR imaging developed from radar systems employing stepped- 
frequency transmitters. 

The inverse synthetic aperture is formed by the coherent construction 
of signals obtained from the fixed aperture radar as the target translates and 
rotates “within its beamwidth”, thus, creating the equivalent of a large 
circular aperture focused at the target’s center-of-rotation (COR) 
[Che80,Wa180]. The underlying idea in ISAR imaging is to use the Doppler 
information provided by the different velocities relative to the radar of those 
parts of the target characterized as individual scatterers to obtain high cross- 
range resolution. That is, we decompose the target (spatially) into a set of 
individual “point” scatterers each of which has a different Doppler velocity 
represented by Doppler frequency shifts in the measured spectrum. Thus, the 
distribution of the target’s reflectivity function can be measured by the 
Doppler spectrum. Typically, the Doppler spectrum is estimated using 
conventional Fourier transform techniques implemented computationally 
using the fast Fourier transform (FFT) algorithm with the underlying 
assumption that the Doppler frequency is fixed or time invariant. When the 
target moves this assumption is no longer valid and the Doppler spectrum is 
smeared degrading the cross-range resolution. In this work we investigate 
the application of recursive (in-time), parametric, time-frequency techniques 
[Lju87,Sod89,Coh95,Boa92] to improve the cross-range resolution of the radar 
and estimate the desired Doppler spectrum as opposed to the more 
traditional time-frequency, spectral estimators using the short time Fourier 
transform (STFT) or joint time-frequency (JTF) estimation techniques such as 
the Wigner-Ville or wavelet transforms [Coh95,Qia96]. We develop the 
background and underlying mathematics of the problem in Section II. In 
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Section III we develop the basic time-frequency approach. Next we discuss the 
development of a simulation based on the point scatterer decomposition of 
the target function and apply the standard short-time Fourier transform 
(STFT) time-frequency estimator to the synthesized ISAR data. In Section V 
we develop the recursive-in-time algorithm, apply it to the synthesized data 
and compare the results with that of the STFT. We summarize our results 
and discuss future work in the final section. 

II. BACKGROUND 

In this section we briefly develop the underlying mathematics to define 
the EAR problem based on the geometrical relations depicted in Figure 1 
below. A cross-sectional reflectivity function for a typical vehicle is defined in 
terms of its center-of-rotation as shown. The geometry is defined in terms of 
the target’s translational and rotational motion relative to the radar. That is, 
0(t), is the instantaneous rotational angle in the XY-coordinate system with 
the radar line-of-sight (LOS) along the Y-axis defining its instantaneous slant 
range, R(t). The instantaneous range of the i-th point scatterer at (xi,yi) is 
defined by ri(t), while the target itself is defined by its reflectivity function, 
p(x,y), shown in two dimensions (ZD). Radar imaging can be thought of as 
the estimation of the 2D (or 3D) reflectivity function from a set of temporal 
radar measurements or returns, {G(t)}. 

Suppose a radar emits a monotone or single frequency, f (in MHz), unit 
pulse, p(t), of duration, Tp, given by 

p(t)=ej2? OltST,. (1) 

After the target is illuminated by the field, it reflects or scatters the 
transmitted ‘energy in a differential area, (&,dy), back to the radar receiver 
which is proportional to 

received energy = p(x, y)ej2@('-')du dy, %tSTp+~, 
c C 

where p(x,y) is the target reflectivity function, c is the wave propagation 
speed and z is the round-trip pulse travel time 

22. 
c (2) 

The received echo from the target measured by the radar system after 
normalization (gain, amplitude, attenuation, etc.) is therefore 



Figure 1. JSAR Geometry: Target and Scatterer at location (x,y). 

Baseband processing removes the monotone, ej2’@, through mixing to give 
the superposition of all the point scatterers composing the target reflectivity 
yielding the radar measurement, 

m(t) = J jp(x,y)e-j2%x dy. (4) 
-03 -00 

Now return to the ISAR geometry of Figure 1 and allow the target to 
have both translational and rotational motion in terms of the XY-coordinate 
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system, R(t), and O(t), respectively. We can represent these functions in 
terms of their Taylor series expansions as: 

R(t)= R, + vRt+$aRt2 + H.O.T., (5) 

with R, , vR, aR the respective initial range, target radial velocity and 
acceleration. Similarly, the rotation angle is given by: 

0(t)=B,+wt+;at2+H.0.T., (6) 

and t?,,o,a are the respective initial angle, angular velocity and angular 
acceleration. 

If we assume that the target dimensions are small relative to its range, 
R(t), from the radar, that is, R>> max di, for the i-th scatterer location, 

di = Jx” + y:, then the instantaneous range of any scatterer at (x,y), in terms 
of the local xy-coordinate system is 

r(t) = R(t) + y(t) = R(t) + (xcos e(t) - ysin O(t)). (7) 

Substituting this expression into Eq. 4 gives 

m(t) = r j ptw)c 
-j~(R(r)+xcose(t)-ysin8(,)) 

’ dx dy, 
--m -00 

or simplifying we obtain the radar measurement 

.Zn$R(f) Cm - 
’ m(t) = e 

-I7 

II 
P(XT Yb 

-j2n(xKx(~P-Y~y(0)dx dy 
, 

q(t) = 2f -cos 6(t), 
C 

(8) 

KY(t) = 2.f -sin 0(t). 
C 

where K,, ~~ are the respective (spatial) wavenumbers. 

Examining Eq. 8 more closely, we see that the first term is the phase 
due to the target translation in range while the second term is the two- 
dimensional spatial Fourier transform (2DFT) of the target reflectivity 
function parameterized by t and defined by 
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where K l j; is the usual Euclidean inner product with Z = [z] and ;=[;I. 

Therefore we can express the radar measurement simply as 

m(t) = e 
-j%m~) 

c P(kg), (10) 

which shows that the target image or equivalently reflectivity function could 
be recovered by removing the target translational motion and taking the 
inverse 2DFT. We will discuss the details of the processing in Section III of 
this report. 

The Doppler frequency shift induced by the target’s motion can be 
obtained by differentiating the phase of the radar measurement with respect 
to time. The phase function of Eq. 8 is given by 

qCf,r)=F R(t) + XK;tt) - Y KY(t), (11) 

is therefore 

d&f4 47cf . 
dt 

= -R(t) + xri-,(t) - yr;;(t). 
C 

(12) 

From Eq. 6 iYe have 

k(t) = vR + aRt, (13) 

and the Doppler fkequency shift due to translational motion is therefore 

f =y(vR+aRf), 

which shows that the translational motion induces a time-varying Doppler 
shift, if the velocity is not constant. Correspondingly, the Doppler induced by 
the rotational motion is given in terms of the spatial wavenumbers, since 



ri-,(t) = 2f * -- B(t)sin O(t) = 
C 

- y (CO + at)sin O(t), 

KY(l) - 2f 2f - - B(t>cos t?(t) = -(cc, -I- at)cos e(t), 
C C 

(15) 

and therefore the time-varying rotationl,l Doppler shift is given by 

f Got +o+at)( xsin 0(t) + ycos O(t)). (16) 

Thus, we see that the Doppler of each individual scatterer is induced by 
its translational and rotational motion. Since this shift is related to the 
geometric position of the individual scatterer at (x,y) another scatterer at a 
different location within the target will have a different Doppler enabling it to 
be distinguished from the others. 

Next we will decompose the radar measurement when we use a 
stepped-frequency rather than monotone pulse transmitter. The stepped- 
frequency radar transmits a sequence of N-bursts of M-narrowband 
(frequency) pulses in which the center frequency of each successive pulse is 
increased by a constant frequency step, Af, 

f”, = f, + 4f 9 m=o,*~~,M-l; (17) 

at the carrier frequency, f,. The total bandwidth of a burst specifies the slant 
range resolution, ARSr, by 

Msr =&= Z(;Af) 

and the totalnumber of bursts, N, specifies the cross-range resolution as 

(18) 

a 
AR,,=----, 

2oT (1% 

where il is the radar wavelength -!- 
0 fC 

, u) is the angular velocity of the target, 

and T, is the observation time which is specified by the radar pulse repetition 
rate. Thus, for a stepped-frequency radar, the transmitted burst of 



narrowband pulses or equivalently the Stepped Frequency Waveform 
(SFWF) is given by 

pm (t,) = ej2@fmfn, m=o,***, M-l; n=O;**,N-1, (20) 

and therefore, the received signal of Eq. 30 is a temporal frequency domain 
signal given by 

-i2?fmR(tn) 
Wfm)=e c P(F7;t,), m = O;**,M-- 1; n = O;**,N-- 1, (21) 

which is a set of M-Fourier coefficients {M(f,)},m = 0; ..,M - 1; at time t,. 

Suppose we multiply both sides of Eq. 21 by eiztimrn and sum over m, then we 
have 

M-l 

c 

~-1 -j2nf,(R(~n)-tn) 

Mf,,)e 
i2tidrr - 

- e 
c c Ivet,), 

m=O tn=O 

which is simply the inverse discrete Fourier transform (IDFT) of M(f,), or 
more precisely, 

-PIrfmR(t,) 
m(t,) = IDFT [M(fm)] = IDFT ’ P(ii;t,) 

I 
) n = O,***,N- 1. (22) 

Thus, we see that the stepped-frequency radar measurement actually 
returns the target reflectivity response samples in the temporal frequency 
domain. Performing the IDFT on the measured data transforms it to the 
equivalent complex range profile space (range Vs. time). However, the usual 
processing is to first compensate for the range translational term (if known) 
and then perform the IDFT which would lead us back to Eq. 10 with the 
translational term removed. We discuss this in Section III. 

Finally, let us return to the expected Doppler returns from a stepped- 
frequency radar. For a single burst pulse at t,, we simply replace t -+ tn in Eqs. 
5 and 6; however, for a set of N-bursts we have t + t,,, corresponding to the 
m-th narrowband frequency pulse of the n-th burst (see Weh95 for more 
details). This completes the required background, next we discuss the ISAR 
simulation. 
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III. ISAR SIGNAL PROCESSING 

In this section we discuss the basic ISAR signal processing which is 
employed to enhance the resolution of the point scatterers representing our 
moving vehicular target. The usual approach of conventional (chirped) 
processors is to perform range compression through matched-filtering 
[Cur91,Joh96] and then use the Fourier transform to retrieve the Doppler or 
equivalently cross-range information. The underlying assumption for 
successful application of this approach is that all scattterers remain in their 
range cells and that the corresponding Doppler frequency shifts are constant 
during imaging. As observed from Eqs. 14 and 16, the Doppler shifts for a 
moving target vary as a function of time; therefore, the Doppler spectrum 
will be smeared blurring the radar image. The development of an 
instantaneous time-frequency estimator alleviates this problem [Che97], and 
the typical 2D range/Doppler image becomes a 3D time-range-Doppler cube. 
Note that instead of applying a sophisticated rotational compensation 
estimator to correct for the motion, this time-frequency approach improves 
classical performance at each time step, enabling the observation of high 
resolution target images at each frame. 

The basic signal processing operations performed on the measured 
ISAR (complex) data set obtained from a stepped-frequency radar are depicted 
in Figure 2. Due to the swept frequency transmission, the frequency domain 
data set obtained is defined in terms of the m-th frequency of the n-th burst as 
{M,(f,,)}, m = O,*..,M-- 1;n = O,..., N- 1 or if we use vector notation, we have 
the set of burst vectors defined by 

WLfJ &(f>= : 
i I 

; n=O;..,N-1; (23) 
wl(fM-1) 

where &E CMxl. After baseband processing, the range term in Eq. 21 must be 
compensated for by conjugate multiplication at each frequency step leading to 
translational motion compensation (TMC) which compensates for the gross 
effects of range by correcting for the translational motion of the target COR, 
that is, 

@Ad,(f); n=O,...,N-1; (24) 
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with 0 the Kronecker multiplication (element-by-element) and p E CMx*, the 
target reflectivity wavenumber-time spectrum. Once the TMC is 
accomplished, the target reflectivity function can be extracted from its 
spectrum through a 2D Fourier transform operation performed on 

Fi’ 
P( c,.,f) + p(2,t). Decomposing this operation into individual steps or 1D 
operations on the columns and rows leads to the desired target reflectivity 
function or equivalently range/cross-range, or range/Doppler image. 
Following Figure 2, we apply the inverse discrete Fourier transform (IDFT) on 
the basebanded, TMC measurement data of Eq. 24 to yield the desired range 
profiles as 

p(Rs,,t,)~IL>FTIP(~,t,)], n=O;*~,N-l, (25) 

where the slant range is defined in the usual manner as R,, - -d-which 
is a direct result of the columnwise transform. 

We note that the TMC in the above formulation is performed in the 
measurement or temporal frequency domain provided by the SFWF radar; 
however, the underlying assumption inherent in this approach is that the 
time dependent range, R(f,), is known a-priori enabling the correction to be 
performed (see [Weh95] for details). An alternative is to first perform the 
IDFT on the raw SFWF radar data (as in Eq. 22) essentially providing 
uncompensated range profiles (see Figure 5), that is, 

Next the time dependent range, &t,), is estimated from this uncompensated 
profile data using a minimum variance estimator discussed subsequently in 
Section IV and the equivalent TMC is performed to yield identical range 
profiles as 

@  &(Rs,.,t,,); n = O;..,N-1; (27) 

Equivalent frequency domain TMC algorithms have been developed 
[Weh95], but in this effort we choose to operate in the range profile (temporal) 
domain enabling the applicability of our approach to chirp or other type radar 
systems which collect range profile data directly. 
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Using either TMC approach, the M-dimensional wavenumber-time 
reflectivity vectors are transformed into the range-time domain. To be more 
specific, we define the temporal refectivity matrix as 

(28) 

The N-dimensional rows of this matrix are the m-th reflectivity range cell 
time series, PT( R,, t) E CtxN or equivalently the M-dimensional columns are 
the n-th reflectivity range profile given by the IDFT operation as 
p(R,,,t,J E CMxl. Thus, the synthetic range profile data is defined in terms of 
the target reflectivity. Next Doppler processing is performed. 

First, we assume that the target is slowly moving and the 
wavenumbers are approximately constant so that 

K, (0 = w -----%ose(t) + w 2 cos 8, 
C 

wf qt>- c - dsin e(t) + 2; 
(29) 

2 sin 0. 
C 

therefore, the temporal discrete Fourier transform (DFT) of the range profiles 
lead to the following range/Doppler or equivalently range/cross-range image, 

since the Doppler frequency is directly related to the cross-range. In fact, the 
direct relation between Doppler and cross-range enables the spectral analysis 
of the range -cell time series to separate the contribution of individual 
scatterers---assuming constant Doppler. 

As before, the frequency resolution is inversely proportional to the 
processing time duration T, therefore, Eq. 19 implies that 

fD = pRcr, 

12 
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e +j2KfmR(*tz)~,, (f ,n 

RADAR I 

\ 

ISAR IMAGE 
(Range/Cross) 

Figure 2. ISAR Processing for a Constant Doppler (Slow Moving) Target. 

and that variations in Doppler lead to variations in cross-range. If we assume 
that the Doppler space is subdivided into small range-Doppler cells, 
(AZ?,,,L?f,), then the movement of a particular scatterer within the target 
must be confined to a single cell during the processing interval T, that is, 
when the rotational velocity is constant, co(t) -+ OX T. The scatterer will 

rapidly move through a cell when 8 = +t, then AR,, 2 DwT or equivalently 

AR,, 2 DO, vhere D is the diameter of a circular bounding region enclosing 
the entire target and complete set of scatterers describing the corresponding 
reflectivity function. Thus, from Eq. 31 above we obtain 

(32) 

which implies that if this condition is violated due to the target rotation, then 
the image will be blurred. So, we see that conventional Fourier processing 
(DFT of range profiles) leads directly to the range/Doppler or equivalent 
range/cross-range radar image, when the target Doppler is constant. 
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Short-Time Fourier Transform Time-Frequency Estimation 

Suppose this is not the case and the Doppler frequency is time-varving, 
then the condition of Eq. 32 will be violated and radar image reconstruction 
using the Fourier transform will not be successful and we must resort to 
other means of so-called rotational motion correction (RMC). There are 
conventional approaches to this problem, if the motion is not too severe, 
such as polar reformatting, angle tracking etc. [Weh94,Sch91]; however, in 
this work we will take the approach of Chen [Che97] and investigate time- 
frequency estimation as an alternative. 

To see this recall that prior to performing the DFT or transforming to 
range-Doppler space, we have the range profiles of p(R,,,t,); n = O,..., N - 1. 
Now suppose we temporally window this reflectivity function and calculate 
its discrete Fourier transform over the finite window (of length L), then we 
obtain the so-called short time Fourier transform (STFT) of the profile for 
each time instant (see Figure 3 below), that is, 

L-l 

p(Rm,f,(k),t,)=Cp(Rm,t,,,)w(t,)e-i2”D’k”c, k=O,***,K--k(W 
e=0 

27rk where f,(k) = L ( 1 , is the discrete Doppler frequency. Thus, if we select a 

window of length L and slide it through the m-th range cell (time) series over 
each time index, t,, n =O,..., N -1; then we can create a set of cell 
spectrograms, {Pm(fD,t)}, m = O,...,M -1; each of which is an MxK 
range/Doppler image of the scatterers. That is, at each time instant (or 
window), we “stack” or order all of the corresponding spectra (n-th column of 
spectrograti) by range cell as 

therefore, at each n, we create the range/Doppler reflectivity image, p,(R,,,f,J 
composed of the spectra, l?i E ClxN. Unfortunately, the STFT temporal 
resolution is not t,, but at the resolution of the window length L because 
Doppler processing requires the scatterer to remain in the range bin over this 
window. This constraint has led to the application of time-frequency 
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estimators to the radar imaging problem. VJe will apply the STFT to our 
synthesized data set as well as a parametric estimator developed next. 

RADAR 
P.(fDJN-L-K) cl P,(f,.h-,-K-l) 

I 

. 

ISAR IMAGE CUBE 

\ 
(Range/Cross) 

Figure 3. ISAR IMAGE CUBE: Windowed Spectrogram Estimator using 
STFT (OY MVDR/MEM estimators). 

Parametric Time-Frequency Estimation 
.- 

Suppose we parametrically model the target reflectivity by an 
instantaneous time-frequency representation specified by an autoregressive 
moving average (ARMA) model. This model takes the general difference 
equation form, ARMA(N,,N,) given by 

A&-‘,t,)~,(t,)= c,(q-‘,t,)qJt,), (35) 
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for the range (cell) time series, p,(t,) = p( R,, t, ) , contaminated with zero- 
mean, white gaussian noise, E, - N(O,oi) and the corresponding m-tk range 
cell polynomials at the t, instant defined by 

A&&)=1+ %r*kk?-l+~~~+%lv, (t,)4-Na-‘, 

C*(fpJ,) = c,, +C,nl(t,*)q-l+...+C~N~ (tn)q-N”-‘. 
(36) 

Here the backward shift or delay operator is defined by, qdipm(tn) = P,(t”-i), and 
therefore, we can write Eq. 35 simply as 

N,-I NC-l 

P&J = - c atnk%h%z(t,~-k)+ c 
C,,&,$,(t,-k)* (37) 

k=l k=O 

If we take the DFT of the difference equation, then we obtain the 
instantaneous transfer function (ignoring stochastic aspect) 

H*(e’2’“‘D,tn) = 
P,(e’2”fD,t,,) = c,n(e’2”fDJJ 

E,(ei2@D,t,J A,(e’2”fD,$)’ 
(33) 

or more appropriately the corresponding ins tan taneous power spectrum 
given by 

(39) 

If we “stack” the spectra according to range cell at each time instant, then we 
obtain the required range/Doppler image (MxKxNJ-cube discussed previously 
as 

&LfD4l) . [ : 1 SM-,cfDJJ ’ 

n = 0;.*,N- 1, (40) 

with each cube element a ZD-range/Doppler or range/cross-range image at the 
specified time instant. 
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So we see that if we use the parametric ARMA(N,,N,) representation of 
the range profiles and transform them to the spectral domain, then we can 
obtain an instantaneous representation of the range/Doppler or range/cross- 
range image with the added advantage of the increased resolution inherited 
by the parametric representations along with the instantaneous temporal 
estimates. We summarize the instantaneous parametric processing 
operations applied to the SFWF data in Figure 4. 

There are a wealth of ARMA algorithms available in the literature 
[Can86,Lju87,Sod89], but since we are primarily interested in estimating the 
spectrum at each time instant, we confine our choices to those that are 
recursive-in-time enabling us to achieve our goal without the loss of 
temporal resolution evolving from window-based methods such as the STFT. 
Recursive-in-time algorithms (real) all take on the following generic form for 
the m-tk range profile: 

&&,*+l> = ~:,(tn)+G,ttnkn(tn) [parameter update] 

e, (t,, > = p, (t, > - fj, (t, > = P, (4 I- yI$, (tn )!L (b ) [prediction error] 

(41) 

with G, the’ so-called gain or weighting vector and the A symbol defining the 
“best” (minimum error variance) estimate at the specified time. There are 
also many variations and forms of this basic recursion [Can86], but here we 
will limit our application to the recursive prediction error method (RPEM) 
based on a local Gauss-Newton optimization method (see [Lju87,Sod89] for 
details). We will evaluate the performance of this approach and compare it to 
the STFT in the next section. 
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IV. ISAR SIMULATION 

In this section we discuss the simulator developed to generate ISAR 
signals used in the subsequent processing examples. We are developing a 
simulation based on the target reflectivity function of a target vehicle. The 
basic model consists of decomposing the 2D-reflectivity function into a set of 
ideal discrete point scatterers, p(x,y) + P(Xi,yj>, that is, 

i j 

where pij is the reflectivity of the ij-tk point scatterer. Next returning to the 
geometry of Figure 1 and realizing that the translational and rotational 
motion of the target can be modeled relative to its center-of-rotation, we 
develop the basic model. A model of the ISAR system and its corresponding 
image reconstruction is created. 

The ISAR system model is developed as a simulation which supposes a 
frequency stepped radar at the origin of a coordinate system and a number of 
point scatterers at various locations within the system as shown in Figure 1. 
The point scatterers rotate about the target central point, (COR) as a function 
of time. The COR is also allowed a radial degree of freedom so that the point 
scatterers travel towards or away from the radar as a function of time with 
constant velocity and acceleration parameters. The full motion of an object is 
then traveling with some speed relative to the radar and rotating within the 
ISAR beam. 

The SFWF radar simulator operates by first assigning locations or grid 
coordinates to the COR and point scatterers. Each point scatterer is defined in 
polar coordinates by a vector relative to the COR, the i-tk scatterer location is 

along with its corresponding scatterer angle as 

(43) 

Xi(tn) e,(t) = arccos d (t ). 
i n 
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RADAR 

PARAMETER 
ESTIMATOR 

(Recursive-h-Time) 

ISAR IMAGE CUBE 
, (Range/Cross) PARAMETRIC FOURIER ISAR IMAGING 

Figure 4. TSAR IMAGE CUBE: Instantaneous Spectrogram Estimator using 
Recursive-in-Time, Parameter Estimator. 

The translational motion of the target COR in 2D is defined by the time- 
varying coordinates (XCt, ), Y(t, J) as 

t2 
X(t,) = X, + v,t, f a, $-, 

t2 
Ytt,) = Y, + vytn + ay $-, 

(45) 

and therefore 

(46) 

Similarly, the target COR is given as before by 
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which leads to the individual scatterer rotations (in XY-coordinates) relative 
to the COR as 

@#,) = o,,,(t,)+6,(t). (48) - 

The ISAR scatterer simulation is then accomplished by first calculating the 
COR radial and rotational trajectories using Eqs. 46 and 47, and then 
adjusting each individual scatterer in target space using the relations 

The range trajectory of each scatterer (relative to the radar observer) is then 
simply 

I;(t,) = l. (50) 

Using these relations, the complex received signal from the synthesized 
SFWF radar is therefore, given by the superposition of all the scatterers 
composing the target reflectivity function 

m=O,*-*, M-l,n=O,...,N--1; (51) 
i=l 

This simulator is able to synthesize the returns from multiple point 
scatterers located at given positions relative to the COR. The scatterers can 
also be pre-programmed to travel with rotation and radial velocity to 
simulate the actions of a moving target within the ISAR beam. It synthesizes 
a SFWF radar illumination discussed in Section II. The simulator takes as 
parameters the radial velocity and acceleration as well as rotational velocity 
and acceleration and computes the course and position of each individual 
scatterer along the path. From these positions, the range is calculated for each 
point scatterer (Eq. 50) as well as its phase (Eq. 51) . 
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Parameters are assigned to give functions for the radial and rotational 
motions about the COR for each time sample during the simulation. With 
these parameters, the exact grid coordinate (Xi(t),Y,(t)) of each point scatterer 
can be calculated (see Eq. 49). From these results, the range to target is easily 
computed for each scatterer at each time sample (Eq. 50). Once the full 
motion of the target is simulated, the stepped frequency radar signal is created 
and applied to the moving target. A set of frequencies are defined as in Eq. 17 
along with the frequency step, Af. This step must be chosen carefully, so that 
frequency aliasing does not become problematic. The phase for each point 
target can now be calculated by applying the stepped frequency waveform to 
the targets at each time sample. Using the analytic signal, the return from a 
radar stepped frequency pulse is defined in Eq. 51. After computing for all m 
and t,, the time varying or instantaneous frequency response is the result. 
The data are collected and saved for future processing. 

The following simulation parameters were used to synthesize the 
translational and rotational motion of a vehicle observed by the radar: 

Table 1. Vehicle Simulation Problem: SFWF Radar Simulation Parameters. 

PARAMETER 
Propagation Velocity (c) 
Pulse Repetition Frequency (PRF) 
Frequency Step-Size (Af) 
Center Frequency ( f,) 

3 x lo8 (m/s) 
1x104 (Hz) 
1x107 (Hz) 

50 x lo9 mz) 
No. Frequency Bins (h/r) 
No. of Range Samples 
No. of Azimuth Bins (L) 
No. of Azimuth Samples 

256 
256 
64 

128 

Table 2. Vehicle Simulation Problem: COR/Scatterer Simulation Parameters. 



The results of the low-noise simulation are shown in Figure 5 below. 
Here the vehicle is represented by four point scatterers and their 
corresponding trajectories in the range-time plane are obtained by IDFT 
processing of the SFWF radar returns. Note the rotational sinusoidial 
scatterer traces on the translational parabolic arcs. Each scatterer travels at a 
different angular response relative to the overall target COR. 

Figure 5. Vehicle Simulation as Four (4) Point Scatterers with both 
Translational and Rotational Motion: Range(6.375m) x Time( 
37.5 set). 
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RANGE-ENVELOPE TMC ESTIMATION 

To obtain cross-range resolution, each time-slice within the window 
must be aligned so that the range is equivalent. TMC is accomplished by 
estimating the COR from the range profile data. First, the upper and lower 
range limits are estimated using threshold filtering for each profile (column) 
thereby defining its so-called range-envelope. The middle or average pixel 
between the upper and lower bound points is estimated to be the COR for the 
given profile (column) and therefore becomes the amount of rotation 
necessary to align the range bins in consecutive time samples. A second order 
polynomial model is fit to the estimated COR and compared with the original 
parameters used in the simulator. The effects of noise can be seen by directly 
comparing the original parameters with the estimated parameters after 
random noise has been added to the system. Each time sample is rotated 
accordingly to obtain the motion-compensated image window. 

We developed a range-envelope TMC algorithm to estimate the 
translational motion of the COR from each (uncompensated) range profile, 
&?,,,t,); n=o;** ,N-1 of Eq. 26. That is, after thresholding the 
uncompensated range profiles at level z, the mean value of each profile 
(column) is estimated based on the principle that each scatterer follows the 
same transversal motion of the COR, 

&t,) = E{lQ,(R,,,tn)}; n = O,*-*,N-- 1, (52) 

yielding a noisy lD-measurement sequence of the average range-envelope, 

1 > Rt,) * Next a minimum variance estimator is designed to estimate the 
transversal position, velocity and acceleration coefficients using a second 
order polynomial model of Eq. 5. We use the range polynomial model 

R(t)=R,+v,$+a,;= = zrwP -’ (53) 

which can be modeled stochastically with additive gaussian noise, 
n - N(O,a;I), as 

ii(t) = z*(t)cp + n(t). (54) - 

The translational estimator follows by letting t + t,; n = 0,..-,A!- 1, and 
“stacking” the equations of Eq. 54 to create the batch measurement model, 
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E=Tq+n, (55) - - 

with f = [act,) r?(t,) ... a(t,-,)lT, T E RNx3, g E R3x1. The minimum variance 
solution to this problem is well-known [Can861 and can be solved robustly 
using the singular value decomposition (SVD) algorithm to yield 

@,,, = (T~z-*T)-~T%-~~, (56) 

where X = cov(n). The minimum variance estimate of the corresponding 
translational trajectory for TMC is given by 

t2 
km”(tn)=f(tn)~m” =&+ i&+i&q. (57) 

We summarize the Range-Envelope TMC algorithm for ISAR SFWF 
data as: 

RANGE-ENVELOPE TMC ALGORITHM 

Step 1. Perform the columnwise lD-IDFT of the measured SFWF 
data, M,(f) to obtain the uncompensated range profiles, 
A& Rsr , t,) of Eq. 26; 

Step 2. Threshold filter the range profile data to bound the envelope 
limits obtaining, &($,,t,); 

Step 3. Estimate the average value of the thresholded profiles to 
produce the 1D measurement sequence, fi(t,); 

4. Step Estimate the sample noise variance, (;i from any “noise 
only” row of the raw range profile image, and create the 

._ noise covariance matrix, C = diag(oi); 

Step 5. Perform the minimum variance estimation to obtain, ennv 
of Eq. 56; 

Step 6. Perform the TMC at each time instant using &&t,) in Eq. 57. 
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We applied this processor to the simulated data set of Figure 5 with 
additive noise, c = &zg(o,2), CJ; = 1 x lo-? The following estimates were 
obtained: 

Table 3. Minimum Variance Estimates of Translational Trajectory 
Parameters for TMC. 

PARAMETER True Estimate 

Position 714 708 
Velocity 0.015 0.0105 

Acceleration 0.0005 0.00035 

These estimates are then used to perform the TMC of the range data using Eq. 
57 at each time step. Note that a recursive rather than batch parameter 
estimator can also be used to estimate the instantaneous radial velocity of the 
target for TMC (see Eq. 56). Any error in the estimation of the radial velocity 
results in a shift in subsequent images. 

We show the results of the TMC algorithm on the synthesized data in 
Figure 6. In 6a, we see the estimate of the range polynomial model (solid 
line) superimposed on the extracted envelope data (asterisks) of Eq. 52. The fit 
is quite good as expected in this high SNR case which demonstrates the 
concepts. In 6b we observe the results of applying the dynamic TMC to the 
range profile data of Figure 5 demonstrating the removal of the time-varying 
range trajectory. Next we process this corrected data with the simple STFT 
time-frequency estimator. 
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Figure 6. Translation Motion Compensation for Vehicle Simulation: (a) 
Range-Envelope TMC results. (b) Dynamically Compensated 
Range Profiles. 

STFT TSAR Imaging 

If the data are arranged in the temporal reflectivity matrix of Eq. 28 
such that the frequency increments from a particular time interval form the 
columns of a matrix, and each column is placed from left to right with 
increasing time, a time-varying image can be formed. That is, an image with 
time-dependent frequency response on the vertical axis and time increments 
on the horizontal axis. Taking the Fourier transform of each column yields 
the spatial locations of point targets at that time interval. Processing each 
column in this way yields the time-varying spatial response in the range 
direction of Figure 6b. 

STFT Doppler processing (see Figure 3 for details) is then used to obtain 
azimuthal, or -cross-range resolution. Since the Doppler frequencies for each 
point target are a function of time, a time window must be selected such that 
Doppler frequency smearing is minimized. At this point, the Doppler 
signature can be computed by calculating the spectrum of the range bin and 
shifting so that the DC component appears in the center of the image. 
Various methods of determining the spectrum can be used, each with it’s 
own effects. The FFT-based STFT can be used but is less effective if noise is 
present in the system. 
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The results of applying the STFT processor to the TMC data is shown in 
the montage of Figure 7 where each window is shown at approximately 1.5 
set frame rate of the 37.5 set simulation. The important point to note from 
the figure is that the vehicle target represented by the four (4) point scatterers 
can be observed in each frame with little smearing as would have been the 
case if the conventional Fourier processor of Figure 2 was applied. In fact, the 
rotational motion can clearly be observed in the montage demonstrating the 
effectiveness of the time-frequency approach. Unfortunately as mentioned 
before, the STFT is much less effective in a noisy environment and therefore 
more sophisticated processors must be employed in real world situations. In 
this work, we limit our attention to the parametric approach discussed next 
and applied to the simulated target data. 

Figure 7. TSAR Vehicle Image Reconstruction: STFT processing montage 
showing target motion at a 1.5 set fkame rate (start at upper left 
corner). 

V. PARAMETRIC (RECURSIVE-IN-TIME) ISAR IMAGING 

Our approach is to develop the recursive (in-time) spectral estimator 
discussed in the previous section which does not depend on time-windows. 
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A recursive spectral estimator can also be used to compute the Doppler 
spectra. First, the Doppler spectra can be computed and stored as a set of 
coefficients rather than a full vector. This can be an advantage for real time 
systems which rely on compressed data outputs. Secondly, the spectral 
coefficients represent a model of the instantaneous spectrum and can be 
expanded above the maximum resolution dictated by the Doppler bandwidth. 

PHASE IT WORK 

VI. SUMMARY 

In this report we have developed a recursive-in-time approach to 
estimating the instantaneous Doppler spectra for creating ISAR 
range/Doppler or range/cross-range images. We developed the required 
background theory to show precisely where the ISAR evolves from a stepped- 
frequency radar and how the final image can be improved using time- 
frequency estimation techniques following the work of Chen [Che97]. It was 
shown that for any significant target motion the corresponding Doppler 
frequency is directly effected. If this motion is not accounted for, then the 
Doppler information is smeared causing the final target image to be blurred. 
After basebanding the received SFWF measurements, target motion 
compensation (TMC) was performed to align the range as in SAR. The TMC 
estimator (minimum error variance) developed employs a polynomial 
parameter estimator to “fit“ the dynamic translational components of the 
target’s center of rotation (COR) to remove the radial velocity and 
acceleration effects. After applying the inverse Fourier transform to extract 
the various range profiles, the time-frequency estimation techniques were 
applied to extract the target images. I-Iere the STFT was used in the noise-free 
environment to demonstrate the basic principle, then as the signal-to-noise 
ratio (SNR) was decreased, more sophisticated parametric processors will be 
developed to extract the desired target reflectivity image. 

Finally we will develop the basic recursive-in-time approach (see Section III) 
and selected the recursive prediction error method (RPEM) of Ljung to apply 
to the ISAR problem (see [Lju87]). It will be shown that not only could it 
reproduce the STFT results, but also function quite well in low SNR 
environments. 
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