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A corrosion investigation was done at MODAR, Inc., using a 
supercritical water oxidation (SCWO) vessel reactor. Several types of 
multilayered ceramic rings and experimental nickel alloy coupons were 
exposed to a chlorinated cutting oil, TrimSol, in the SCWO process. A 
corrosion casing was designed and mounted in the vessel reactor with 
precautions to minimize chances of degrading the integrity of the pressure 
vessel. Fifteen of the ceramic coated rings were stacked vertically in the 
casing at one time for each test. There was a total of 36 rings. The rings 
were in groupings of three rings that formed five sections. Each section 
saw a different SCWO environment, ranging from 650°C to 300°C. The 
metal coupons were mounted on horizontal threaded holders welded to a 
vertical rod attached to the casing cover in order to hang down the middle 
of the casing. The experimental nickel alloys performed better than the 
baseline nickel alloys. A titania multilayered ceramic system sprayed onto a 
titanium ring remained intact after 120-180 hours of exposure. This is the 
longest time any coating system has withstood such an environment without 
significant loss. 





SUMMARY 

A goal of the Department of Energy (DOE) is to develop the supercritical water oxidation 
(SCWO) process for the treatment of some of its mixed waste inventories. In support of the 
SCWO design process, material systems capable of withstanding the harsh SCWO environment 
are being investigated. Three corrosion tests were run using the MODAR, Inc., SCWO vessel 
reactor to treat the chlorinated cutting oil TrimSol combined with surrogates of cerium chloride, 
zinc chloride, and lead chloride. The goal of the test was to expose the stack of ceramic rings and 
metal coupons to the five SCWO environments in order to compare their performance. The 
TrimSol was pumped at 3,400 psi and 40 mL/& It was mixed with the water and metals stream 
that had a flow rate of 80 mL/min. This was brought into the reactor and mixed with 350 L/min 
air and 300 Wmin of water heated up to 400°C. A corrosion casing was designed and mounted 

chances of degrading the integrity of the in the vessel reactor in a manner that mlnlmzzed 
pressure vessel. Fifteen of the 36 ceramic coated rings were stacked vertically in the casing at 
one time for each test. The rings were metal with multiple layers of ceramic coatings sprayed 
onto the inside of the rings. Each ring was 3 in. in height and 7 in. in diameter. The rings were 
cemented together inside of the casing. There were five groupings of three rings. Additionally, 
metal coupons were mounted on horizontal thread holders welded to a vertical rod attached to 
the casing cover in order to hang down the middle of the casing. The length of the casing 
traversed five different temperature zones ranging from 650°C to 300°C. Mer the reaction zone 
a quench stream diluted the process effluent from about 8,000 ppm of chloride concentration 
down to 5,000 ppm chloride concentration. The stream was not neutralized until it entered the 
cooldown zone near the bottom ring, near the last two coupon holders, just before it exited the 
casing through an exit pipe at the bottom of the casing. The processed waste stream produced 
hydrochloric acid, sulfuric acid, and salts during the SCWO reaction. The greatest interest was in 
the performance of the materials in the high temperature sections, and the transition section from 
supercritical to subcritical, approximately 400 to 350°C. 

. .  . 

The performance of the multilayered ceramics and experimental nickels was evaluated by 
comparison against the baseline nickel alloys C-22, C-276, Inconel 625, and Inconel 686. Three 
tests were run. The first test was for 60 hours with five temperature cycles. The second was for 
60 hours with just two temperature cycles. The third was for 120 hours with just tviro temperature 
cycles. It was anticipated that the temperature cycles would show if the ceramics tended toward 
delamination during startups or cooldown. For each temperature cycle the casing was allowed to 
drop to below 300°C. After the first 60-hour test the top three and bottom three rings would be 
removed and analyzed while three new rings were put into the top and bottom sections for the 
second 60-hour test. After the second 60-hour test the top and bottom six rings would be 
removed and replaced, and then the 120-hour test would be run. This plan allows for comparison 
between rings that saw the same test conditions but with a different number of thermal cycles. At 
the same time, the metal coupons would be rinsed and measured for weight loss after each test 
run. The ceramic rings were microsectioned and analyzed to determine what mechanisms of 
corrosion had affected the coatings. Effluent analysis would indicate how much of the surrogates 
were retained in the system, providing an indicator of deposition. 

The multilayered ceramic rings were designed to avoid delamination by a gradual change in 
the thermal coefficient of each layer. The high density top layer of the coatings was designed to 
prevent the absorption of metals or chlorides into the ceramic, though it was assumed that oxygen 

V 



would be able to pass through. Perpendicular cracks exist in the ceramic layers so that the layers 
may expand and contract on the inside diameter of the ring. These cracks are apparent at low 
temperatures and close at higher temperatures. The results of the test showed that sometimes 
these cracks became the avenue for corrosive elements to travel down contacting nickel/chrome 
layers. Once corrosion products formed between the layers spalling or delamination mechanism 
would begin. Initial results were used to develop a titania coating onto a titanium ring. Though 
the same cracks were present in the titania coating, the corrosion did not occur between layers 
and there was no delamination after 120 to 180 hours of exposure. 

The baseline metal coupons performed very badly as expected while the experimental nickel 
alloys performed better in all temperature zones. 
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Corrosion Investigation of Multilayered 
Ceramics and 

Experimental Nickel Alloys in SCWO Process 
Environments 

1. INTRODUCTION 

The U.S. Department of Energy (DOE) has accelerated its efforts to convert its mixed waste 
inventories into disposable materials in the most efficient ways possible. Irm the past few years 
supercritical water oxidation (SCWO) has emerged as a technology capable of treating a portion 
of DOE mixed waste. For further information on the SCWO process, the reader is referred to 
the bibliography in Appendix k Extensive testing done in cooperation with the private sector, 
universities, and other national laboratories has repeatedly shown that the major technical 
constraint of SCWO is the lack of practical materials of construction capable of withstanding the 
harsh environments of the SCWO process. A two-fold approach has been taken to overcome this 
constraint. Reactor designs have attempted to use fluid boundaries to keep the process fluids 
away from the reactor wall, and tests have been held to identi@ material systems suitable for the 
process. Future designs of pilot plants will incorporate the knowledge from both of these 
approaches. 

. Some of the different material systems that have been previously investigateda beyond the 
nickel alloys include ceramics, titanium, and the noble metals. The expense of noble metals is not 
practical as a structural component at a pilot-plant scale, and monolithic ceramics, though 
inexpensive, can be geometry dependent and too brittle for industrial handling. The approach 
taken in this work was thermally spraying multiple layers of ceramic onto a metal substrate. This 
process is widely used in industry, particularly the aerospace industry, for protecting components 
in harsh environments. A gradual change in thermal expansion properties allom each layer to 
expand and contract under thermal and pressure stresses without delamination. The multiple 
layers were sprayed onto the inside surfaces of rings for this experiment because this was 
considered the most relevant geometry to investigate for the SCWO process. 

There are two particular environments of the SCWO process that arc the most challenging. 
The first is the high temperature (650°C) reaction zone where molten salts deposit onto substrates 
forming severe corrosion cells and the second is the transition temperature zone (400-300"C) 
where the fluid changes from a supercritical phase to a subcritical phase and forms highly acidic 
liquids. The test was configured to place the ceramic rings and a variety of metal samples into 
both of these environments. 

a. Telephone conversation with Mike Spriwr, General Atomics, July 23,1993. 
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2. PURPOSE 

The purpose of this work was to fabricate and test a variety of multilayered ceramic coated 
rings in order to identify the response of the coating-substrate systems to the highly corrosive, 
high temperature, high pressure environment. The investigation was to determine if different 
coating-substrate systems reacted differently to the combination of thermal cycles, hoop stress, 
corrosion, and deposition of salts and metal oxides. It was the intention of the task that a 
practical, manufacturable material be identified. In addition to ceramic coating-substrate systems, 
various alloys were tested for comparison during the same tests. Inconel 625, C-22, and G276 
were included to serve as reference points. The composition and microstructure of these 
developed alloys would give insight into what elements were effective for corrosion resistance in 
an SCWO environment. 
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3. TESTPLAN 

The tests were run in the MODAR, Inc., pilot-scale SCWO system. The test conditions 
created an actual operating’state within the MODAR reactor. The SCWO environment was 
created by using TrimSol mixed with water and air heated to produce a reaction at 650°C at 
3,400 psi. TrimSol is a chlorinated machine cutting oil produced by Master Chemical Co. It is 
classified as 20-30% chlorinated alkene polymer combined with alkali petroleum sulfonate, alkyl 
phenol polyoxyl ethylene, and alkali fatty soap. Analysis shows the compound to consist of 
chlorine, 120,000 ppm; sodium, 4,990 ppm; sulfur, 9,140 ppm; and potassium, 1,750 ppm. 

The following solids were added to simulate an actual DOE waste: 5,400 ppm CeCl,, 
2,850 ppm PbclD and 2,250 ppm ZnSO, (later changed to Zncl). These surrogates were chosen 
to compare the materials’ behavior to a previous test.’ The TrimSol was pumped at 3,400 psi 
and 40 mL/min. It was mixed with the water and metals stream that had a flow rate of 
80 A/&. This was brought into the reactor and mixed with 350 L/min air and 300 A/mh of 
water heated up to 400°C. Three tests were run. The first test was for 60 hours with five 
temperature cycles. The second was for 60 hours with just two temperature cycles. The third was 
for 120 hours with just two temperature cycles. It was anticipated that the temperature cycles 
would show if the ceramics tended toward delamination during startups or cooldown. For each 
temperature cycle the reaction zone was allowed to drop to below 300°C. 

Within the vessel reactor a casing was suspended downward horn the nozzle, with an exit 
pipe at the bottom of the casing. The system configuration is shown in Attachment 1, Figures 1 
and 2. A quench stream diluted the process effluent .and neutralization occurred just before it 
exited the casing. Within the casing were 15 stacked rings. The rings were metal with multiple 
layers of ceramic coatings sprayed onto the inside of the rings. Each ring was 3 in. in height and 
7 in. in diameter. The rings were cemented together inside of the casing. A corrosion rack was 
suspended down the center of the stack of rings and metal coupons were placed on branches of 
the corrosion rack The length of the casing traversed five different temperature zones ranging 
from 650°C to 300°C. 

M e r  the first 60-hour test, the top three and bottom three rings (six rings) would be 
removed and analyzed while three new rings were put into the top and bottom sections for the 
second 60-hour test. After the second 60-hour test, the top and bottom six rings (twelve rings) 
would be removed and replaced, and then the 120-hour test would be run. This plan allowed for 
comparison between rings that saw the same test conditions but with a different number of 
thermal cycles. At the same time, the metal coupons would be rinsed and measured for weight 
loss after each test run and then placed back onto the coupon tree. The ceramic rings would 
then be microsectioned and analyzed to determine what mechanisms of corrosion had affected the 
coatings. Effluent analysis would indicate how much of the surrogates were retained in the system 
providing an indication of deposition. 

b. C. Shapiro, K Garcia, and J. M. Beller, “Treatment of a Simulated Mixed Waste with Supercritical Water 
Oxidation,” Proceedings of the 2nd International Symposium on Mxed Waste, Baltimore, Ma@a& August 17-24 
1993, pp 10.3.1-10.3.16. 
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4. TESTSETUP 

4.1 Description of Ceramic Ring Arrangement 

There was a total of 36 rings. For each test, 15 coated rings, 3 in. high and 7 in. ID were 
stacked, cemented together, and placed inside a casing. The casing was mounted inside the 
MODAR SCWO vessel reactor. 

The casing was 48 in. long and included five sections of distinct chemiWenvironmenta1 
zones. See Figures 1 and 2. Section 1 includes the top three rings and is defined as in the 
reaction zone. The temperature decreases through Section 4 where the quench water would be 
introduced and Section 5 is where the outlet tube mixes the process stream and diluted caustic to 
produce a neutralized effluent. The quench stream diluted-the process effluent from about 
8,000 ppm of chloride concentration on an aqueous basis, down to 5,000 ppm chloride 
concentration. The sulfate-to-chloride concentration was approximately 1:lO. As the hot reaction 
products entered Section 4, they began to condense forming saltwater and acids. These liquids 
were quenched to a resulting pH of approximately 0.9. Neutralization was carried out in Section 
5 and created a brine with a pH of 6 at the bottom 2 in. of the test casing. The stream was not 
neutralized until just before it exited the casing through an exit pipe at the bottom of the casing. 
Neutralization was accomplished with sodium hydroxide in the first 60-hour test and with sodium 
bicarbonate thereafter. Due to the experimental design of stacking the rings, and the ceramic 
only covering the inside surface and not the edges of the rings, it was assumed that there would 
be edge attack on each of the rings where the metal substrate could be exposed. Only the middle 
1 in. of the ring height would show valid corrosion mechanisms and coating performance. Air and 
water at 3,400 psi and 4W0C were introduced to the vessel reactor through an annulus while the 
TrimSol and water were brought to 3,400 psi and introduced to the SCWO reactor through a 
nozzle. The two streams mix, causing the reaction and forming reaction products containing 
chlorine, sodium, phosphorus, sulfur, calcium, cerium, zinc, and lead. The axial fluid temperature 
profile was monitored by thermocouples located within thermowells in the center of the casing. 

4.2 Description of Metal Arrangement 

The casing cover plate carried a vertical rod that spanned the entire length of the ring stack 
Short horizontal threaded rods were welded to the vertical rod at each ring position. The rod and 
holders were made from hconel 625 without any heat treatment after welding. Several metallic 
corrosion coupons were mounted onto each threaded rod. Ceramic washers were used as spacers 
between the coupons. Figure 3 shows this arrangement. 
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5. COUPON DESCRIPTION 

5.1 Plasma Sprayed Multilayered Ceramic Rings 

Thermal spraying is a deposition technique where a heat source such as a combustion flame 
or nontransferred arc plasma is used to heat a feedstock in wire or powder to above the melting 
point of the material. The small, approximately 0.001 in. (0.02 mm) molten particles are 
propelled toward the substrate and freeze upon impact at a rate of 105 to lo6 "C/sec. The spray 
parameters and the rate of material deposited onto the surface is adjusted to maintain the 
substrate at a desired temperature to obtain certain levels of residual stress. The lower range of 
these temperatures is from less than 250°F (121°C) to over 1000°F (537°C). Thekal  spraying is 
an industrial technique for coating a range of components from gas turbines for hot corrosion and 
erosion protection to machine element buildup where heat distortion cannot be tolerated through 
aluminum and zinc coatings for atmospheric and marine corrosion protection. Spray rates range 
from 5 Ibs/hr (2.2 kg/hr) for ceramics to 40 l b s h  (18 kg/hr) for metals. Most production coatings 
are applied with automated systems. The annual value of thermally sprayed coatings in the U.S. is 
estimated above $1 billion. 

The practical lower limit for each layer of coating thickness is 0.003 in. (0.07 ma) for a 
continuous coating. Most materials can be sprayed to thicknesses in excess of 0.5 in. (13 mm). 
This line of sight process deposits coatings in layers typically 0.0005 in. (0.013 mm) with each pass 
of the spray device. Multiple passes of the spray device are made to achieve the desired 
thickness. There is a porosity associated with the sprayed deposit of between 0.2% and 12% 
depending on spray parameters and material. . In many applications this porosity does not effect 
service. 

The eight different combinations of coatings and rings were defined as A, B, C, C', D, E, F, 
and F'. Thirty of the rings used Inconel 625 as the substrate and six used titanium as the 
substrate. Of the six titanium rings, four were Gr 2 and two were Gr 12 titanium. The thermal 
spray technique can be adjusted such that the residual stress in the coating is at a minimum at a 
chosen temperature. The coatings were designed to be at the minimum stress at a midpoint 
temperature between the high temperature of 650°C and room temperature. See Table 1 for the 
coating thicknesses. The coatings were designed for a high density top layer. In cases where 
porosity is of concern, the coating parameters can be adjusted to reduce the porosity to below the 
level where the pores are interconnected. The porosity and microcracks in the coating allow 
additional expansion and contraction in the coating system to better match the substrates 
movement due to stresses. The coating must eventually be evaluated in the service environment 
to determine the best compromise for the levels of porosity and allowable stress. 

The approach to designing a coating system was to select a bond coat similar in thermal 
properties to the substrate. The bond coat was a nickel/chrome/aluminum combination for 29 of 
the rings and seven rings received a titanium/alumina/vanadium combination. Of those seven, five 
had a titanium substrate and two had an Inconel 625 substrate. A common concern is the 
interlayer adhesive strength of the layers. A graded transition is put between the layers by 
alternating materials. For example, during the titanium to titania transition, a mixture of titanium 
and titania is sprayed to increase the intermediate layer's bond strength. 
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5(032494)048 

5(032!594)049 

B 

C 

NiCrAl bond 

0.006 in. 

NiCrAl/7%YZ 7%YZ 

0.007 in. 0.016 in. 

0.006 in. 

NiCrAl bond 

~~ 

0.008 in. 0.013 in. 

NiCrAlP%YZ Alumina 7%YZ 

5(040894)059 B 3,1425 

4, 1-625 

5(040894)060 C 5,1425 

Run number 

5(042594)071 

Ctg./ring spec. Ring no./mat'l. NiCrAl bond 

C 1, 1-625 -- 0.005 in. 

5(042594)072 

5(042594)073 

NiCrAl bond 

D 4*, 1-625 0.004 in, 

24,1425 0.004 in. 

NiCrAl bond 

E 7*, 1-625 0.005 in. 

5,1425 0.005 in. 

0.005 in. 

NiCrAl/TiO, 

0.005 in. 

0.005 in. 

0.005 in. 

~ ~~~ 

0.011 in. 

EO, 

0.011 in. 

0.011 in. 

0.011 in. I 6,1425 0.005 in. 

Table 1. Coathg/ring descriptions for the 36 rings delivered. 

Fmt set-15 rhgs Layedaverage thicknesses 

Run number Ctg./ring spec. I+- 

Run number Ctg./ring spec. 
I 

Ring no./mat'l. 

5(040894)058 I A  I 1,1-625 

2, 1-625 

0.006 in. 

0.006 in. 0.015 in. 0.007 in. 0.004 in. 

0.005 in. 0.016 in. 

0.005 in. 0.016 in. 

~~ 

NiCrAl bond 

0.006 in. 

I 16,1425 
~ 

0.006 in. 

Third set-7 rings 

NiCrAI/TiO, 1 EO, 

0.005 in. 0.013 in. 

NiCrAlh02 1 E< ~ 

0.005 in. 0.011 in. 

7%Yz 

0.007 in. 
~ ~~ 

0.007 in. 

24%MgZ 

0.006 in. 

0.011 in. 

0.006 in. 
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Table 1. (continued). 
Fourth s e t 4  ring 
Table 1. (continued). 
Fourth s e t 4  ring 

Run number Ctg./ring spec. Ring no./mat'l. NiCrAl bond NiCrAlmO, TO, 

C 1, Gr 2 Tiianium 0.004 in. 0.005 in. 0.013 in. 

Ti-6AI-4V bond Ti4/U-4V/TiO2 TO2 

F 2*, Gr 2 Tiianium 0.007 in. 0.005 in. 0.015 in. 

3-4, Gr 2 Titanium 0.004 in. 0.005 in. 0.015 in. 

.5-6, Gr 12 Tiianium 0.004 in. 0.006 in. 0.015 in. 

74,1425 0.004 in. 0.006 in. 0.015 in. 

I' I 

There were two types of zirconia top coats, a zirconia partially stabilized with 7% yttria, and 
a zirconia partially stabilized with 24% magnesia. See Table 1 for each coating description. 

Coating A was the basic design with the nickel/chrome/aluminum bond coat, then a 
transition coat of nickel/chrome/aluminum/7% partially stabilized yttria/zirconia (7% Y Z ) .  The 

' top coat was 7% Y Z  chosen because previous corrosion tests have shown good performance of 
zirconia in SCWO envir0nments.C 

For Coating B an additional alumina interlayer was added beneath the 7% Y Z .  Coating C 
used the same bond coat as Coatings A and B but had a transition layer of 
nickel/chrome/aluminum/titania and a top coat of titania. Coating D was the same as Coating C 
but with an added top layer of 7% Y Z .  Coating E was again the same as Coating C but with an 
added top layer of 24% MgZ. 

Coating F was a complete titaniahitanium system on a titanium ring. The bond &at was 
titanium/aluminum/vanadium, the transition coat was titanium/aluminum/vanadium/titania, and the 
top coat was titania. Coating F' was the same except the substrate was Inconel 625. 

5.2 Experimental Nickel Alloys and Baseline Nickel Alloys 

The chemistry of the nickel alloys is given in Table 2. The following NiCrMo alloys were 
chosen for the test program: Inconel 625, Hastelloy C-276, Inconel 686, Hastelloy C-22, and 
alloys 620 and 621 alloys (experiential alloys developed between the INEL and Haynes 
International). 

c. Telephone conversation with Mike Spritzer, General Atomics: 
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Table 2. Chemistry of tl e nick 

cr 
15.26 

- 
- 
21.20 

21.89 

20.40 

- 

- 
21.20 

- 
25 

25 

25 

25 

- 

- 
- 

:1 alloys. 

CO-135; 

V-. 14; W-3.0 
~~ ~~ 

.25 Cb+Ta3.42 

.04 co-.o4; 
Cb-.08; 
W-4.06 

CO-1.w 
V44; W-3.0 

Nio-55 

W-3.0 
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6. TEST EVENTS 

The goal of Run 937 was to establish the flow rates needed to get the desired temperature 
profile in the reactor. The temperature at the nozzle was greater than 600°C, the temperature 
18 in. below the nozzle was greater than 550°C, 36 in. below the nozzle was approximately 400°C, 
and 42 in. below the nozzle was approximately 300°C. 

Lead sulfate precipitated from the feed mixture in Run 937. An estimated 2% of the lead 
made it into the feed stream. The zinc sulfate was switched to zinc chloride to alleviate the 
problem. This run showed flaking, peeling, and separation of ceramic coating from all the rings 
except those composed of titania. The Type A and B coatings showed severe delamination so all 
were replaced. Thirteen rings were replaced including three titania rings. 

In Run 939/940, the quench water inlet tube was extended up 3 in. with two horizontal 
streams of water coming out at 180-degree angle. The second 60-hour test was conducted 
without the five thermal cycles of Run 937/938. See Table 3. This would show if the multiple 
thermal cycles were the principal difficulty. The performance of the titania coating was better 
than the zirconia coatings. Further testing focused on several versions of a titania coating system. 

In Run 941/942, the 120-hour run had more titania coating rings added and some ZrO, 
coatings were reused to fill the necessary 15 slots. One titania coated on Ihconel ring saw a total 
of 240 hours while three titania on titanium saw a total of 180 hours. 

A calendar of the test events is outlined in Table 3. The system was shut down by cutting 
off all feeds at once. This is called a hot dry shutdown. This allows for deposition to be 
observed. 
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Table 3. Calendar of test events during March to June 1994. 
- 

Sunday Monday Thursday Friday Saturday 

03/28 03/29 03/30 
Testing starts 
with IPA 

03/31 
Testing starts 
with TrimSol 
Run 937 
Hot dry shut 
down 

04/01 
Testing can is 
pulled 

04/02 04/03 

04/04 Metal 

rinsed and 
Observed 

COUpOnS 

04/05 
System shut 
down 

04/06 System 
brought back 
on line Run 
938 

04/07 Hot 
dry shutdown 
to observe 
nozzle then 
system 
started again 

04/08 System 
shut down 
after 26.2 hr 
of 60-hr test 
run #938 

04/09 04/10 

04/11 
System start 
up Run 938 

04/12 
Hot dry 
shutdown for 
cycle #4 

04/13 System 
shut down 
End of first 
60-hr run 

04/14 
13 rings. 
pulled and 
replaced 

04/15 
System shut 
down 

04/16 04/17 

04/18 04/19 04/20 04/21 04/22 04/23 04/24 

04/25 04/26 04/27 04/28 04/29 04/30 05/01 

05/02 
Run 939 
Starts 

05/03 
Run 939 
stops 

05/04 
System shut 
down 

05/05 
System shut 
down 

05/06 
System shut 
down 

05/07 05/08 

05/09 
System shut 
down 

05/10 
System shut 
down 

05/11 
Run 940 
Starts 

05/12 
Run 940 

05/13 
Run 940 
ends. End of 
2nd &hr run 

05/14 
8 rings pulled 
and replaced 

05/15 

05/16 05/17 05/18 05/19 05/20 05/21 05/22 

05/23 05/24 05/26 05/27 05/28 05/29 

05/30 
System shut 
down 

05/31 
System shut 
down 

06/01 
System shut 
down 

06/02 

begins 

Run 941 
06/03 
Run 941 

06/04 
Run 941 ends 

06/05 

06/07 
Run 942 

06/08 
Run 942 

06/09 
Run 942 

06/10 
Run 942 

06/11 
Run 942 ends 

06/12 06/06 
Run 942 
begins 

12 



7. TESTDATA 

7.1 Ceramic Rings 

The test data are described here in approximate chronological order of the rings that were 
tested. The successful titania coatings are described last because the decision to go to an 
all-titania system was only made after the initial 60-hour test results. The ceramic coating was 
only on the inside of each ring. The substrate was exposed on the top edge of each ring. Edge 
degradation was expected and was not considered as a failure of the coating. The ring numbering 
system is derived from the manufacturing numbers (see Table 1 for the composition information). 



The following photographs (Figure 4) show the condition of 047-1 (Coating A) and 047-5 
(Coating A) after testing. Although both rings have the same coating, they were in two different 
sections of the test. 047-1 was in Section 1 while 047-5 was in Section 5 during the first 60-hour 
test. 047-1 had salt deposits and the coating was blistering while 047-5 had already delaminated. 
The lower temperature section degraded Coating A more than the high temperature zone. Three 
other rings had similar coatings and were in the first 60-hour test. After the test the rings were 
described as follows: 

047-2 Coating A Blistering, peeling, edge chipping 

047-3 Coating A A few blisters, and edge chipping 

047-4 Coating A A few blisters, some erosion. 
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Figure 4. Condition of 047-1 (Coating A) (top) and 047-5 (Coating A) after first SCWO test. 
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The following photographs (Figure 5)  show the condition of 048-6 (Coating B) and 048-10 
(Coating B). Coating B was the same as Coating A except an alumina interlayer had been added. 
048-6 is from Section 1 and 048-10 is from Section 5 during the first 60-hour test. The 
temperature range was not as significant to this type of coating as both of these rings 
delaminated. Three other rings had similar coatings and were in the first 60-hour test. M e r  the 
test, the rings were descriied as follows: 

0 048-7 B Blistering, peeling, disengagement; delamination at alumina layer 

048-8 B Blistering, peeling, disengagement 

048-9 B Cracks, disengagement, and blistering. 

Three other rings from the second 60-hour test: 058-1 (Coating A) from Section 1, 
058-2 (Coating A) from Section 5, and 059-3 (Coating B) from Section 1 were described as having 
delaminated. 

The ring 059-4 (Coating B) had cracking from an edge attack after 60 hours in Section 5, 
after an additional 120 hours in Section 2 the coating was gone over 80% of ring. 

16 



Figure 5. Condition of 048-6 (Coating B) (top) and 048-10 (Coating B) after first SCWO test. 
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The following photographs (Figure 6) show the condition of 049-11 (Coating C) and 049-16 
(Coating C). 049-11 is from Section 1 and 049-16 is from Section 5 during the first 60-hour test. 
Both of these rings did well after 60 hours. The brine line can be seen in 049-16 as it was the 
lowest ring in the stack The top 1 in. of the 049-16 ring shows the edge attack on the coating. 
The other ring removed after the first 60-hour test was the 049-14 (Coating C) in Section 4 
because of edge infiltration causing cracks and corrosion of the base metal. 
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Figure 6. Condition of 049-11 (Coating C) (top) and 049-16 (Coating C) after first SCWO test. 
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The following photographs (Figure 7) show the condition of 049-12 (Coating C) after 120 
hours of testing. The coating had looked intact after the first 60 hours but then had delaminated. 
The other two rings in the same section (Section 2) were in the reactor for the second 60-hour 
test. Both 072-3 (Coating D) and 073-5 (Coating E) showed heavy blistering of the zirconia outer 
layer but the titania layer underneath was still intact. This would correspond to the behavior of 
049-12 in the first 60-hour test. Similar rings were described as follows: 

0 0606 C Nodamageobsemed 

0 072-2 D ZrO, gone, significant loss of TiO, 

0 072-4 D Heavy blistering, TiO, intact after 60 hours, coating half gone, flaking after 
120 hours 

0 073-6 E Heavy blistering, TiO, intact after 60 hours, coating half gone, flaking after 
120 hours 

0 073-7 E ZrO, gone, TiO, intact after 60 hours, cracked, chipped, and flaking after 
120 hours. 
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Figure 7. Condition of 049-12 (Coating C) (top), condition of 072-3 (Coating D) (middle), and 
condition of 073-5 (Coating E) after second SCWO test. 
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The following photographs @pres 8 and 9) show the condition of 060-5 (Coating C) from 
the second 60-hour test. 060-5 was in Section 1. There was some peeling of the titania layer in 
contrast to how 049-11 (Coating C) had behaved in Section 1 in the first 60-hour test. A similar 
ring (071-1 Coating C) from Section 4 showed a patch of delamination while 049-13 (Coating C) 
in Section 3 looked intact after 60 hours. There was no observable degradation after 120 hours, 
and after a total of 240 hours patches of the substrate were visible. The titania coating had either 
thinned or small sections had spalled off, when the patches of delamination occurred. Section 3 
was considered the least harsh environment present and seem to allow Coating C to survive long 
enough for either thinning or spalling to occur. 

The one Type C coating on a titanium ring looked intact after 120 hours in Section 2 
(082-1 coating C') though one bump was observed. 
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Figure 8. Condition of 060-5 (Coating C) and 071-1 (Coating C). 
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Figure 9. Condition of 082-1 (Coating C). NiCrAlLCiO, coating on titanium substrate after 
108-hour exposure. 
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The following photographs (Figures 10-12) show the Type F coatings. 0834 was in good 
condition after 120 hours in Section 5 though it is hard to see the coating due to the salt 
deposition. Both 083-3 in Section 3 and 083-5 in Section 1 were also in good condition after 
120 hours while 083-8 in Section 5 shows delamination. The difference between 0834 and 083-8 
was that 083-8 was on an Inconel 625 ring while the others were on a titanium ring. The same 
results were seen with 083-2 in Section 1 and 083-6 in Section 4, which were on titanium rings 
and did well, while 083-7 in Section 1 on an Inconel625 ring was cracked, chipped, and flaking. 



Figure 10. Condition of 083-4 (F Coating). Ti-6Al-4VD'i02 coating on titanium substrate intact 
after 108 hours of exposure in the bottom position of the reactor. 
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7.2 Experimental Alloys 

The following photographs (Figures 13 and 14) show the metal coupons from Section 1 and 
Section 5. An Inconel 625 coupon is shown in Section 1 for comparison, and a Hastelloy C-22 
coupon is shown from Section 5 for comparison. The coupons were weighed after each run after 
being cleaned in accordance with ASTM procedure. The data are presented in Table 5. 
Photographs were done with an optical stereomicroscope at 3x to 4Ox magnification. The results 
of the photographs showed dissolution and pitting to have been the corrosion mechanisms. 
Table 4 is a summary of the total milshear rate of corrosion. All commercial nickel alloy samples 
suffered severe corrosion with weight losses ranging between 14 and 30% except for the G276 in 
Section 1, which had a weight loss of 67% after the iirst 60 hours of testing. Some coupons were 
pulled after only a short period of testing due to severe pitting, while all the samples showed signs 
of pitting and crevice corrosion. 

The experimental alloys in Section 5 were below the water line and saw a caustic 
environment instead of an acid environment. 
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Section 1 

621 

Figure 13. Metal coupons from Section 1. 

RSP-3 
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Figure 14. Metal coupons from Section 5. 
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Table 4. Mils per year corrosion rate of the metal coupons. 

Table 5. Shows the actual weight change in the metal coupons by section. 
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8. DATA ANALYSIS 

8.1 Analysis of Performance by Section 

The analysis of the ceramic rings and metal coupons was first done by comparing the 
performance by sections. The chemical environment of each section was described by the 
pressure, temperature, pH, and presence of particular compounds. Discussions of pH are 
dependent on assumptions of atmosphere and temperature. When pH is referred to at 
supercritical conditions, it implies the pH of the corresponding cooled liquid. When HCl is at 
supercritical conditions it is actually molecular HCl gas and not ionized so the amount of 
hydrogen ions at the surface of the metal is quite reduced. It is only when the temperature is 
brought down that the acid fonns and dissolves in the water, causing a significant increase in the 
amount of hydrogen ions present at the surface. 

Coating A was the basic design with the nickel/chrome/alumina bond coat, then a transition 
coat of nickel/chrome/alumina/7% partially stabilized zirconiaiyttria (7% YZ). The top coat was 
7% YZ chosen because previous corrosion tests have shown good performance of zirconia in 
SCWO environments! For Coating B an additional alumina interlayer was added beneath the 
7% YZ. 

Coating C used the same bond coat as Coatings A and B but had a transition layer of 
nickel/chrome/alumina/titania and a top coat of titania. Coating D was the same as Coating C but 
with an added top layer of 7% YZ. Coating E was again the same as Coating C but with an 
added top layer of 24% MgZ. 

Coating F was a complete titania/titanium system on a titanium ring. The bond coat was 
titanium/alumina/nadium, the transition coat was titanium/alumina/vana&um/titania, and the top 
coat was titania. Coating F' was the same except the substrate was Inconel 625. 

8.1.1 Section 1 Environment-Temperature 650°C, pH of 0.8 

In Section 1 of the corrosion test, the temperature was 650°C and all fluids were in a 
supercritical phase. The feed included 350 Llmin of oxygen, 9,OOO ppm of chloride, and 900 ppm 
of sulfate. Both acids and salts form in this section with the salts depositing onto the ceramic 
walls and coupon tree. 

8.7.7.7 Ceramic Coupon Analysis. 

First 60-hour test: Rings: 047-1 (Coating A), 048-6 (Coating B), 049-11 (Coating C). 

Second 60-hour test: Rings: 060-5 (Coating C), 058-1 (Coating A), 059-3 (Coating B). 

120-hour test: Rings: 083-5 (Coating F), 083-2 (Coating F), 083-7 (Coating F'). 

-~ 

d. Telephone conversation with Mike Spntzer, General Atomics. 
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These nine rings were at the highest temperature of the test. In the first 60-hour test, the 
two rings with the zirconia top layer (047-1 and 048-6) both showed blistering, peeling, and edge 
chipping. The ring coated with the titania top coat (049-11) did not show any defects. The two 
rings with the zirconia top layer (059-3 and 058-1) delaminated in the second 60-hour test. The 
ring coated with titania (060-5) showed some peeling of the top coat. In the 120-hour test the 
two rings that were titania sprayed onto titanium (083-2 and 083-5) showed no defects while the 
one ring that was titania sprayed onto Inconel 625 substrate (083-7) showed cracking, chipping, 
and spalling. An indepth analysis of Ring 047-1 is presented in Section 8.3. 

8.7.7.2 Metal Coupon Analysis.e 

The experimental nickel alloys of Section 1: 

The 620 coupon had general corrosion over 80% of the exposed surface and crevice 
corrosion. The depth of attack was up to 8 mils. 

The 621 coupon had general albeit not quite uniform attack virtually over the entire 
surface. 

RSPl had severe corrosion up to 12 mils. 

RSP2 had relatively minor crevice corrosion with attack up to 3 mils. 

RSP3 was similar to RSP2 but had attack up to 6 mils. 

0 

0 

The baseline nickel alloys of Section 1: 

0 Alloy 686 was heavily pitted after the first 60-hour test. The pits were up to 8 mils 
deep. 

Alloy C-276 had severe corrosion after the first 60-hour test with numerous overlapping 
pits. 

Alloy C-22 also had severe corrosion with overlapping pits with depths up to 20 mils. 

Alloy 625 also had severe corrosion with some crevice attack near the hole of about 45 
mils. 

d. Vladimir Zilberstein, Efiect of TrimSol Based SCWO Environment on Materials Tested in the MODAR Pilot 
Plant Vessel, Stone and Webster, September 1994. 
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8.1.2 Section 2 Environment-Temperature 600°C, pH of 0.8 

8.7.2.7 Ceramic Coupon Analysis. 

First 60-hour test: 047-2 (A), 048-7 (B), 049-12 (C). 

Second 60-hour test: 072-2 (D), 073-5 (E), 049-12 (C). 

120-hour test: 082-1 (C'), 072-2 (D), 059-4 (B). 

In the first 60-hour test the two rings with a zirconia top layer (047-2 and 048-7) showed 
blistering, peeling, and chipping. Ring 048-7 also had delamination at the boundary between the 
alumina layer and the zirconia top layer. The titania coated coupon (049-12) showed no defects. 
In the second 60-hour test the rings coated with a layer of titania and then zirconia (072-2, 073-5) 
had heavy blistering of the zirconia with the titania intact after 60 hours but after an additional 
120 hours the zirconia was gone and there was significant loss of the titania (072-2). The two 
rings coated with titania were both exposed for 120 hours. 049-12 looked good after 60 hours but 
was delaminating after 120 hours, while 082-1 still looked good after 120 hours. The difference 
between these two was that 082-1 was titania sprayed onto a titanium ring though it still had the 
nickel/chrome/aluminum bond coat. Coupon 059-4 (zirconia top coat) was exposed for 120 hours 
in Section 2 after being exposed for 60 hours in Section 5. This exposure resulted in heavy 

' delamination. 

8.7.2.2 Metal Coupon Analysis.e 

The experimental nickel alloys of Section 2 

0 The 620 coupon had fairIy severe corrosion while 621 had pronounced crevice 
corrosion with attack up to 10 mils. 

0 RSPl had severe corrosion attack while RSP2 and RSP3 had an attack of &solution. 

The baseline nickel alloys of Section 2 

0 

Alloy 686 was severely corroded with pits between 15 to 30 mils. 

Alloy 625 had deep crevice attack up to 16 mils along with severe corrosion. 

Alloy C-22 had severe corrosion similar to Alloy 686. 

Alloy C-276 was removed after 120 hours due to drastic thinning and major corrosion. 

~~~ ~ 

e. Vladirnir Zilberstein, Effect of TrimSol Based SCWO Environment on Materials Tested in the MODAR N o t  
Plant Vessel, Stone and Webster, September 1994. 
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8.1.3 Section 3 Environment-Temperature 5OO0C, pH of 0.8 

8.7.3.7 Ceramic Coupon Analysis. 

First 6O-hOur test: 047-3 (A), 048-8 (B), 049-13 (C). 

Second 60-hour test: 072-3 @), 073-6 (E), 049-13 (C). 

120-ho~r test: 083-3 0 , 0 7 3 - 6  (E), 049-13 (C). 

This section was considered the most mild environment of the five sections and yet the 
results of the zirconia coated rings were very similar to Section 2. In the first 60 hour test, 047-3 
and 048-8 showed blistering and chipping in the second 60-hour test. 072-3 and 073-6 had heavy 
blistering of the zirconia with the titania intact after 60 hours but after an additional 120 hours 
the zirconia was gone and there was significant loss of the titania (073-6). The ring coated with 
titania on the nickel chrome bond coat (049-13) lasted the length of all three tests (240 hours) 
although patches of base metal were exposed. The ring coated with titania on a titania bond coat 
and titania ring (083-3) did very well after 120 hours. 

8.7.3.2 Mefal Coupon Analysis.f 

The experimental nickel alloys of Section 3: 

The 620 and 621 coupons had pronounced crevice corrosion with the crevice depth in 
620 up to 12 mils  near the edge. 

RSPl also had crevice corrosion up to 10 mils while RSP2 had patchy dissolution up to 
6 mils and RSP3 had uniform corrosion attack 

The baseline nickel alloys of Section 3: 

Alloy 686 had deep corrosion attack up to 15 mils. 

Alloy C-22 had severe corrosion attack up to 18 mils. 

Alloy 625 had isolated pits and areas of overlapping pits. 

0 Alloy C-276 was removed after 120 hours due to major corrosion. 

f. Vladimir Zilberstein, Effect of TrimSol Based S W O  Environment on Materials Tested in the MODAR Pilot 
Plant Visel ,  Stone and Webster, September 1994. 
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8.1.4 Section 4 Environment-Temperature 4OO0C, pH of 1.5 

8.1.4.1 Ceramic Coupon Analysis. 

First 60-hour test: 047-4 (A), 048-9 (B), 049-14 (C). 

Second 60-hour test: 072-4 (D), 073-7 (E), 071-1 (C). 

120-hour test: 072-4 (D), 073-7 (E), 083-6 0. 

This section had the added variable of the dilution stream coming in and spraying directly 
onto the rings. One of the zirconia rings (047-4) appeared to do well after the first test while the 
zirconia with the alumina interlayer showed cracks, blistering and some delamination. The 
zirconia over the titania layer (072-4 and 073-7) showed heavy blistering of the zirconia after 
60 hours. One of the titania coated rings with the nickeVchrome bond (049-14) suffered from 
edge attack that corroded the base metal of Inconel 625 after only 60 hours, while another similar 
ring (071-1) did very well except for a patch of delamination that could have been due to the 
quench water hitting the ring. The titania coated ring with the titania bond on the titania ring 
(083-6) did well with some possible thinning of the coating. 

8.1.4.2 Metal Coupon Anaiysis.g 

The experimental nickel alloys of Section 4: 

0 The 620 metal coupon had severe corrosion with losses up to 16 mils, while the 621 
coupon had losses up to 20 mils. 

0 The RSPl coupon had losses of 8 mils, RSP2 had losses of 45 mils, and RSP3 was 
described as having major wastage. 

The baseline nickel alloys of Section 4 

Alloy 686 had deep corrosion attack up to 18 mils. 

0 Alloy C-22 had severe corrosion. 

0 Alloy C-276 had major corrosion up to 30 mils. 

0 Alloy 625 uniform corrosion with an average depth of attack of 12 mils with one pit 
with 30 mils depth. 

g. Vladimir Zilberstein, Effect of TrimSol Based SCWO Environment on Materials Tested in the MODARpilot 
Plant Vessel, Stone and Webster, September 1994. 
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8.1.5 Section 5 Environment-Temperature 300°C, pH of 1.5 

8.7.5.7 Ceramic Coupon Analysis. 

First 60-hour test: 047-5 (A), 048-10 (B), 049-16 (C). 

Second 60-hour test: 060-6 (C), 058-2 (A), 059-4 (€3). 

12O-hour test: 083-8 (F'), 060-6 (C), 083-4 m. 
This section saw the transition from the supercritical phase and the formation of acids. The 

water level was apparent by the water line mark on the bottom ring. While the zirconia again 
showed blistering and delamination (047-5, 048-10, 058-2, and 059-4), the five titania coated rings 
had a variety of results dependent on their bond coats and ring material. 049-16,060-6, and 083-4 
did well while 083-8 suffered from delamination. The difference is that 083-8 had a titania bond 
coat on a Inconel 625 ring while the other three rings had bond coats that matched their rings. 
An in-depth Analysis of coupons 048-10 and 083-4 is presented in Section 8.3. 

8.7.5.2 Metal Coupon Analysis. 

The liquid level of the brine immersed the experimental nickels. The corrosion rates and 
descriptions do not reflect the performance in the severe environment of Section 5 but the 
performance in a brine solution. 

The experimental nickel alloys of Section 5 

The 620 coupon showed no signs of corrosion and 621 had minor attack 

The RSPl showed numerous small pits around the outer edge of the sample with 
crevice corrosion appearing likely to start. 

The RSP2 coupon showed no apparent signs of corrosion except for discoloration, 
while RSP3 had multiple deep pits and initial stages of crevice corrosion. 

TIyzJaseline nickel alloys of Section 5 

Alloy 686 had corrosion with a depth of attack of 3 to 8 mils along with a few deep pits 
up to 18 mils. 

Alloy C-22 had severe corrosion resulting from overlapping pits with some pits having 
up to 20 mils depth. 

h. Vladimir Zilberstein, Effect of TrimSol Based S W O  Environment on Materials Tested in the MODAR H o t  
Plant Vessel, Stone and Webster, September 1994. 
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0 Alloy 625 was removed after 60 hours due to severe corrosion 

Alloy C-276 was removed after 60 hours due to numerous pits up to 25 mils deep. 

8.2 Analysis of Performance by Material 

This subsection includes a comparison of performance of each material throughout all five 
sections: 

Coating A - 047-1, 047-2, 047-3, 047-4, 047-5, 058-1, 058-2 

- Regardless of the section these rings were placed in, or the amount of thermal 
cycles they received, there was blistering or delamination after 60 hours of 
operation. The delamhation is shown in Figure 25. 

Coating B - 0486, 048-7, 048-8, 048-9, 048-10, 059-3, 059-4 

- These rings also showed blistering or,delamination. The delamination occurred at 
the alumina layer. 

Coating C - 049-11, 049-12, 049-13,049-14, 049-16, 060-5, 060-6, 071-1 

- These rings suffered from an edge attack, which given greater than 60 hours 
would result in delamination. The rings that did not have edge attack showed a 
thinning of the top coat. Ring 049-13 had sections of the Inconel exposed after 
240 hours. 

Coating D - 072-2,072-3, 072-4 

- These rings showed blistering of the top coat after 60 horn. After 60 hours the 
titania layer began to wear away. 

Coating E - 073-5,073-6,073-7 

- These rings also showed blistering and in some cases the top layer was already 
gone by the 60-hour run. The titania layer was intact after 60 hours but then 
began to be worn away. 

0 Coating C'- 082-1 

- This coating was done on a titanium ring, and remained intact after 120 hours. 

Coating F - 083-2, 083-3, 083-4, 083-5, 083-6 

- These rings performed the best with all five of them looking intact upon visual 
examination after 120 hours. 



Coating F'- 083-7, 083-8 

- These rings were Inconel 625 and both delaminated at the bond coat substrate 
interface. 

8.3 Analysis of Delamination Mechanisms 

8.3.1 Coating 047-1 

An overall view of a failed coating (047-1) which shows the major coating spall between the 
bond layer and the intermediate blended layer is shown in Figure 15. A diagram of the failure 
mechanism is illustrated in Figure 26. Figures 16 and 17 show areas that were analyzed by the 
EDS technique. Table 6 documents the results. A description follows: 

Areas 1,5,9 

Area 2,3 

Area 6 

Area 7 

Area 8 

Area 10 

Area 11 

Area 12,13 

Area 14 

Area 15 

This area has the basic chemistry of the ceramic top coat of the Coating A 
with a slight difference in the yttria concentration. 

These areas are composed of products of the reaction of the surrogate 
containing supercritical fluid and the ceramic coating. The formation of 
these surrogate containing second phases has implications as the 
radionuclides and hazardous elements from a mixed waste stream could be 
concentrated in a coating that they react with. 

This area is a nickel sulfide (NiS, or Ni3S4) reaction product. 

This area is a mixture of coating elements and waste/surrogate elements. 

The chemical analysis of this area chemistry only shows the elements present 
in the metallic bond coat. 

This area is rich in nickel and chrome, low in aluminum with silicon and iron 
present. 

This area appears to be yttria stabilized zirconia 

These areas are complex oxides with small amounts of TrimSol components 
such as sulfur. 

This area appears to be a nickel oxide with a small amount of sulfur present. 

This area shows the bond coat (Ni,Cr,Al) chemistry. (The nominal chemistry 
of the prealloyed powder is Ni-balance, Cr-19%, AI-6%). 

42 



BSE 

, -  

I 50. Bx 20.13 kV '''Prn INEL/EG&G 

43 



Figure 16. 5 0 0 ~  view of 047-1. 

Figure 17. 2 5 0 ~  view of 047-1. 

44 



Table 6. Results of analysis of 047-1. 

86-May-1934 13:43:83 18-1 

Rccelerat i n g  voltage 28.8 KeV 

Beam - sample incidence angle 38. 8 degrees 

Xray emer-gence angle 35.0 degrees 

X r a y  - window incidence angle 8.8 degrees 

STRNDRRDLESS EDS RNFILYSIS 
( Z R F  CORRECTIONS V I R  MRGIC V )  

ELEMENT WEIGHT RTOMIC PRECISION 
R. LINE PERCENT PERCENT* 2 S I G M R  K-RRTIO** 

0 KR 33.18 73.36 1.24 8.865a 
Y LR ' 4.22 1. 74 8.13 0.8302 
Zr LR 61.30 24.86 8.48 0.5502 
H f  LR 1.28 8.24 8-22 8. 8837 

TOTRL 188. 88 

ITERRTIONS 3 

*NOTE : RTOMI C PERCENT is rlctrnia 1 i zed t o  188 

**l\lOTE: I<-RRTIO = K-RRTIO x R 
where R = ref ererice ( st aridard 1 /reference (samp 1 e 1 

NORMRLIZRTION FRCTOR: 1. 888 



Table 6. (continued). 

86-May-1334 13:23:56, 1B-Z 

Rccelei-at i n g  vrlltage e@. IZI KeV 

Beam - s a m p l e  i i - l c i d e n c e  a n g l e  38. 8 d e g r e e s  

% r a y  r m e r - g e n c e  angle d ~ .  :I= 8 deg-r-eec, 

Xray - window i n c i d e n c e  angle 8.8 d e g r e e s  

STRNDRRDLESS EES 9 i W L Y S  IS 
(ZRF CORRECTIONS VIR MRGIC VI 

ELEMENT 
& L I N E  

0 KR 
N a  KR 8 

s KR 
K KR 
C a  KR 
Y L R  
Ce I-R 

TDTRL 

I TERRT I Obis  

WEIGHT FITDM I C  F'REC I S  I ON . 
PERCENT PERCENT* 2 S I  GMR K-RRT I O** 

55.38 73. 16 1. 84 8. 2857 
3-33 2, 32 8. 15 8. ma72 
17.25 12.3.s 8. 16 8. 1313 
3.88 1.81 8.88 8.lil253 
8.77 8.44 8.85 8. 121868 
5.86 1.38 8. 14 8.8372 
16.21 2. G5 8-25 ri7.1388 

188.88 

16, 

*NOTE : FlTOM I C  PERCENT i s nurrna 1 i z e d  t 6 188 

**NOTE: I<-RRTIO = K - R R T I D  x R 
w h e r e  R = refet-ence ! s t a n d a r d )  /s-efer-ence ( s a m p l e )  

NORlrlRLI Z R T I U N  FRC'TOH: 1. Ic78ccl 
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R c c e l e r a t i n g  v121tage 

Beam - s a m p l e  i n c i d e n c e  a n g l z  

X r a y  emergence a n g l e  

Xray - window i n c i d e n c e  a n g l e  

EL EM EN T 
R L I N E  

0 KR 
Na KR t 

s KR 
K KR 
C a  KR 
Y L R  
C e  L R  

TOTRL 

I TERQT I ONS 

1 E-3 

28.8 K e V  

38. 8 d e g r - e e s  

35. 8 degrees 

8.8 d e g r e e s  

STRPIDRRDLESS EDS RPIFILYSIS 
!ZRF COZRECTIONS V I 9  MRGIC V I  

WE I GIiT 
PERCENT 

54. 38 
3.46 
17. t3i2 
2.87 
0.73 
2. 56 
18-32 

188. 88 

14 

RTOMIC 
PERCENT* 

78.63 
3.44 
12.15 
1.68 
8. 45 
8. 66 
2.33 

P R E C I S I O N  
2 SIGMR K-RQTIO** 

1- 82 
8. 18 
8. 16 
8.88 
8. 85 
8.11 
8. 27 

8. 2175 
8.0185 
8.1315 
8. 8238 
8.812178 
8.8184 
8 .  1485 

*NOTE : RTOM I C PERCENT is nurma 1 i z e d  t cl 1 88 

**NOTE: K-RRTIO = K-RQTIO x R 
w h e r e  R = refer-ence ( s t a n d a r d )  /reference ( s a m p l e )  

NORMRLIZRTION FRCTOR: 
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Table 6. (continued). 

06-May-1334 13:45:18 1B-4 

Rccelerat i n g  vct l tage  28.8 K e V  

Beam - sample incidence angle 38.8 degrees 

X i w a y  emergence any le 35.8 degrees 

Xt-ay - w i n d o w  incidence angle 8.8 degrees 

STRNDRRDLESS EDS RNQLYSIS 
I Z R F  CORRECTIONS V I R  MRGIC V )  

EL EM EN T 
R- LINE 

0 KR 
Y LR ' 
Z r  LR 
H f  LR 

TOTRL 

ITERRTIONS 

WEIGHT RTOM I C  PREC IS I ON 
PERCENT PERCENT* Z S I G M Q  K-RRTIO** 

32.84 73. l z l l  1.18 n. ~~~~ 

7.53 3.11 @. 22 8. 8672 
53.lzl6 23 . c1 0.33 m. 538'3 

1.31 8.27 8.25 8.8186 

188. wIL7 

18 

*NOTE : RTOM I C PERCENT i 5 not-ma 1 i zed t o 188 

**l\lOTE: I<-RQTIO = K-RRTIO x R 
where R = reference (standard) /reference (sample) 

NORMRLI ZQTIOIV FRCTOR: 1.88@ 
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Table 6. (continued). 

815-May-1394 13:48:82 1B-5 ' 

Rccelet-at; i n y  v o l t a g e  28.8 K e V  

Eearn - s a m p l e  i n c i d e n c e  a n g l e  38. 8 d e g r e e s  

Xs-ay e n i e r g e n c e  a n q  l e  35.0 d e g t - e e s  

Xray - w i n d o w  i n c i d e n c e  a n g l e  8.D d e g r e e s  

STRNDGRDLESS ED'S RFIRLYS I S 
i Z R F  CORRECTIONS V I R  MGGIC V I  

ELEMENT WEIGHT RTOMIC P R E C I S  I O N  
& L I N E  PIERCENT PERCENT* 2 SIGMR K-RRTIO** 

0 K R  31.47 72.44 1-23 8. 8G16 
Y L R  I 7.61 3.15 8.22 w. 8677 
Zr LH 53.97 24-21 ,8.48 8.5433 
H f  L R  8.95 8. Z 8  8. 21 0. 8877 

TOTRL 188.88 

I T E R R T I O N S  18 

*NOTE : RTOM I C PERCENT i s norma 1 i zed t ~1 188 

**NOTE: K-RRTIO = K-HRTIO x R 
w h e r e  R = reference ( s t a n d a r d )  /reference ( s a m p l e )  

NORMRLIZRTION FRCTOR: 1.088 
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Table 6. (continued). 

86-May-1334 13:46:46 1. E-6 

licceler-at ing vsltaqe Z8.8 KeV 

Bearn - s a m p l e  incidence a n g l e  3121. 8 degrees 

X r - a y  emergence a n g  le 35. 0 deqs-ees 

Xr-ay - w i n d o w  incidence angle 8.8 degr-ees 

STRNDRRDLESS EDS RNRLYSIS 
(ZRF CORRECTIONS V I R  MFlGIC V I  

ELEMENT WEIGHT RTOM I C  F'REC I SI ON 
R LINE FlERCENT FIERCENTS 2 S I G M R  K-RRTIO+* 

S KR 3'3.30 54.21 8. 38 0.2384 
cr- KR I 8. 57 8. 48 8. 88 0.8854 
N i  KR 68. 13 45.38 8. 60 0.5730 

TOTQL 188.88 

ITEilRTIONS 3 

*NOTE : RTOM I C PERCENT i s rlurrna 1 i zed to 188 

++*NOTE: K-RRTIO I<-RRTIO x R 
whet-e R = reference ( s t a n d a r d )  /reference (sample) 

NORMRLIZ9TION FHCTOR: 1. 88la 
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Table 6. (continued). 

86-May-1334 13:58:27 1 E-7 

’ Rccelerat i n q  v o l t a g e  38.8 K e V  

Bearti - s a m p l e  incidence a n g l e  98. 8 d e g r e e s  

Xr-ay ei i ie i -gence a n y  le 35.8 d e G t - e e s  

Xray - window incidence a r 1 g l e  8.8 d e g r e e s  

STRNDRRDLESS EDS HNGlLYSIS 
I Z R F  CORRECTIONS V I 9  PlRGIC V I  

ELEMENT L E I  GHT 
R. LINE PERCENT 

-- 0 KR &&. EG 
R 1  KR , 2.73 
Si KR 1.73 
s KFI 8. 75 
G 1  l iR  1.77 
C r  KR 23.66 
F e  KGl 8. G8 
N i  KR 13.18 
Z n  KR 12.24 
Y L R  3.81 
C e  L R  8.62 

TOTRL 188. 81 

I TERRT I OPlS 3 

*NOTE: RTOMIC PERCENT 

RTOM I C 
F’ERCENT* 

62. 37 
2.33 
1.83 
8.63 
1.48 
16- 31 
8.32 
6. 65 
5.55 
1. 88 
8.13 

P REC I S I ON 
3 SIGMR K-RRTIO** 

1.64 
8. 14 
8. 18 
8. 87 
8.83 
8. 3-2 
8. 83 
8. 29 
8.37 
8. 15 
8.12 

i s rturrlia 1 i zed  t cc 1 8@ 

8. 1764 
8. 8116 
8.8838 
8.8854 
8.8135 
8.2886 
8.8855 
8.1247 
8.1876 
8. 8133 
8. a855 

**NOTE: K-RRTIO = K-RRTIO x R 
w h e r e  R = reference ( s t a n d a r d )  /reference Csample) 

NORMRLIZRTION FRCTOR: 1.888 



Table 6. (continued). 

86-May-1334 13:53:33 

Rccelei-at i n g  v s l t a g e  

Bearti - s a m p l e  i n c i d e r c e  a n g l e  

Xr-ay erliet-gence arrg l e  

Xt-ay - windctw i n c i d e n c e  a n g l e  

EL EM EN T 
& L INE 

0 Kf=l 
R 1  KFl , 
Si  KR 
ct- KR 
N i  I<R 

TOTFIL 

I TERGT I ONS 

1 B-a 

ZD.8  K e V  

38. 8 d e g r e e s  

35. 8 d e q t - e e s  

8.8 d e g t - e e s  

STRNDRRDLESS EDS R N R L Y S I S  
!ZRF CORRECTIONS V I R  M R G I C  V j  

WEIGHT RTOM I C  P R E C I S  I O N  
PERCENT FIERCENT+ Z S I E M R  K-RRTIO**  

8. 88 

z. 16 
Z8. 46 
75. Zl 

z. ia 

188. 81 

6 

8. om 
4.48 
4.13 

21.48 
63.33 

8. @8 
8.15 
8. 13 
8. 26 
8.65 

*NOTE : RTOM I C PERCENT i s rmrriia 1 i z e d  t 8 1 88 

+*NOTE: K - R R T I O  = K - R R T I O  x R 
w h e r e  R = r-efet-ence ( s t a n d a t - d )  /t-eferertce (sample) 

N O R M R L I Z R T I O N  FRCTOR: 1.888 
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Table 6. (continued). 

8 G - M a y - 1 9 3 4  13:56:88 1E-3 

nccelerat i n g  v c t l t a g e  20.0 KeV 

Bear11 - s a r n p l e  i n c i d e n c e  a n g l e  38. 8 d e g r e e s  

Xray emergence a n q  le 35.0 d e g r e e s  

Xray - windcw i n c i d e n c e  a n g l e  8.8 d e g r e e s  

STRNDRRDLESS EDS R N R L Y S I S  
( Z R F  CORRECTIONS V I R  M R G I C  V I  

ELEMENT WE I GHT R T O M I C  F t R E C I S I O N  
R LINE PERCENT FtERCENT* 2 S I G M R  K-RRTIO** 

0 Kfl  3121.89 71.13 1. 13 la. 8592 
Y L R  , 8. 38 3.57 8.23 8. 8748 
zr- L R  68.47 25.87 w. 48 8.5558 
H f  LQ 1.87 8.23 8. 22 8.8887 

T O T R L  188.88 

I T E R F l T I O N S  la 

*NOTE : RTOM I C PERCENT i s n u r r n a l  i z e d  t c c  188 

**NOTE: K - R R T I O  = K - R R T I O  x R 
where R = reference ( s t a n d a r d )  /reference ( s a m p l e )  

N O R M R L I Z f 4 T I O N  FRCTOR: 1.888 



Table 6. (continued). 

@+May-1334 13:57:45 

Gccelei-at i n g  v o l t a g e  

B e a m  - s a m p l e  i n c i d e n c e  a n g l e  

Xray erner-gertce a n y  1 e 

Xt-ay - windt:Iw i n c i d e n c e  a n g l e  

EL EM EN T 
& L INE 

O KR 
Q1 KR , 
Si  KR 
cr- KR 
Fe KR 
N i  KR 

T O T R L  

I T E R R T I O N S  

iE-18 

28.8 l i e V  

38.8 d e g r e e s  

35.8 d e g r e e s  

8.8 d e g r e e s  

STRNDRRDLESS EDS R N G L Y S I S  
{ Z R F  CCRRECTIONS V I R  M R G I C  V )  

WEIGHT R T O M I C  
PERCENT PERCENT* 

8. 8Ql 

1.81 
1.70 
13.46 
8 . 4 2  
77.48 

39.33 

t3 

P R E C I S I O N  
2 SIGMFl K-RRTIO** 

8. IL78 8.8888 
8.13 8. 8834 
8.12 8. 8@77 
8.26 8.2834 
Q. 88 8.8847 
8. 68 8.7576, 

M O T E  : RTOM I C PERCENT i s nor-nia 1 i z e d  t o 188 

*+NOTE: K - R R T I O  = K - R R T I O  x R 
whet-e R = reference ( s t a n d a t - d  1 /reference (sample) 

N O R M R L I Z Q T I O N  FRCTOR: 1. 888 
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Table 6. (continued). 

85-May-1334 13:53:59 

R c c e l e r a t  i n g  v n l t a g e  

Bearti - s a m p l e  i n c i d e n c e  a n g l e  

Xray cr~ierqence a n y  le 

Xray - windciw' i n c i d e n c e  a n g l e  

1B-11 

STRNDRRDLESS EDS RNRLYSIS 
(ZnF CORRECTIONS V I R  MRGIC VI 

0 KR 
N i  KR , 
Y L R  
zr- L R  
Hf L R  

TOTRL 

I TERRT I ONS 

28.8 K e V  

38. 8 d e g r e e s  

35.8 d e g r e e s  

8.8 d e g r e e s  

ELEMENT H E 1  GHT 
8- L I N E  PERCENT 

31.84 

sa. 25 

1.23 
7. €2 

1.85 

33.33 

18 

RTOMIC P R E C I S I O N  
FiERCENT* 2 SIGMR K-RRTIO** 

72.53 
El. 77 
3.13 

23. 38 
8.21 

1.24 
a. 12 
8.05 
8. 2-s 
8.24 

*NOTE : FlTOM I C PERCENT i s rlurrila 1 i z e d  t o  188 

+*NOTE: K-RRTIO = K-RRTIO x 2 
w h e r e  R = reference ( s t a n d a r d )  /reference (sample) 

NORMRLIZRTION FRCTOR: 
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Table 6. (continued). 

86-May-1334 14:8Z:54 

9 cce 1 e r a t  i rt g vo 1 t a g e 

Beam - sample incidence a n g l e  

Xray ernes-gence a n q  1 e 

Xr-ay - w i n d o w  incidence a n g l e  

ELEMENT 
8- LINE 

0 K(Is 

91 KR . 
Si  KR 
S KR 
c1 KG 
C r  KR 
N i  KR 

TOTRL 

ITERRTIONS 

1B-12 

28. 8 %e0 

38. 8 d e g r - e e s  

35.8 d e g r - e e s  

8.8 d e g r e e s  

STRNDRRDLESS EDS QNRLYSIS 
(ZRF CORRECTIONS V I 9  MRGIC V )  

WEIGHT 
FIE RCENT 

34.84 
7.13 
1.37 
I.i=.. 
8.76 

27.34 
27-48 

188. 88 

3 

RTOM I C  
F8ERCENT* 

GW. 43 
7.58 
1.33 
1. 88 
8. G1 

14.35 
13.m 

PRECIS I OM 
Z S I G M R  K-RQTIO** 

1.36 8.1321 
8. 13 8. 831Z 
8. 18 8.8104 
8.87 8. 8883 
8.87 8.8858 
8.38 8. &82 
8.48 8. 25za 

*NOTE : RTOM I C  F'ERCENT i 5 nor-ma 1 i z e d  t o I 88 

**NOTE: K-RRTIO = K-RRTIO x R 
w h e r e  R = r e f e r - e r l c e  ( s t a n d a r d )  /reference (sample) 

NORMRLIZRTION FRCTOR: 1.008 
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Table 6. (continued). 

86-May-1334 i4:87:14 lB-i3 

R c c e l e i - a t  i n g  vcl l taqe 28. 8 He'i 

Beam - s a m p l e  inciderice angle 38.8 degi-ees; 

Xray e m e i - g e n c e  ang le  35.8 degrees 

Xray - w i n d o w  incider ice a n g l e  8.8 degrees 

STRNDRHDLESS E D S  R N R L Y S I S  
(ZRF CORRECTTONS V I R  M R G I C  V )  

EL EM EN T 
8- L I N E  

0 KR 
R 1  HR ' 
Si I<R 
s KR 
c1 KR 
C a  K n  
Ci. KR 
N i  KCI 

TOTRL 

I T E R R T I O N S  

WE I GHT R T O M I C  P R E C I S I O N  
PERCENT PERCENT* 2 SIGMR K-RRTIO*+ 

33.33 

a 

4a. 38 
11.83 
2. aQ 
8.63 
8.43 
8. 13 

17.41 
la. 17 

7. 1'3 
8 . L A  -=I-\ 

8.12 
8. 87 
8. WE, 
8.85 
8. 32 
8. 45 

*NOTE : CITOM I C PERCENT is n o r m a l  i z e d  t o  188 

**NOTE: K - H R T I O  = K - R R T I O  x R 
where R = refererice (standard) /t-eferertce { s a m p l e )  

N O R M R L I Z R T I O N  FRCTOR: 1. 888 



Table 6. (continued). 

86-May-1334 14 :83 :48  1B-14 

Rcceler-at i n q  vsltage 28.8 KeV 

Bearn - sample irciderrce angle 30. 8 deqr-ees 

Xi.-ay erriergence arlq le 35.0 deyr-ees 

Xt-ay - w i n d o w  irciderce angle 8.8 degrees 

STRND!4RDLESS EDS RNRLYS I S 
(ZQF CORRECTIONS VI R  MRGIC V )  

ELEMENT WE I GIIT RTOMIC PRECISION 
8- LINE PERCENT F'ERCENT* i2 SIGMR K-RRTIO** 

0 KR 24.67 54.4 i  1.41 8. 12G3 

cr- KR 8.86 8.58 8.88 8. 8838 
N i  KR 73.36 44.45 8.66 8.7188. 

5 KR , 0.51 8.56 ID. 87 8.8834 

TOTRL 180. 88 

ITERRTIONS 3 

*NOTE: RTOMIC PERCENT is ncwrnal i z e d  t u  188 

**NOTE: K-RRTIO = K-HRTIO x R 
whet-e R = reference (standat-d) /t-eference (sample) 

NORMRLIZRTION FRCTOR: 1. 088 
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Table 6. (continued). 

06-Play-I934 14:11:43 

Rccelerat i n q  v o l t a g e  

Beam - s a m p l e  incidence a n g l e  

'Xt-ay emer-gence a n g l e  

Xr-ay - wirrduw incidence a n g l e  

ELEMENT 
8. LINE 

R1 KR 
S i  IIR , 
C r  KR 
Fe K f l  
N i  KR 

TOTRL 

I TERRT 1 ONS 

1B-I5 

2@. 8 K r V  

38. 0 d e g r e e s  

35.0 d e g r e e s  

@.la d e g r e e s  

STRNDRRDLESS EDS i?NRLYS I S  
!ZRF CORRECTIONS V I R  MRGIC ?I) 

WE I GH'T 
FIE RCENT 

la. 46 
1. €le 

13. LG 
la. 30 

74.46 

188.88 

E 

13. E5 
2.3e 
12.93 
8.28 

64.32  

Zt.0367 
8.0871 
8.1364 
8. 8834 
8. 7275 

*NOTE: RTOMIC PERCENT is normalized t c ~  188 

**NOTE: II-RRTID = I I -RRTIO x H 
where R = refererice (s tandard)  /reference <sarople) 

NORMQLIZRTION FRCTOR: 1.800 
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8.3.2 Coating 048-10 

An overall view of a failed coating (048-10) is shown in Figure 5. A cross-section of the 
failed coating shown in Figure 18 shows that there are numerous areas of coating delamination. 
It appears that the cracking affected all the interfaces between the layers. Figure 19 is a higher 
magnification view of the failed coating where there is only one crack present between the 
intermediate blended layer and the bond layer. There is a mixed layer of mixed deposits on the 
surface which was analyzed and the results tabulated in Table 7. A description follows 
(see Figures 19-21): 

Areas 1-6 

Areas 7-8 

Area 9 

Area 10 

Area 11 

Area 12 

Area 13 

Area 15 

Area 14,16 

These areas are shown in Figure 19 with the EDS analysis given in Table 7. 
The crystalline deposits have varying compositions that include corrosion 
products from the nickel-based alloys, the added surrogate materials, and the 
decomposition products from the destruction of the Trimsol. 

These areas are the ceramic top coat of yttria-stabilized zirconia. 

This area is the alumina intermediate ceramic top coat. 

This area is the alumina intermediate ceramic top coat with a small amount 
of waste elements. 

This area is yttria-stabilized zirconia with a small amount of NiCrAl. 

This area is the NiCrAl bond coat with a large amount of elements from the 
simulated waste stream (S, C1) present. Silica is an impurity present in the 
spray powder and could be an artifact from the preparation prespray surface 
that uses grinding papers. 

This area shows the bond layer chemistry (NiCrAl) with spray powder 
impurities (Fe, Si). 

This is a mixed oxide particle where the constituent elements were oxidized 
during the spray process. 

These areas are the NiCrAl bond coat with the iron and silica being 
impurities in the plasma spray powder. (The nominal chemistry of the 
prealloyed powder is Ni-balance, C-19%, Al-6%.) 

Observations: The multiple top coatings did not inhibit coating failure. 



Figure 18. 1 0 0 ~  view of 048-10. 

Figure 19. 2 5 0 ~  view of 048-10. 
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Figure 20. =OX view of 048-10. 

' C  . 

Figure 21. 2 5 0 ~  view of 048-10. 
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Table 7. Results of analysis of 048-10. 

18-May-1934 83:25:23 

9cce 1 et-at i rs y vo 1 .t; age 

Bearti - s a m p l e  i n c i d e n c e  a n g l e  

Xi-ay e m e t - g e n c e  a n g l e  

X:-ay - w i n d o w  i n c i d e r i c e  a n g l e  

EL EM E b1 T 
8. L I N E  

0 KR 
s KFI , 
Ci- KFI 
N i  KR 
Z n  KR 
C e  L R  

T O T R L  

I T E R R T  I O N S  

18B-1  

S T R N D R R D L E S S  E D S  9 N R L Y S I S  
(ZQF C O R R E C T I O N S  V I R  M R G I C  V I  

WE I GHT 
P E R C E N T  

5z. 23 
28. 15 
0.27 

25.98 
1.83 
8.28 

108.08 

13 

RTOM I C  
FIERCENT+ 

74-32 
14.41 
8. 12 
18.14 
0.36 
8.85 

P R E C  I S I ON 
2 S I G M R  K-RRTIO** 

1.74 8.2128 
8. 17 8.1575 
8.85 8.8rzI25 
8-32 8. 2363 
8.12 8. 8886 
8. 88 8.8824 

*NOTE : RTOM I C P E R C E N T  i s rmrma 1 i z e d  to 188 

**NOTE: K - R R T I O  = K - R R T I O  x R 
w h e t - e  R = refer-ence ( s t a n d a s - d )  /reference ( s a m p l e )  

N O R M R L I Z R T I O N  F R C T O R :  1. 8 W 8  

64 



Table 7. (continued). 

18-May-i 334 83 : 23 : 4121 J. 8B-Z 

Rccelerat i n y  v o l t a g e  20. !Zi KeV 

Beam - s a m p l e  i n c i d e n c e  angle 30.8 d e g r e e s  

Xi-ay emer-qence anq le 25.0 degrees 

Xi-ay - window i n c i d e n c e  a n g l e  8.8 d e g r e e s  

STnNORRDLESS EDS RNRLYS I S 
!ZRF CORRECTIONS V I 9  MRGIC V )  

ELEMENT 
I% LINE 

0 KR 
N a  KR 
R 1  l<R 
s KR 
K KR 

TOTQL 

ITERRTIONS 

WEIGHT RTOMIC 
F'ERCENT FIERCENT* 

60. 83 73. 84 
2, 13 1.88 

el. 18 15.28 
14.46 8.78 
2. 13 1. 83 

33.33 

18 

PREC I SI ON 
2 S I G M R  K-RRTIO** 

8.31 8. 2248 

8.18 GI. 1318 
8.12 0.1183 
8.86 0. 8173 

0.11 8.4?11217a 

*NOTE : RTOM I C  F'ERCENT i s nurriia 1 i z e d  t o  188 

**NOTE: I<-RRTIO = K-RRTIO x R 
w h e r e  R = reference ( s t a n d a r d )  /reference ( s a m p l e )  

NORMRLIZRTION FRCTOR: 1.80QI 



Table 7. (continued). 

18-May-1334 83:33:37 18B-3 

Gccelerat i n q  vultage 28.8 K e l J  

Bear11 - sample i n c i d e n c e  arlg 1 e 38. 8 d e g t - e e s  

% r a y  emet-gence anq l e  35.8 degs-ees 

Xt-ay - window i n c i d e n c e  a n g l e  8.8 d e g r e e s  

STRNDRRDLESS EDS RNQLYSIS 
(ZRF CORRECTIONS V I 9  MRGIC V )  

ELEMENT WE I GHT RTOM I C  F'REC I SI ON 
R. L I N E  FIERCENT FlERCENT* 2 S I G M R  K-RRTIO** 

0 KR 
Na KR 
R 1  KR 
s KR 
K KR 
Cr KR 
Fe IW 
N i  KR 

72.18 
1.77 

14.78 
3. Ea 

8. ma 

1.83 
8.87 

8.48 

1.82 
8.11 

8.13 
8. 8C 
8. 83 
la. 84 

8. i a  

8. ma 

8. Si33 
8.8874 
8.1233 
8. 1133 
8. 81EJG 
8.8817 
8.8021 
a. 8126 

TOTRL 33.33 

ITERRTIONS 17 

*NOTE : RTOMI C PERCENT i s nor-mal i z e d  t o  1 88 

**NOTE: K-RRTIO = K-RRTIO x R 
where R = reference ( s t a n d a r d )  /r-eference (sample) 

NORMRL I ZRT I ON FRCTUH : 1. 888 
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Table 7. (continued). 

18-May-1334 83:35:51 

Rcceler-at i n g  v o l t a g e  

Eearn - s a r n p l e  i n c i d e n c e  angle 

Xray e m e r g e n c e  a n y  le 

Xray - window i n c i d e n c e  a n g l e  

STRNDRRDLESS EDS RNRLYSIS 
(ZgF CORRECTIONS V I R  MRGIC V )  

0 KR 
Na KF1 ' 
s KR 
K KR 
C a  KR 
Y LR 
C e  LR 

10B-4 

ELEMENT WEIGHT 
8. LINE F'ERCENT 

TOTRL 

I TERRT I ONS 

28.8 KeV 

38.8 d e g r e e s  

35.0 d e g r e e s  

8.8 d e g r e e s  

47. 1a 

28. ma 
1.75 

e. 49 
3. 17 
e. 76 
22-57 

18QI. 88 

13 

RTOM I C  PRECIS  I ON 
F'ERCENT* 2 S I G M R  K-RRTIO** 

-9 

I d .  3a 
1.31 
15.71 
1.68 
1.33 

4. 84 
8.78 

8. 38 
8. 14 
8. 17 
8.80 
8.88 
8.12 
8.23 

8.1631 
8.8853 
8.1548 
8. 8285 
8.8288 
8. 8137 
8.ia26 

*NOTE : RTOM I C PERCENT i s norilia 1 i z e d  t o  1 88 

**NOTE: K-RRTIO = K-RRTIO x R 
w h e r e  R = . reference ( s t a n d a r d )  /reference ( s a m p l e )  

NORMRLIZRTION FRCTOR: 
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Table 7. (continued). 

18-May-1334 09 :33 :83  18F-5 

Rcceler-at i n g  v c l l t a g e  e@. 8 KeV 

Beam - s a m p l e  i n c i d e n c e  a n g l e  98. 8 d e g r e e s  

Xi-ay emergence a n g l e  35. 8 d e g i - e e s  

X r a y  - window i n c i d e n c e  a n g l e  8.8 d e g t - e e s  

STRNDRRDLESS EDS R N R L Y S I S  
i Z R F  CORRECTIONS V I R  MRGIC V )  

ELEMENT WEIGHT RTOM I C  P R E C I S  I ON 
,3. L INE F'ERCENT F'ERCENT* 2 SIGMR K-RRTIO**  

0 l iR  48. 55 
Na KR I 2. ?E, 

s KFI 23.33 
K KR 4.11 
C a  KR 3.37 
N i  KR 8.13 
Y L R  5. G4 
C e  L R  13.37 

65. 86 
z. se 

13. 28 
e. 78 
6.38 
8.86 
1.63 
2.45 

1. 1'3 8.8953 
8. 15 8.8874 

8.18 8.8334 

8.85 8.881 1 
8.15 8.  m433 
8. 24 8. 1844 

8. 28 8 . i m 3  

8. 14 8. ma54 

TOTRL 180. 82 

I T E R R T I O N S  12 

*NOTE : QTOM I C F'ERCENT i s rmrma 1 i z e d  t o  1 08 

**NOTE: K - R R T I O  = K - R R T I O  x R 
w h e r e  R = reference (standard) /r-efer-erce ( s a m p l e )  

N O R M R L I Z R T I O N  FRCTOR: 1.88@ 
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Table 7. (continued). 

18-May-1334 83:41:18 

Rccelerat i n q  v s l t a q e  

Bears1 - s a m p l e  i n c i d e n c e  a n g l e  

Xray e m e r - q c r c e  a n g l e  

Xray - window incidence a n g l e  

ELEMENT 
K L I N E  

0 KR 
5 KR ' 
C a  KR 

1' Sr 
TOTRL 

I T E R R T I O N S  

18B-E, 

28. 8 K 2 V  

38. 0 d e g r e e s  

35. d e g r e e s  

8.8 d e g r e e s  

STRNDRRDLESS EES R N R L Y S I S  
(ZRF CORRECTIONS V I R  MGGIC V) 

WE I GHT 
PERCENT 

57. '32 
13. '38 
28.63 
1.47 

188. 8D 

17 

RTOMIC P R E C I S I O N  
FIERCENT* 2 SIGMR K--RRTIO** 

75.82 
13.85 
18.70 
8.35 

1. 28 
8. 14 
8.15 
8.87 

@. 1138 
8.172.E 
0.1935 
8.8115 

*NOTE : FITOM I C PERCENT is nurma 1 i zed  t c t  1 88 

**NOTE: I<-RRTIO = K-RRTIO x R 
w h e r e  R = reference ( s t a n d a r d )  /reference ( s a m p l e )  

NORMRLIZRTION FRCTOR: 
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Table 7. (continued). 

18-May1334 83:44:11 18H-7 

R c c e  1 et-at i n q  vo 1 t aqr 28.0 K e V  

Beam - s a m p l e  i n c i d e n c e  a n g l e  38. 8 d e g r e e s  

% r a y  emet -gence  a n g  le 35. 8 d e g r e e s  

Xray - w i n d u w  incidence a n g l e  8.0 d e g r e e s  ' 

STGWDRHDLESS E D S  i7NFIL'f S I S  
!ZRF CORRECTIDNS V I R  MFIGIC V I  

ELEMENT WEIGHT RTOMIC P R E C I S I O N  
R- LINE PERCENT F'ERCENT* 2 SIGMR K-RRTIO** 

0 K R  31. 83 7za 1117 1.82 8.8606 
Y L R  7.71 3 - 2 2  8. 18 8.8686 
Z r  LR 68. 16 z4.47 @. 33 8.5583 
H f  L R  1.@4 @.22 8.21 8. 8884 

T O T R L  188. 80 

I T E R R T I O N S  18 

*NOTE : RTOM I C PERCENT i s nctrma 1 i z e d  to 1 08 

**NOTE: K - R R T I O  = K - R R T I O  x R 
where R = refet-errce ( s t a n d a t - d )  /refet-ence ! s a m p l e )  

N O R M R L I Z R T I O N  FRCTOR: 1. 088 
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Table 7. (continued). 

18-May-1934 03:46:16 106-8 

Rccelet-at i n q  v n l t a g e  2@. 8 'Ke'SJ 

Eearli - s a m p l e  incidence a n g l e  38.0 d e g t - e e s  

Xray e r n e r g e n e e  a n y  l e  35.0 degt-ees 

Xt-ay - window incidence a n g l e  8.8 d e g r - e e s  

STRNDRRDLESS EDS RNRLYSIS 
( Z R F  CORRECTIONS VIR MRGIC VI 

ELEMENT ME I GHT 
R. LINE PERCENT 

0 KR 38.33 
Y LR ' 7. 85 
Zr LR 61.12 
H f  LR 8.38 

TOTRL 1cm. l z l l  

I TERRT I ONS 163 

*NOTE: RTOMIC PERCENT 

RTOM I C  
F#ERCENT* 

71.33 
2.36 
24.33 
8.13 

PRECISION 
Z S I G M R  K-F!RTIO** 

1.83 
8. 16 
8.34 
8. 13 

8.8601 
8.8638 
8.56OG 
8.8873 

88 

**NOTE: I<-RRTIO = II-RRTIO x R 
w h e r e  R = reference ( s % a n d a r d )  /reference (sample) 

NORMRLIZRTION FRCTOR: 1. @88 
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Table 7. (continued). 

18-May-1334 83:48:81 1 OB-3 

Rcceler-at i n g  v o l t a g e  20.8 KeV 

Beam - saniple  i n c i d e n c e  a n g l e  38. 8 d e g r e e s  

Xr-ay emergence a n g  le 35. IC7 d e g i - e e s  

Xi-ay - window i n c i d e n c e  a n g l e  m . 8  d e g r e e s  

STRNDRRDLESS ED5 RNRLYSIS 
( Z R F  CORRECTIONS V I R  MRGIC V I  

ELEMENT WEIGHT RTOM I C  PRECIS I ON 
8.. LINE PERCENT FIERCENT* 2 S I G M R  K--RQTIO** 

0 KF1 58.37 63.12 8.76 8. el58 
R 1  KFI ' 4'3.63 36.80 8.25 8. 3434 

TOTRL 188. 88 

ITERRTIONS 17 

*NOTE: RTOMIC PERCENT is nut-mal i z e d  t o  I88 

**NOTE: I-(-RRTIO = K-RRTIO x R 
whet-e R = reference ( s t a n d a r d )  /reference ( san ip le )  

NORMRLIZQTION FRCTOR: 1.800 
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Table 7. (continued). 

18-May-1934 18:82:46 18B-18  

Rccelri-at irrg v o l t a g e  28.8 K e V  

Bean1 - sarnp  1 e i r c  i d e n c e  a n g  1 e 98.8 d e g r e e s  

Xray eme.r.gence a n g l e  35. IC7 degrees 

Xray - winduw i n c i d e n c e  a n g l e  8.8 d e g r e e s  

STRNDRRDLESS EDS RNRLYSIS 
( Z R F  CORRECTIONS V I R  MQGIC V I  

0 KR 43.12 E l l "  36 1.87 8.1328 
Na KF) ' 8.45 8.41 8. 87 8. 8819 
R1 KR 45.24 34.4'3 8.27 8.5879 
s KR 3-12 2.88 8. 87 8. 8Z88 
K KR 8.76 8.48 8. 84 8. 8863 
C r  KR 8.77 8.31 8. 85 8.8868 
N i  KR 1.53 8.54 8.83 8.8139 

TOTFIL 93.39 

I T E R R T I ON S 14 

*NOTE : RTOM I C FIERCENT i E, r m r m a l  i zed t o  188 

**NOTE: K-RRTIO = I<-RRTIO x R 
w h e r e  R = t-eference ( s t a n d a r d )  /reference ( s a m p l e )  

NORMRLI ZRTION FRCTOR: 1.880 



Table 7. (continued). 

18-May-i334 1@:14:31 18B-11 

Rcceler-at i n g  v o l t a g e  28.8 K e ? l  

Beam - s a m p l e  i n c i d e n c e  a n g l e  38. 8 d e g r e e s  

Xr-ay emer-gerrce a n g  le 35. 8 d e g r - e e s  

Xr-ay - w i n d s w  i n c i d e n c e  a n g l e  8.8 d e g r e e s  

STaNDRRDLESS EDS RNRLYSIS 

EL EN EN T 
8. LINE 

0 KR 
R 1  KR ' 
Cr- KR 
Fe KR 
Ni KR 
Y LR 
zr- LR 
H f  LR 

TOTqL 

I TERRT I ONS 

( Z R F  CORRECTIONS 

WEIGHT RTOM I C  
FIE R C E N T FIE R C E N T 

22-37 
1.83 
8. 2+ 
8. 24 
1.77 

18. 23 
€2. 14 

1-32 

188. 88 

3 

€1.35 
1. c5 
8. 28 
8. 13 
1.38 
5.88 

23.33 
8.32 

VIR MFIGIC V) 

PREC I S I ON 
2 SIEMR K-RRTIO*+i. 

2 . 4 8  @. 8428 
8.87 8. 8863 

8. 8822 8.8€ 
8. 86 8.88Z3 
8.12 8. W177 
a. 13 8. 8'318 
8. 85 8. 5665 
8-23 8.8183 

*NOTE : RTOM I C F'ERCENT i s rm-rm 1 i z e d  to 188 

**NOTE: K-RFITIO = K-RRTIO x R 
whet-e R = reference ( s t a n d a t - d )  /reference ( saraple)  

NORMFILI Z R T I O N  FRCTOR: 1.888 
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Table 7. (continued). 

18-Flay-1334 18: 1&46 18B-12 

Rccelerat i n g  voltage 28. 8 K e V  

Beam - s a m p l e  i n c i d e n c e  angle 38.8 d e g t - e e s  

Xray e m w - g e n c e  a n g  le 35.0 deg-r -ees  

X r a y  - window i n c i d e n c e  a n g l e  8.D d e g r e e s  

STRNDRRDLESS EDS R N R L Y S I S  
( Z A F  CORRECTIONS V I R  M R G I C  V I  

ELEMENT 
&* L INE 

0 KR 
R1 KR ' 
S i  KR 
s KR 
c1 KR 
Cr KR 
N i  KR 

TOTRL 

I T E R R T I O N S  

WE I GHT 
PERCENT 

22.05 
3.55 
1.15 
3.  14 

11.71 
3.83 

43.38 

33.33  

- 
I 

RTOM I C  
PERCENT* 

44.77 
4.27 
1.33 
3. i35 

18.73 

La. 3Es 
5.68 .- T 

P R E C  IS I ON 
2 SIGMR K-RRTIO**  

1. el 8.8773 
8.13 8. 8158 
8.87 8. 8862 
8. 13 8.8677 
8. 14 0. 8858 
8.15 8.8865 
8.41 0.4853 

*NOTE : RTOM I C F'ERCENT i E, ncwriia 1 i z e d  t o  188 

**NOTE: K-Rf9TIO = K - R R T I O  x R 
w h e r e  R = reference ( s t a n d a r d )  /reference ! s a m p l e )  

PJORMRLI Z R T I  ON FRCTOR : 1.880 



Table 7. (continued). 

18-May-1334  1@:18:3:5 18B-13 

Beam - sarnple i n c i d e n c e  angle 38. B d e g r e e s  

Xi-ay rmel-gence anq le 35.8 d e g r - e e s  

Xt-ay - winduw i n c i d e n c e  angle 8.8 d e g r - e e s  

STRNDRRDLESS EDS RMRLYSIS 
(ZRF CORRECTIONS V I R  MRGIC V) 

ELEMENT WEIGHT RTOM I C PREC I S I ON 
8. L INE PERCENT FlERCENT* i2 SIGMR K-RRTIO** 

R 1  KR 1.361 e. 73 8. 12 8.88461 
S i  KR 1.63 3, 22 0. 18 8. tam74 
cr- KA 13.61 28. 31 8. 22 8. Z848 
Fe KR 8.41 8.41 8. 87 8. 8 B 4 6  
N i  KA 76.98 72. 617 a. 55 0.7533 

TOTRL 33.33 

I TERRT I ONS 61 

*NOTE : RTOM I C F'ERCENT i 5 nor-ma 1 i z e d  t o  188 

**NOTE: K-RQTIO = K-RRTIO x R 
w h e r e  R = r - e f  et-ence ( st aridar-d 1 / r - e f  erence ( s a m p  1 e 1 

NORMRLIZRTION FRCTOR: 1.880 
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Table 7. (continued). 

18-May-1334 18:28:14 18B-14 

nccelerat i n g  w l t a g e  28. 8 KeV 

Beam - sample i n c i d e n c e  a n g l e  38. 8 d e g r e e s  

Xray enierqence a r lg  le 35.8 d e g r e e s  

Xray - window, i n c i d e r i c e  a n g l e  8.8 d e g r e e s  . 

ELEMENT 
8. L I N E  

R1 KR 
Si KR , 
Cr l iR  
Fe tW 
N i  l<R 

TOTRL 

I T E R R T I O N S  

STRNDRRDLESS EDS RNRLYS I S 
(ZRF CORRECTIONS V I R  MRGIC V )  

WE I GHT RTOMIC FIRECISION 
PERCENT PERCENT* 2 SIGMR K-RRTIO** 

0. 33 15.07 8. 28 8.8234 
1.07 3.41 8.18 8. 8804 
10.33 18-12 8.21 8.1031 
0.28 8. 26 8.86 8. 8831 
71.2@ 62. 34 8.53 8.6334 

188. 81 

c 

*NOTE : RTOM I C PERCENT is rim-ilia 1 i zed t 1:: 188 

**NOTE: K-RFITIO = K-RRTIO x R 
where R = reference ( s t a n d a r d  / r e f  er-ence . samp 1 e 

NORMRLIZRTION FRCTOR: 1.088 
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Table 7. (continued). 

1W-May-1334 18:ZZ:18 

Rccelet-at i n q  v o l t a g e  

Bearti - sample incidence a n g l e  

X r a y  emergence a n g l e  

Xr-ay - w i n d o w  i n c i d e n c e  a n g l e  

?8B-15 

STRNDRRDLESS EDS RNRLYS IS 
( Z R F  CORRECTIONS VIR MfiGIC V )  

ELEMENT WE I G H T  RTOMIC PRECISION 
K. LINE PERCENT PERCENTS Z SIGMR K-RRTIO** 

0 KR 35.72 
R l  KR * 1z. 34 
c1 KR 8.4€ 

Fe KR 8. 3.2 
N i  t<R 17.12 

Cr KR - 33.45 

TOTRL 

ITERRTIONS 

108.01 

3 

68.31 
13.80 
8.36 
17.55 
8-16 
7.35 

1. 13 
El. 13 
8. 84 
8. z7 
8. 86 
8. 27 

8.2143 
8.8&88 
8.8836 
8.3143 
8. om23 
8.155& 

*NOTE : RTOMI C F'ERCENT i s norrnal i zed t o  1 88 

**NOTE: K-RRTIO = K-RRTIO x R 
w h e r e  R = reference ( s t a n d a r d )  /reference (sample) 

NORMRLIZRTION FRCTOR: 1. 88el 
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Table 7: (continued). 

18-May-1394 18:EG:85 18B-16 

I-) c c e I e P a .I; i "r 

Beam - sample incidence a n g l e  38. 0 degrees 

Xr-ay emerqerrce artg le 35.8 d e g r e e s  

Xi-ay - ~ i n d ~ l w  incidence angle 8.8 d e g r - e e s  

v 111 1 t a g e 28. 8 K e V  

ELEMEI\IT 
K. LINE 

N 1  KR 
Si KR 
C r  KR 
Fe Kf4 
N i  I<G 

TOTRL 

I TERGT 1 ONS 

STRNDRRDLESS EDS RNRLYS IS 
(ZRF CORRECTIONS V I R  MRGIC V I  

GJE I GHT RTOM 1 C 
FIE RCEbIT FIE RCENT* 

7.82 13. E8 
1. 62 3. QI1 
18.15 18. E3 
8.53 8.55 
7" L. 62 54. €31 

188.88 

E 

PREC IS I ON 
2 S I G M R  K-RRTIO+* 

8. z:Ia l a .  8245 
8. 18 8. 8873 
8. 22 8. 1373 
8.88 8. 88G4 
0.56 8.7801 

*NOTE : FITOMI C PERCENT is normal i zed t c t  1 08 

.**NOTE: K-RRTIO = K-RRTIO x R 
w h e r e  R = reference (standard ) /reference (sarnpl e 1 

NORMRLIZRTION FRCTOR: 1.888 
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8.3.3 Coating 083-4 

An overall view of a successful coating (083-4) is shown in Figure 10. This coating resisted 
the simulated waste stream with no apparent coating damage visible under light or scanning 
electron microscopy. The thermally induced cracks will act as a pathway for the corrosive species 
to penetrate the coating and the key question is whether the coating will then resist spalling from 
formation of corrosion products if the corrosive environment reacts with the coating at the 
bottom of the cracks. The coating was scanned for cracks in the SEM and a typical one (crack 3, 
Figure 22) was analyzed and the chemistry of the areas tabulated in Table 8. The spectra from 
these cracked areas was distorted in varying amounts due to the fact that some of the emitted 
electrons from the analysis areas will be absorbed on the walls of the cracks. The electrons from 
light elements such as aluminum, sodium and oxygen would be preferentially absorbed compared 
to the electrons from heavier elements such as nickel or zinc. This would result in the spectra for 
these elements not being fully developed thereby giving a lower concentration value than is really 
the case. Note that this coupon is label as 942 l2#4 on the photomicrograph. 

Area 1 The EDS spectrum for this area shows a high level of titanium with aluminum and 
oxygen present. This spot was located in the crack which then would distort the 
spectrum. The values of aluminum and oxygen were probably higher than the 
values shown in Table 8. 

Area 2 Titanium, aluminum, and oxygen are present here along with chlorine. The 
spectrum was slightly distorted and the amounts of oxygen and aluminum may be 
higher. Carbon was also detected but the EDS technique cannot quantify this 
element very well. 

Area 3 This area also shows titanium, aluminum, and oxygen with some distortion of the 
spectra. The aluminum and oxygen values are probably low. 

The following analysis is shown on Figure 23 and in Table 9. 

Area 4 

Area 5 

Area 6 

Area 7 

The analysis area measures the elements present in the surface deposit found on 
this coupon. There is a large amount of the radionuclide surrogate cerium 
present with lead and zinc also detected. The nickel,aluminum, and zirconium 
present are probably corrosion products from the reaction of the test fluid with 
other coupons. 

The chemical analysis from this area shows titanium and oxygen which form the 
TiO, coating. 

This area has titanium and aluminum which would be indicative of the Ti-6Al-4V 
bond layer but no vanadium was detected. A large amount of nitrogen was 
detected. 

This area is well into the base metal and shows the expected spectra for titanium. 
There is also a large amount of nitrogen present. 
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Figure 22. lO0Ox view of 083-4. 
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Table 8. Results of anaIysis of areas shown in Figure 22. 

82-RUCJ-1334 18:36:83 TZ#4-3-1 

Rccelerat i n g  v o l t a g e  28.8 K e V  

Beam - sample  incidence a n g l e  38.8 d e g r e e s  

Xray en ie t -gence  a n g l e  35.8 d e g r e e s  

Xr-ay - w i n d o w  incidence a n g l e  8. 8 d e g r e e s  

STRNDRRDLESS EDS RNRLYSIS 
( Z R F  CORRECTIONS V I R  MRGIC V I  

ELEMENT WE I GHT RTOM I C  PRECIS I ON 
8. LINE F'ERGENT F'ERCENT* 2 S I G M R  K-RRTIO** 

0 KR 8.65 22. @3 8. 33 8.812167 
R 1  KR 8.83 8. 85 @. 81 8. 8882 
T i  KF1 31.31 77.86 8.48 8. 3801 

TOTRL 93.9'3 

ITERRTIONS 10 

*NOTE: RTOMIC PERCENT is n o r m a l i z e d  t s  188 

**NOTE: K-RRTIO = K-RRTIO x R 
w h e r e  R = r-eference ( s t a n d a r d )  /reference ( sample )  

NORMRL I ZRT I ON FRCTOR : 1.1218121 
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Table 8. (continued). 

82-R~g-1394 18:38:58 

Rccelerat i n g  v o l t a g e  

Beam - s a m p  1 e incidence a n g  1 e 

X r a y  e n i e r g e n c e  a n g l e  

Xray - window i n c i d e n c e  a n g l e  

ELEMENT 
R LINE 

0 KR 
R 1  KR , 
C 1  KR 
Ti KR 

TOTRL 

ITERRT I ONS 

28.8 K e V  

38.8 d e g r e e s  

35.8 d e g r e e s  

8.8 d e g r e e s  

STWDaRDLESS EDS RNRLYSIS 
(ZRF CORRECTIONS V I R  MRGIC V )  

- -  
WEIGHT 

PERCENT 

24.68 
2.24 
4.04 
63.85 

188.01 

18 

RTOM I C PREC I SI ON 
PERCENT* i2 SIGMFl K-RRTIO** 

48.58 
2. €I1 
3.58 
45.32 

1.76 
8.12 
8.11 
8.43 

*NOTE: RTOMIC PERCENT is n c w m a l i z e d  t o  188 

8.0241 
8. 8122 
8.8378 
8.6534 

**NOTE: K-RRTIO = K-RRTIO x R 
w h e r e  R = reference ( s t a n d a r d )  /reference ( s a m p l e )  

NORMRLIZRTION FRCTOR: 1.888 
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Table 8. (continued). 

82-Rug-1334 18:41 :82 

Rccelerat i n q  v o l t a g e  

Bear11 - s a m p l e  i n c i d e n c e  a n g l e  

X r a y  e m e r g e n c e  a n g l e  

Xray - window i n c i d e n c e  a n g l e  

28.8 K e V  

38.8 d e g r e e s  

35.8 degrees 

8.8 d e g y - e e s  

STRNDRRDLESS EDS RNRLYSIS 
( Z R F  CORRECTIONS VIR MRGIC V >  

ELEMENT WEIGHT 
ti- LINE PERCENT 

RTOMIC PRECISION 
PERCENT* 2 SIGMR K-RRTIO** 

-33 0 KFI LL. 57 
R1 KR ’ 1.45 
Ti KFi 75.38 

46.25 
1.76 

51.33 

1.44 
8. 87 
0.43 

8.8288 
8.8878 * 

8. 7383 

TOTRL 188.88 

ITERRTIONS 1 1  

*NOTE: RTOMIC PERCENT is r m r m a l  i zed to 188 

**NOTE: K-RRTIO = K-RRTIO x R 
where  R = refer-ence ( s t a n d a r d )  /reference ( s a m p l e )  

NORMRLIZRTION FRCTOR: 1.888 
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Table 9. Results of analysis of areas shown in Figure 23. 

27-sep-1394 16 :22 :53  T2#4-3-4 

Rccelet-at ing v o l t a g e  

Beam - s a m p l e  i n c i d e n c e  a n g l e  

Xray emergence a n g l e  

Xray - window i n c i d e n c e  a n g l e  

28.8 KeV 

38. 8 d e g r e e s  

35.0 d e g r e e s  

8.8 d e g r e e s  

STRNDRRDLESS EDS RNRLYSIS 
(ZRF CORRECTIONS VIR MRGIC V) 

ELEMENT 
R- LINE 

0 KQ 
R 1  KR ' 
Ca KR 
Ni KR 
Z n  KR 
Z r  LR 
C e  LR 
F'b MR 

TOTRL 

ITERRTIONS 

WEIGHT 
FIE R C E N T 

27.33 
0.45 
8.47 
4.85 
3 - 4 2  
2-25) 

43.45 
11.78 

33.33 

3 

RTOMIC PRECISION 
FCERCENT* 2 SIGMR K-RRTIO** 

74.83 
8- 71 
8.51 

2. 27 

1.83 
15.23 
2.45 

3. 58 

8. 83 
8.11 
0.87 
8. 23 
8.27 
8.18 
8.43 
8. G7 

8.1341 
8.8817 
8.8844 
8. 8472 
8. 117323 

8.4359 
8.8813 

a. 8148 

*NOTE : RTOM I C PERCENT i s nos-rm 1 i zed t 111 188 

**NOTE: K-RRTIO = K-RRTIO x R 
where R = reference ( s t a n d a r d  1 /reference (samp 1 e 1 

NORMRLIZRTION FRCTOR: 1.888 
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Table 9. (continued). 

Rccelerat i n g  v o l t a g e  28.8 K e V  

Beam - samp 1 e i nc i d e n c e  a n g  1 e 38. 8 d e g r e e s  

Xray ernergence  a n g l e  35.8 d e g r e e s  

Xray - window i n c i d e n c e  a n g l e  8 .8  d e g r e e s  

STRNDRRDLESS EDS R N R L Y S I S  
( Z R F  CORRECTIONS V I R  M R G I C  V) 

ELEMENT WEIGHT R T O M I C  P R E C I S I O N  
R L I N E  PERCENT PERCENT* 2 SIGMR K-RRTIO** 

0 KR 3'3.65 66.38 i. 35 8.8453 
Ti KR * 68.35 33.78 8.32 8.5674 

T O T R L  108. 80 

I T E R R T I O N S  i0 

*NOTE: R T O M I C  PERCENT is .rmrmal i z e d  to i88 

**NOTE: K - R R T I O  = K - R R T I O  x R 
w h e r e  R = reference ( s t a n d a r d )  /reference (sart?ple) 

N O R M R L I Z R T I O N  FRCTOR: 1.880 



Table 9. (continued). 

27-Sep-1334 16:27:27 

R c c e  1 era t i n g vu 1 t a g e 

bearn - sariiple i n c i d e n c e  a n g l e  

Xt-ay emer-gence anq l e  

Xr-ay - window i n c i d e n c e  a n g l e  

ELEMENT 
8. L I N E  

I\J KR 
0 KR , 
R 1  KR 
Ti KR 
Cr KR 

TOTRL 

I T E R R T I O N S  

28.8 K e V  

38. 8 d e g r e e s  

35. 8 d e g r e e s  

8.8 d e g r e e s  

STRNDRRDLESS EDS R N R L Y S I S  
( Z R F  CORRECTIONS V I R  MRGIC V )  

WEIGHT 
PERCENT 

21. 83 
8. 88 
4.62 

73.34 
8.34 

33.33 

3 

RTOM I C  P R E C I S  I ON 
FlERCENT* 2 SIGMR K-RRTIO** 

46.66 
8.88 
5.31 

47.83 
0. 21 

8. 63 
8.88 
8.18 
8. 31 
8.84 

8.1313 
8.8888 
8.8268 
8.7831 
8. 8828 

*NOTE: RTOMIC PERCENT is nor-mal i z e d  t u  188 

**NOTE: K-RRTIO = K-RRTIO x R 
where R = reference ( s t a n d a r d  1 /reference ( s a m p l e )  

NORMRLIZRTION FRCTOR: 1.888 
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Table 9. (continued). 

27-Sep-1334 15:23:23 -j-3+4-3-7 

Gccelerat i n g  v l r t l t a g e  28.8 K e V  

Beam - s a m p l e  i n c i d e n c e  a n g l e  38. 8 d e g r e e s  

X r a y  e m e r g e n c e  a n y  le 35.8 d e g r e e s  

X r a y  - window. i n c i d e n c e  a n g l e  8.8 degrees 

STRNDRRDLESS EDS R N R L Y S I S  
(ZRF CORRECTIONS V I R  M R G I C  V I  

ELEMENT WEIGHT R T O M I C  P R E C I S I O N  
& L INE PERCENT F'ERCENT* 2 S I G M R  K-RRTIO** 

N KR 7. 13 28.34 2. 13 8.8484 
Ti KR I 32.81 73. 85 8.49 8.3178 

T O T R L  188.88 

I TERRT I ONS a 

*NOTE : R T O M I  C PERCENT is norma 1 i r e d  t o  188 

**NOTE: K-RFITIO = K - R R T I O  x R 
w h e r e  R = reference ( s t a n d a r d  1 /reference ( s a m p l e )  

N O R M R L I Z R T I O N  FRCTOR: 1.888 



A second cracked area was analyzed (Figure 24) and the results are shown in Table 10. This 
crack extends from the cermet layer to the base metal. 

Area 1 

Area 2 

Area 3 

Area 4 

Area 5 

Area 6 

Area 7 

This area exhibits the approximate chemistry of the Ti-6Al-4V bond coat with an 
appreciable amount of nitrogen and a small amount of iron present. 

This chemistry shows evidence of the chemistry of a mixed Ti-6Al-4V/Ti02 
structure with a significant amount of nitrogen present. Iron and a small amount 
of silicon are also present. 

This area is basically TiO, with aluminum, zinc, lead, and calcium as impurities. 

This is the Ti-6Al-4V bond coat with a significant nitrogen content. 

This area is next to Area 4 (bond coat) in the upper reaches of the crack. It 
looks like the TiO, spectrum described earlier with impurities of lead, aluminum, 
and silicon. 

This area is farther down the crack near the base metal. It has all elements that 
would be present in the Ti-6Al-4V/Ti02 cermet layer with significant impurities 
such as nitrogen, silicon, zinc, and lead. 

This area shows a mixed chemistry of the Ti-6Al-4V bond coat and nitrogen. 

Area 8, 9 Areas 8 and 9 are on the bond coast base metal interface. It shows a TiO, 
chemistry with the impurities zinc and lead present. The chemistry is not 
indicative of the bond layer that is Ti-6Al-4V. 

Observations: This coating did not delaminate. 

Various areas in the coating and the cracks perpendicular to the coating 
show a large amount of nitrogen pickup. 

The heavy metal impurities (zinc, lead) in many cases and the radionuclide 
surrogate Ce in one case were found in the cracks. These cracks did not 
propagate and cause coating delamination. These elements were found in 
the failed areas of the other coatings. 

This coating should be tested for a longer time interval to see if the 
impurities will continue to collect in the cracks and cause failure. 



Figure 24. 50Ox view of 083-4. 
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Table 10. Results of analysis of areas shown in Figure 24. 

Rccelerat i n g  v o l t a g e  

Beam - s a m p l e  incidence a n g l e  

Xray e m e r g e n c e  a n g l e  

Xray - w i n d c t w  incidence a n g l e  

ELEMENT 
K. LINE 

N KR 
R1 KR ' 
T i  KR 
v KR 
Fe KR 

TOTRL 

ITERRT I ONS 

28.8 K e V  

38. 8 d e g r e e s  

35. IC7 d e g r e e s  

m.8 d e g r e e s  

STRNDRRDLESS EDS RNRLYSIS 
(ZRF CORRECTIONS VIR MRGIC V) 

WEIGHT 
PERCENT 

13.63 
5. i3 

78.43 
2.17 
0.57 

33.33 

8 

RTOMIC PRECISION 
FIERCENT* 2 SIGMR K-RRTIO** 

34.87 
5.74 

57.34 
i. 43 
8.36 

1.84 
8. 14 
8. 47 
8. 28 
8.88 

8. 8823 
8.8283 
8.7684 
B. 8Z88 
8.8850 

*NOTE : RTOM I C PERCENT i s norim 1 i zed  to 1 88 

**NOTE: K-RRTIO = K-RRTIO x R 
w h e r e  R = reference ( s t a n d a r d )  /reference ( s a m p l e )  

NORMRLIZRTION FRCTOR: 1.888 
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Table I O .  (continued). 

82-Rug-1334 18 : 83 : 58 T2#4-2-2 

Rccelerat i n q  voltage 28.8 K e V  

Beam - sample i n c i d e n c e  angle 38. 8 d e g r e e s  

Xray emergence ang l e  35.0 d e g r e e s  

Xray - window incidence  angle 8 . 8  d e g r e e s  

STRNDRRDLESS EDS R N R L Y S I S  
(ZRF CORRECTIONS V I R  MRGIC V )  

EL EM EN T 
R LINE 

N KR 

R 1  KR 
S i  KR 
T i  KR 
v KR 
Fe KR 

0 KR , 

TOTRL 

I T E R R T  I O N S  

WEIGHT 
PERCENT 

8.36 
35.68 
8. 44 
8.25 

51.47 
.8. 38 
2.83 

33.33 

1Z 

RTOMIC P R E C I S I O N  
FlERCENT* 2 SIGMR K-RRTIO** 

15.83 8.33 8.121684 
55.38 3.56 8. 8418 
8.40 8. 86 8.8823 
8.23 8.85 8.8817 

26.68 8.35 8.4884 
8- 14 8. 13 8. 8827 
1.23 8. 13 8.8243 

*NOTE : RTOM I C PERCENT is rmrrlia 1 i z e d  to  188 

**NOTE: K-RRTIO = K - R R T I O ' X  R 
where R = reference ( s t a n d a r d )  /reference (sample) 

NORMRLIZRTION FRCTOR: 1.880 
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Table I O .  (continued). 

8Z-Rug-I334 m:m: 14 T‘#4-”--7 d L d  

Rccelerat i n g  v o l t a g e  28.8 KeV 

Beam - s a r n p l e  i n c i d e n c e  a n g l e  38.8 d e g r e e s  

X r a y  e m e r g e n c e  a n g l e  35.8 d e g r e e s  

Xray - window i n c i d e n c e  a n g l e  8.8 d e g r e e s  

STRNDRRDLESS EDS RNRLYSIS 
(ZRF CORRECTIONS VI R  MRGIC V) 

EL EM EN T 
K. LINE 

0 KR 
Rl KR 
C a  KR 
Ti KR 
Z r i  KR 
P b  MR 

TOTRL 

ITERRTIONS 

WEIGHT RTOMIC PRECISION 
PERCENT PERCENT* 2 SIGMR K-RRTIO** 

34.75 68. 41 1.46 8.8417 
5.84 5. 13 8.12 8.8263 
8.42 8. 23 8. 83 8.8847 
57. 88 33.15 8.85 8.5326 
2.82 8. 86 0.13 8.817’3 
8.78 8. 83 8. 68 8. 8853 

-_ 

188. 81 

12 

*NOTE : RTOM I C PERCENT i s normal i x e d  t ci 1 88 

**NOTE: K-RRTIO = K-RRTIO x R 
w h e r e  R = reference ( s t a n d a r d )  /reference ( s a m p l e )  

NORMRLIZRTION FRCTOR: 1.888 
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Table 10. (continued). 

82-Rug-1934 18: 1 1  :81 

Rcceler-at i n g  v u l t a g e  

Beam - s a m p l e  i n c i d e n c e  a n g l e  

Xray e n i e r g e n c e  a n g l e  

Xray - window i n c i d e n c e  a n g l e  

STRNDGRDLESS EDS RNRLYSIS 
(ZRF CORRECTIONS VIR MRGIC VI 

N KR 
R1 KR ‘ 
Ti KR 
V KR 

ELEMENT WEIGHT 
R LINE PERCENT 

TOTRL 

ITERRTIONS 

28.8 KeV 

38. 8 d e g r e e s  

55.8 d e g r e e s  

8 .8  d e g r e e s  

25.53 
2.67 

63.62 
2.11 

33.33 

3 

RTOM IC PREC IS I ON 
F’ERCENT* 2 SIGMR K-RRTIO** 

53.41 
2.83 
42.43 
1.21 

8.98 
8.11 
8.44 
8. 13 

8.1632 
8.8143 
8.6Es55 
8.8133 

*NOTE: RTOMIC PERCENT is n o r m a l i z e d  to 188 

**NOTE: K-RRTIO = K-RRTIO x R 
w h e r e  R = reference ( s t a n d a r d )  /reference ( s a m p l e )  

NORMRLIZRTION FKTOR: 1.888 
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Table 10. (continued). 

82-Rl-\g-1334 18: 13: 14 

Rccelet-at i n q  v c l l t a g e  

Beam - s a m p l e  i n c i d e n c e  a n g l e  

X r a y  emerqertce anq le 

Xray  - w i n d o w  i nci dence ang 1 e 

STRNDRRDLESS EDS RNRLYSIS 
( Z R F  CORRECTIONS VIR MRGIC V )  

0 KR 
R 1  KR 
Si KR 
Ti KR 
Pb MR 

ELEMENT WEIGHT 
R LINE F'ERCENT 

TOTRL 

ITERRTIONS 

28.8 K e V  

38. 8 d e g r e e s  

35. 8 d e g r e e s  

8.8 d e g r e e s  

38.48 
1.33 
8.59 

50.70 
1. 18 

188. 80 

RTOM IC PREC IS I ON 
PIERCENT* 2 SIGMR K-RRTIO** 

64.37 
1.33 
8.37 
33.17 
8.15 

2- 35 
8.88 
8.85 
8.36 
8.11 

8.8457 
8. 8871 
8.8826 
8.5487 
8. 8182 

*NOTE : RTOMI C PERCENT is ncwrria 1 i z e d  t o  188 

**NOTE: K-RRTIO = K-RRTIO x R 
w h e r e  R = reference ( s t a n d a r d )  /reference ( s a m p l e )  

NORMRLIZRTION FRCTOR: 1.888 
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Table 10. (continued). 

82-Rug-1334 18: la:& T2#4-2-6 

Rccelerat i n g  v o l t a g e  28.8 KeV 

Bearti - s a m p l e  i n c i d e n c e  a n g l e  38. 8 d e g r e e s  

Xray e n i e r g e n c e  a n g l e  35.8 d e g r e e s  

Xray - windnw i n c i d e n c e  angle 8.8 d e g r e e s  

STRNDRRDLESS EDS RNRLYSIS . 
(ZRF CORRECTIONS VIR MRGIC V )  

ELEMENT 
R LINE 

N KR 
0 KR 
81 KR 
Si  KR 
T i  KR 
V KR 
Zn KR 
Pb MR 

TOTRL 

ITERRTIONS 

WEIGHT RTOMIC PRECISION 
PERCENT F’ERCENT* 2 SIGMR K-RRTIO** 

8.22 14.11 8. E5 
33.75 53.73 3.44 
8.36 0.85 8.88 
8.42 8.36 8.05 

43. 83 24.61 8.35 
0.25 8.12 0. 12 
0.2G 0.18 8.07 
1.11 8.13 . 8.36 

188.88 

12 

8.8543 

8.8851 
8.8828 
8.4524 
8.8823 
8.8823 
8.8835 

8. 8481 

*NOTE : RTOM I C PERCENT is rmrrm 1 i z e d  to  188 

**NOTE: K-RRTIO =Z K-RRTIO x R 
. w h e r e  R = reference ( s t a n d a r d )  /reference ( s a m p l e )  

NORMRLIZRTION FRCTOR: 1.888 



Table 10. (continued). 

8E'-R~g-1334 18:21: 1 7  T2#4-2-7 

Rccelerat i n g  v o l t a g e  28.8 K e V  

Beam - s a m p l e  i n c i d e n c e  a n g l e  38. 8 d e g r e e s  

X r a y  emet-gence a n q  l e  35.8 d e g r e e s  

X r a y  - window i n c i d e n c e  a n g l e  8.8 d e g r e e s  

STRNDRRDLESS EDS RNRLYSIS 
( Z R F  CORRECTIONS VIR MRGIC V )  

ELEMENT 
R LINE 

N KR 
0 KR , 
R 1  KR 
T i  KR 
V KR 

TOTRL 

ITERRTIONS 

WEIGHT RTOM IC PRECIS I ON 
PERCENT FlERCENT* 2 SIGMR K-RRTIO** 

21.73 48.21 8.34 8.1441 
8. 88 8.88 8.88 8.8888 
2.13 2.45 8.18 8.8118 

74.25 48.18 8. 44 8.7145 
1.03 1.16 8. 18 8.0173 

188.88 

8 

*NOTE : RTOM I C PERCENT i s nctrrna 1 i z e d  t 6 1 88 

**NOTE: K-RRTIO = K-RRTIO x R 
where R = reference ( s t a n d a r d )  /reference ( s a m p l e )  

NORMRLIZRTION FRCTOR: 1.888 
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Table I O .  (continued). 

82-Rug--1934 18:24:11 

Rccelerat i n g  v o l t a g e  

Bear11 - s a m p l e  i n c i d e n c e  a n g l e  

Xray e m e r g e n c e  a n g  1 e 

Xray - window i n c i d e n c e  a n g l e  

ELEMENT 
R LINE 

N KR 
0 KR , 
R1 KR 
T i  KR 
Z n  KR 
Pb MR 

TOTRL 

I T E R R T I O N S  

28.8 K e V  

38.8 d e g r e e s  

35.8 d e g r e e s  

8 .8  d e g r e e s  

STRNDRRDLESS EDS R N R L Y S I S  
(ZRF CORRECTIONS V I R  MRGIC V )  

WEIGHT 
PERCENT 

4.38 
34.83 
0.38 
58.22 
8. 32 
8.76 

33.33 

12 

RTOM I C 
FIERCENT* 

3.23 
57.57 
8.88 
32.83 
8.13 
8.18 

P R E C I S I O N  
2 SIGMR K-RRTIO** 

1.12 
1.35 
8.87 
8.36 
8.88 
8.24 

8. 8326 
8.8386 
8. 8848 
8. 5448 
8.8823 
8.8866 

*NOTE: RTOMIC PERCENT is n e r m a l i z e d  t o  188 

**NOTE: K-RRTIO = K-RRTIO x R 
w h e r e  R = reference ( s t a n d a r d )  /reference < s a m p l e )  

NORMRLIZRTION FRCTOR: 
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Table 10. (continued), 

8?-R1-\9-1334 18:  27 : 26 

Rccelerat i n g  v u l t a g e  

Beam - s a m p  1 e i n c i d e n c e  a n y  1 e 

Xt-ay e m e r g e n c e  a n y  le 

Xray - window i n c i d e n c e  a n g l e  

28.8 KeV 

38.8 d e g r e e s  

35. 8 d e g r e e s  

8.8 d e g r e e s  

STRNDRRDLESS EDS RNRLYSIS 
(ZRF CORRECTIONS VIR MRGIC V) 

ELEMENT WEIGHT RTOM IC PRECISION 
8,. LINE PERCENT FlERCENT* 2 SIGMR K-RRTIO** 

N KR 
0 KR , 

R 1  KR 
T i  KR 
Zn KR 
FIb MFI 

TOTRL 

ITERRTIONS 

3.87 
43.83 

8.86 
51.48 

0. 14 
8.78 

188.88 

13 

6. 7a 

8.78 
65.37 

26.32 
8.85 
8.88 

1. l l z l  
1.32 
8. 87 
8.33 
8. 85 
8. e8 

8.8268 
8. Iil542 
8.8846 
8.4762 
8. 8812 
8.8868 

*NOTE : RTOM I C FIERCENT i s r m r r m  1 i z e d  to 1 88 

**NOTE: K-RRTIO = K-RRTIO x R 
where  R = reference ( s t a n d a r d )  /reference ( s a m p l e )  

NORMRLIZRTION FRCTOR: 1.888 



9. EFFLUENT ANALYSIS 

The effluent analysis of the MODAR corrosion test reveals clues on the behavior of the 
metals, and chlorides in the system. The complete data analysis is in EDF ID 121217/1032 
(Appendix B). The data from the last test run are shown here to make several observations. 
This test was the 120-hour test. 

The feed consisted of the water/metal solution running at 80 cc/min and the TrimSol at 
40 cc/min. 

The metal solution cdnsisted of 5,400 ppm of CeCl,, 2,200 ppm of ZnCl, and 2,250 ppm of 
PbCl,. 

The waterhetals solution created a total volume of 80 cc/min x (118 hr x 60 min/hr) = 
566.4 L. 

The TrimSol solution created a total volume of 40 cc/min x (118 hr x 60 min/hr) = 
283.2 L. 

The chloride content of the feed stream is calculated below: 

1. 

2. 

3. 

4. 

TrimSol (30% GH3,C1,) 
Carbon 12 
Hydrogen 1 
Chlorine 35.453 
(&H&l,) = (12 x 20) + 37 + (35.453 x 5) = 454.265 
Chloride 177.265/454.265 = 0.39 
0.39 x .3 = 11.77% 
40 cc/min x 118 hr x 60 min/hr = 283,200 mL 
11.77% chloride x 283,200 mL = 33,332.64 g of chlorides 

CeCl, 140.12 + (35.453 x 3) = 246.479 
Chloride 106.36/246.48 = 0.43 
0.43 x 5,400 ppm = 2,330 pprn 
0.002330 g/mL x 566,400 = 1,319.7 g of chlorides 

PbCI, 207.19 + (35.454 x 2) = 278.1 
Chloride 70.91D78.1 = 0.255 
0.255 x 2,250 = 573.69 ppm 
0.00057 g/mL x 566,400 = 322.85 g of chlorides 

ZnCI, 65.37 + (35.454 x 2) = 136.278 
Chloride 70.91/136.278 = 0.52 
0.52 x 2200 ppm = 1144.73 ppm 
0.0011 g/mL x 566,400 = 623.04 g of chlorides 
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Total Chlorides: 
33,332.64 + 1319.7 + 322.85 + 623.04 = 35,598.24 g of chlorides 

942 Mid Rod 
(35 g) 

It is important to note that the metal solution contributed 6.36% of the chloride loading. 
The metal chlorides are not considered high enough to be of significance. 

942 Cyclone (16 g) 

The total volume of flow into the system was: 

Sodium 66,000 ppm 
(2.3 1 g) 
Chloride 480 ppm 
(0.0168 g) 
Nickel 7,400 pprn 

'Cerium 36% 

'Lead 14,000ppm 

~gi: gi30 ppm 

(0.26 g) 

'(12.6 g) 

i(0.015 g) 

TrimSol 
Water/metals 
Purge Lines 
Annulus 
Total 

~~ 

Sodium 840 ppm 
(0.0134 g) 
Chloride 2,400 ppm 
(0.038 g) 
Nickel 27,000 ppm 

Cerium 8.4% 

Lead 27,000 ppm 

Zinc 110,000 ppm 

(0.43 g) 

(1-34 g) 

(0.43 g) 

(1-76 g) 

283,200 mL 
566,400 mL 
1,628,400 mL 
2,124,000 mL 
4,602,000 mL. 

The amount of chlorides entering the system was 35,598.24/4,602,000 mL = 0.0077 g/mL = 
7,735 ppm of chlorides. 

In Section 4 the stream was diluted at 350 cc/min or a total flow of 2,478,qoO mL. This 
lowered the concentration of chlorides to 35,598.24/7,119648 = 5,000 ppm of chlorides. 

The liquid effluent had a total flow of 1,250 cc/min x 118 hr x 60 min/hr = 8,850 L. 

The lab analysis showed a chloride concentration of 1,800 ppm; 0.0018 x 8,850,000 = 
15,930 g of chloride. 

The chlorides collected from the various solid samples (see Table 11) was only 0.3792 g 
15,930.4/35,598 = 0.4475 or 44.75% mass balance was achieved on the chlorides from the 
effluent. This does not account for the amount of chlorides recovered from the posttest rinse or 
that remained settled in the feed tank as part of the surrogates. 

rable 11. Solid efflue 

942 Top Rod 
(70 g> 

Sodium 12,000 ppm 

Chloride 490 ppm 
(0.034) 
Nickel 270 pprn 

Cerium 50% 

Lead 3,000ppm 

Zinc 380ppm 
(0.027 g) 

(0-84 g) 

(0.19 g) 

(35 g) 

(0.21 g) 

942 Titanium Liner 
(568 g )  - 

Sodium 39,000 ppm 
(22.15 g) 
Chloride 510 ppm 

Nickel 32,000 pprn 
(18.18 g) 
Cerium 19% 
(107.92 g) 
Lead 24,000 ppm 
(13.63 g) 
Zinc 41,000 ppm 
(23.29 g) 

(0.29 g) 
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The solids were collected from several locations in the system. (See diagram in 
Appendix B.) The rod that held the metal coupons became a deposition surface within the 
casing. 

The mass balance for the metals used the following calculations: 

1. 

2. 

3. 

Cerium calculation 
Cerium 140.12 
Chloride 35.453 
CeC13 140.12 + (35.453 x 3) = 246.479 
Cerium 140.12/246.479 = 0.5679 
0.5679 x 5,400 ppm = 3,067 ppm cerium = (0.003 x 566,400) = 1,6!39.2 g of cerium 

Zinc calculation 
Zinc 65.37 
Chlorine 35.454 
ZC1, (65.37) + (35.454 x 2) = 136.28 
65.37/136.28 = 0.48 
0.48 x 2,850 ppm = 1367.1 ppm of zinc = (0.0014 x 566,400) = 774.32 g of zinc 

Lead calculation 
Lead 207.19 
Chlorine 35.453 
PbCl, 207.19 + (35.454 x 2) = 278.1 
207.19D78.1 = 0.745 
0.745 x 2,250 = 1676.31 ppm lead = (00167 x 566400) = 945.89 g of lead 

The metals mass balance takes into account the amount of surrogates that settled to the 
bottom of the tank, and the amount found in the posttest rinses. The feed contained 
approximately, 1,699 grams of cerium, 774 grams of zinc, and 946 grams of lead. 

Lab analysis of the metal feeds indicates that only 4,500 ppm of cerium instead of 5,400 
pprn, 1,230 ppm of lead instead of 2,250 ppm, and 1,840 ppm of zinc instead of 2,850 ppm 
actually went into the system as: feed with the remainder left behind at the bottom of the tank 
This results in the total metals in the feed as 1,447 g of cerium instead of 1,699 g, 519 g of lead 
instead of 946 g and 500 g of zinc instead of 774 g. 

The solids effluent from Table 11 gives the following results: 

Cerium 156.86 g 

Zinc 25.09 g 

Lead 14.76 g 

The liquid effluent from Table 12 gives the following results: 
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Cerium N D '  

Zinc 150.45 g 

Lead 2.56 g 

The posttest rinses from Table 13 gives the following results: 

Cerium 450 g 

Lead 110 g 

The total cerium regained was 606.86 g. This is 606.9/1447 = 42%. 

The total zinc regained was 315.54 g. This is 315/500 = 63%. 

The total lead regained was 127.32 g. This is 127/519 = 24.5%. 

The cerium deposits were seen primarily at the top of the rod, then the middle of the rod, 
and then the titanium liner, with a small amount found in the cyclone and none in the liquid 
effluent. It would appear that as soon as the surrogates mixed with the oxidant, the cerium 
begins depositing and probably coated most surfaces inside the casing. The recovery of cerium 
was 42% with most of that from the posttest rinses. It can be assumed that the remaining cerium 
is on the ceramic rings. This resistance to rinsing illustrates the importance of controlling 
deposition on walls versus relying on posttest rinsing to recover deposits. Further investigation is 
needed of the effect of cerium depositing on the ceramic rings. The SEM analysis shows the 
cerium showing up on the surface of the ceramic coatings but not being absorbed into the cracks 
of the coatings. The controlling mechanism for this behavior is not understood. 

In the 120-hour run, 1447 g of cerium was fed into the system or approximately 12 g/hr. 
The amount of cerium that would be captured in the brine of an ongoing system run is not 
known. A buildup of an actual radionuclide such as plutonium could occur on the scale of several 
grams per hour. The amount of deposition at the top of the reactor could become an operating 
constraint. 

Deposits of lead were found further downstream than cerium on the titanium liner and in 
the cyclone. The rinsing process recovered most of the lead while relatively little was found in 
the top or the middle rod deposits. A brine level in the reactor would most likely increase lead 
recovery. 

The zinc had the highest recovery rate, appearing mostly in the cyclone and rinse processes. 
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Table 12. Liquid effluent. 

Chloride 

Sulfate 

1,800 ppm 

300 PPm 

Cerium 

Chromium 

Iron 

Lead 

Moly 

~~ ~ 

ND 

3.2 pprn 

0.12 ppm 

0.29 ppm 

0.53 ppm 

Liquid Effluent: 
1,250 cc/min x 118 hours x 60 min/hr = 8,850 liters 

Nickel 

Potassium 

Sodium 

Zinc 

5.27 ppm 

20 PPm 

2,500 ppm 

17 PPm 
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VesselDrine Take Off Rinse #1 (1,517 g) 

(17 L) 
1 g of cerium 

Rinse #2 (2,988 g) 

63 g of cerium 

36 g of lead 

78 g of zinc 

334 g of cerium 

73 g of lead 

15 g of zinc 

Rinse Supernatant 
(215 L) 

52 g of cerium 

1 g of lead 

47 g of zinc 



10. DISCUSSION 

The nickel-based alloys (Hastelloy C-276 and Inconel 625) that have been used in other 
SCWO test systems do not show adequate corrosion performance in the SCWO environment 
where TrimSol and surrogates are present as feedstock that results in an oxidizing, chloride 
containing waste feed. Inconel 686 is the latest corrosion resistant alloy from International Nickel 
and is advertised as a replacement for Inconel 625 for use in highly oxidizing environments. The 
results show that Inconel 686 does not offer any improvement over Inconel 625. Hastelloy C-22 
is being marketed as a replacement for Hastelloy C-276 for applications such as oxidizing and 
reducing aqueous media. Hastelloy C-22 was found to offer improved corrosion resistance over 
Hastelloy C-276 but the corrosion rates would not be acceptable for these conditions. The 
experimental nickel-based alloys (620 and 621) are based on the Hastelloy C-22 chemistry with 
increased chromium (25%) with a varying molybdenum content. They have the best corrosion 
resistance of all the alloys tested but still have rates that will not work for an engineered 
structure. 

Ceramic materials offer attractive corrosion resistant properties but are difficult to fabricate 
into certain forms. The plasma-sprayed ceramic coating testing was undertaken to see if an 
overlayed ceramic barrier would provide protection to a metallic substrate and improve its 
corrosion performance. The coating design was based on the aerospace thermal barrier coating. 
This coating has been thoroughly characterized for its thermal performance on jet engines due to 
the formation of fine microcracks throughout the coating. 

The coating was applied using the thermal spray process in air. This results in a coating that 
is less dense than that of a coating sprayed in a vacuum. It will also entrap air during the coating 
process that will react with the atomized powders to form oxides. 

The results from the visual examinations and the light and electron microscopy provide 
answers to the following question: Does the increased cost and complexity of the coated barrier 
system offer a measurable increase of corrosion resistance of the liner/reactor system as compared 
to the best uncoated system? The data indicate that multilayered ceramics can provide protection 
to substrates that would increase the life of the structural wall. The coating substrate systems did 
react differently to the combination of a high temperature, high pressure system with a corrosive 
feedstream. 

The results indicate that thermal expansion properties of the coatings were sufficient to 
withstand the temperature cycles. A ring from each coating was thermally cycled before testing. 
These rings from the different coating systems were thermally cycled in air from room 
temperature to over 650°C in less than 5 minute cycles, up to 10 times with no coating cracking or 
delamination. The coatings did show cracks perpendicular to the surface but this is considered 
normal because these cracks relieve the thermal stresses during the thermal cyclings. The effect 
of these cracks on the overall corrosion performance of the ceramic coating system was then 
evaluated along with corrosion resistance of the coatings. Previous industrial experience has 
shown the coating systems that were most suited for thermal expansion were the zirconia applied 
over the nickel/chrome/aluminum bond layer. The results show that these rings suffered from the 
greatest amount of delamination. 
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The perpendicular coating cracks will allow the test solution to enter into the coating. 
When the test was planned the requirements for the top layer of the coating were stated in terms 
of density. The permeability and density of the coating was thought to be the key to the 
corrosion resistance of any coating. But the density of the top coating affects the ability of the 
layer to contract or expand. All ceramic coating system will have perpendicular cracks through 
the coatings. These cracks open at room temperature and close at higher temperature due to 
thermal expansion. The cracks would have a different size under the higher temperatures of the 
test but would not necessarily be completely closed. The cracks are seen in the EDT 
micrographs. It would appear that the coating delamination observed after the corrosion test was 
caused by these cracks in the ceramic coatings, allowing the test solution to penetrate through the 
coating and react with the various layers and the base metal substrate. The 
nickel/chrome/aluminum layers and the Inconel 625 base metal were the most susceptible to 
attack 

As the corrosion products formed within the ceramic layers, the volume increase caused an 
interlayer separation to open and propagate between the ceramic layers, leading ultimately to 
delamination. 

The most important failure mechanism is the reaction of the coating or base metal with the 
test solution. Based on observation of the data, the mechanisms of thermal expansion or shock 
are secondary to the generation of corrosion products as the design constraint. The observations 
used for this conclusion were the behavior of the zirconia coatings. Coating A showed complete 
delamination in Section 5 and only blistering in Section 1 after 60 hours and five thermal cycles. 
If thermal expansion was the controlling mechanism, the delamination would ‘have been expected 
in the ring that was in the higher temperature section. 

EDF micrographic analysis showed corrosion products down to the bond coat. The 
difference between Coatings A and B was the addition of the alumina interlayer. Delamination 
occurred in Coating B both Section 1 and Section 5 after 60 hours. Figure 18 shows the 
delamination between the bond coat and the alumina interlayer. Corrosion products were found 
on the bond coat. There is no crack in the sample to analyze so it is not clear whether the 
corrosion products could have deposited after the delamination occurred. What can be seen is 
that some of the bond coat remained with the alumina after the delamination. This is more in 
keeping with the concept of a volume increase, causing a fissure between the layers. If the 
coatings had delaminated from thermal expansion all of the bond coat should have remained 
intact. 

In the samples that had an Inconel 625 base substrate or a nickel/chrome/aluminum layer, 
the metal was attacked with the corresponding generation of corrosion products. This is not 
surprising based on the poor performance of the bare Inconel 625 samples in this test. An 
example of this is shown in the comparison of Ring 060-5 (Coating C on Inconel 625) with Ring 
083-5 (Coating F on Gr-12 titanium); Ring 060-5 failed while Ring 083-5 did well in the same 
location. Of the eight rings that had Coating C, only one ring had sufficient coating integrity 
after 120 hours. This was Ring 049-13 that was located in the least corrosive zone. Of the five 
rings that had Coating F on a titanium ring, all five of them had an intact top coat after 120 
hours. It is felt that the good performance of the F coating was due to the fact that it contains 
no nickel/ chrome/aluminum layer or Inconel 625 base substrate. In the titania/titanium systems 
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the corrosive species are still present within the cracks but do not attack the titanium. The titania 
sections have been analyzed for the existence of pitting at the bottom of any cracks but none 
have been found. See the following diagrams for the ceramic rings (Figures 25-29). This has 
great significance for the protection of titanium substrates. It is not known how much longer the 
titania coating will protect the titanium but these data indicate there is a potential for greatly 
increasing the life of the structure. 

Whatever reactor is used to treat mixed waste will become radioactive. Any steps that 
lengthen the time between changing out components will improve the operating costs of the plant 
and the volume of waste produced. 

It appears that the titania/alumina/vanadium coating system is not as susceptible to corrosion 
degradation as the nickel/chrome/aluminum coating system. For this reason the titania/titanium 
coating system is considered superior to the nickel-based system for the SCWO environment. Salt 
deposition on the any of the ceramics appears not to damage the ceramic, but this needs to be 
further investigated. The salt may increase the stress on the coating surface that may be removing 
thin layers of the coating. On some of the zirconia microsections, the salt appeared to be pulling 
away thin top layers of zirconia. This microspalling may be a mechanism that could degrade the 
titania. This coating should be subjected to the test environment for longer periods of time to 
assess any time dependent corrosion degradation. 
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047-5 Type A Coating . 

Figure 25. Mechanisms of failure for Ring 047-5, Coating A. 
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Areas of Failure: 



I Areas of Failure - 

I 

- 
i 049-16 Type C Ring 
Figure 26. Mechanisms of failure for Ring 073-7, Coating C. 
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1073-7 Type E Ring/ D Wing 
Figure 27. Mechanism of failure for Ring 073-7, Coating E.' 
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Area of Failure 

083-8 Type F mating with lnmnef Ring 
_ _  

Figure 28. Mechanism of failure for Ring 083-8, Coating F, with Inconel ring. 



083-4 Type F coating with Titanium Ring 
Figure 29. Mechanism of failure for Ring 083-4, Coating F, with titanium ring. 



11 CONCLUSIONS 

This corrosion test was useful in increasing our understanding of how multilayered ceramics 
and nickel-based alloys would behave in an SCWO environment. The SCWO environment 
provides the opportunity for the interaction between the acids, salts, metals, oxygen, and the 
surface. The mechanisms are not thoroughly understood, only the end net effect can be seen in 
visual examination, weight loss analysis, and the microscopy. The goal of this testing was to find a 
system that would increase the life of the structural wall. The following statements can be made 
from these data: 

The nickel-based alloys (Inconel 625, Hastelloy G276) commonly used in SCWO envi- 
ronments are severely degraded in the TrimSol containing waste stream. 

The Inconel 6% alloy recommended as a replacement for Inconel 625 in severe COKO- 

sion service does not offer any improvement in corrosion resistance in the TrimSol con- 
taining waste stream. 

0 Hastelloy G22 shows improved corrosion resistance compared to Hastelloy G276 but 
the rates would stil l  be too high to be used. 

0 The experimental nickel showed improved performance over the baseline alloys but still 
has excessively high rates of corrosion. 

The corrosion rates of the nickel-based alloys decrease with’ increasing chromium 
content. 

0 The coupons in Section 5, the transition zone of the process, were not exposed to the 
acid environment and, therefore, do not provide any relevant information. 

The plasma-sprayed ceramic coatings show promise as a corrosion control measure. 

The test solution had access to the various coating layers and the metal substrate. 

The nickel-based coating layers and base metal were not resistant to the test solution 
that caused coating failures. 

0 The yttria-stabilized zirconia coatings reacted with the coatings forming reaction 
products that adversely affect coating life. 

None of the multilayered coatings were able to protect the alloy 625 substrate. 

Thermal cycling did not appear to have a dominant effect on the ceramic coatings. The 
rings withstood the thermal cycling test with no coating delamination. 

The all titaniaktanium coatinglbase metal system was resistant to the test solution. 
With the initial data produced in this test, the coating system protected the titanium 
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from the corrosive environment. The titania had very little reaction products within the 
coating. 

The titania/titanium coatingbase metal system will increase the time between the 
changeout of the reactor. This is important because when treating mixed waste the 
reactor itself becomes a form of low-level radioactive waste when it is removed from 
the system. 

0 There are many parameters that need to be further studied. For example, it is not 
known if there is a wearing away of the titania on the surface of the coating or if the 
titania is spalling off locally. The impact of salt and oxide deposition onto the ceramic 
needs to be understood. 

The radiological and Resource Conservation and Recovery Act (RCRA) implications 
from the surrogates such as cerium found in the products deposited on the surfaces 
need to be studied. 

' I  
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This corrosion test represents a preliminary effort to identify the direction of material 
investigations for the SCWO environment. 

Further corrosion testing with the TrimSol solution should be performed to test opti- 
mized parameters of coating titania onto titanium metal. 

The program should be repeated with the best performing coatings applied by the 
vacuum spray process to see if this coating application method is significant. This 
method should have a higher density with no internal oxides. 

The use of postspray surface thermal treatments (electron beam or laser) should be 
investigated. These treatments would reduce the residual thermal stresses in the 
coating. 

Other materials need to be investigated as coating systems such as noble metals. 

Other waste streams (Department of Defense, Department of Energy, and commercial) 
should be identified for testing with the coated and bare metal samples. Many of these 
waste streams will not be as aggressive as TrimSol. 

The test results of the nickel alloys indicate that increasing the chromium level 
decreases the corrosion rate in these solutions. It would be of interest to see if this 
trend continues as chromium levels increase up to 30%. 

Further investigations are needed into other methods of applying the coating besides 
the thermal spray method, such as vapor deposition. 

Testing should be extended to welded metal coupons with ceramic coatings. 

It is not known if there is a wearing or wastage of the titania on the surface of the 
coating or if the titania is spalling off locally. Also, the impact of the salt and oxide 
deposition onto the ceramic needs to be understood. 

The radiological and RCRA implications of radionuclide deposition must be studied. 
The location and amount of the surrogate depositions is important to future system 
design. 
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This first run was for 3 hours: 
Run 937 

Feed: 
20 liters of H,O = 20,000 grams 

108 grams of CeC1, 57 grams of ZnSO,, 45 grams PbCl, 
5400 ppm CeC1, ,285O’ppm ZnSO,, 2250 ppm PbC1, and TrimSol 

WaterlMetals Solution - 60 cc/min ~ (3x60  min) = 10.8 liters 
1) Cerium calculation 
Cerium 140.12 
Chloride 35.453 
CeC1, 140.12 + (35.453~3) = 246.479 
Cerium 140.12/246.479 = -5679 

Lab Analysis: 1800 ppm of cerium in the metals feed 
.5679 x 5400 ppm = 3067 Dpm cerium = (.003 ~10800)  = 33.12 grams of cerium 

.0018 x 10800 = 19.44 grams of cerium 

2) Zinc Calculation 
Zinc 65.37 
Sulfur 32.064 
Oxygen 16 
ZnSO, (4x16) + (32.064) + 65.37 = 161.434 
65.37461.434 = .4049 

Lab Analysis: 830 ppm of zinc 
.00083 x 10800 = 8.96 grams of zinc 

.4049 x 2850 pprn =I 

3) Lead Calculation 
Lead 207.19 
Chlorine 35.453 
PbC1, 207.19 + (35.454 x2) = 278.1 
207.19/278.1 = .745 
.745 x 2250 = 1676.31 m m  lead = ~00167x10800~ = 18.1 prams of lead 

Lab Analysis: 33 ppm of lead 
3.3 x x 10800 = .3564 grams of lead 
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4) Chlorine Calculation 
TrimSol ( 30% C,,H,,CI,) 
30 cc/min x (4.6 hrs x 60 min) = 8.28 liters of TrimSol 
Carbon 12 
Hydrogen 1 
Chlorine 35.453 
( C20H37C15) = (12x20) + 37 + ( 35.453~5) = 454.265 

Chlorine 177.265/454.265 = .39 
.39 x .3 = 11.77 % (.1177 x 8280) = 968 .8 grams of chlorine 

CeCI, 140.12 + (35.453~3) = 246.479 
chlorine 106.361 246.48 = .43 
.43 x 5400 ppm = 2330 ppm = (.00233x 10800) = 25.16 g ams of chlorine 

ZnSO, (4x16) + (32.064) + 65.37 = 161.434 

PbCI, 207.19 + (35.454 x2) = 278.1 
chlorine 70.9U278.1 = .255 
.255 x 2250 = 573.69 ppm (.00057369 x 10800) = 5.2 gams of chlorine 

Effluent: 1250 cc/min x (4.6 hrs x 60 min) = 345 liters 
Liquid Effluent - Chloride 2600 ppm, Sulfate 170 ppm, Chromium 4.8 ppm, Iron .4ppm, lead 
.16 ppm, moly 3.4 ppm, nickel 15.8 ppm, potassium 16 ppm, Sodium 2100 ppm, zinc 5.5 
PPm 
Chloride: (.0026 x 345,000) = 897 grams of chlorine 
Zinc ( 5 . 5 ~ E - ~  x 345,000) = 2 grams of zinc 
Sodium ( .0021 x 345,000) = 724.5 grams of sodium 
Lead (1.6E7 x 345,000) = 0.06 

Solid : Bottom 1 gram 

Sodium 300,000 ppm 

Chloride ND 
Nickel 110,000 ppm 
(. 1 1 grams) 
Cerium 3,700 ppm 
(.0037 grams) 
zinc 8, 200 ppm 
(.0082 grams) 
Lead 180 ppm 
(.00018 grams) 

(.3 grams) 

rar& of lead 

Solid: Top 2 grams 

Sodium 9,700 ppm 
(.0194 grams) 
Chloride 6,600 ppm 
(.0132 grams) 
Nickel 500,000 ppm 

Cerium 5,800 ppm 
(.0116 grams) 
Zinc 4,600 ppm 

Lead 320 ppm 
(.00064 grams) 

(1 gram) 

(.0042 grams) 
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Solid : 937-11 .063 
grams 

Sodium 3500 ppm 

Chloride Unknown 
Nickel 74000 ppm 
(.0047 grams) 
Cerium 300000 ppm 

Zinc 5200 ppm 
( .0003 grams) 
Lead 1200 ppm 
( .000076 grams) 

(.00022 grams) 

(-019 grams) 
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Chlorine 897/(969+25+6) = 89.7% 

Cerium .034 grams .034/19.4 = 0.2 % 
Zinc 2.018 grams 2.02B.96 = 8.3% 
Lead .061 grams .061/.3564 = 17.1% 

Run 937 OBSERVATIONS: A 90% chlorine mass balance is achieved in the liquid effluent. 
Sodium present in the bottom solids could be from bicarbonate. The cerium does not appear 
to be coming completely through the reactor while most of the lead remained in the feed 
tank. The cerium is not soluble but is settling out or depositing on the walls. 
Lead Sulfate precipitated from the Run 937 feed mixture leaving an estimated content of the 
lead in the feed of 30 ppm. This is less than 2 % of the lead added. 

This run is for 56.5 hours 
Run 938 
Feed: 
Zinc chloride has been used instead of zinc sulfate to prevent the lead from precipitating out 
of the feed mixture. 
20 liters of H,O = 20,000 grams 

108 grams of CeC1,44 grams of ZnCl,, 45 grams PbCl, 
5400 ppm CeC1, ,220O’ppm ZnC1, ,2250 ppm PbC1, and 13 wt% of TrimSol 

WaterMetals Solution - 60 cc/min x (56.5 x 60 min) = 203.4 liters 
1) Cerium calculation 
Cerium 140.12 
Chloride 3 5.453 
CeC1, 140.12 + (35453x3) = 246.479 
Cerium 140.12/246.479 = S679 
.5679 x 5400 ppm =>m 

2) Zinc Calculation 
Zinc 65.37 
Chlorine 35.454 
ZC1, (65.37) + (35.454 x 2) = 136.28 
65.37A36.28 = .48 
.48 x 2850 ppm = 1.368 tmm of zinc = ~.0014x203400) = 278.25 mams of zinc 

3) Lead Calculation 
Lead 207.19 
Chlorine 35.453 
PbC1, 207.19 + (35.454 x2) = 278.1 
207.191278.1 = .745 
.745 x 2250 = 1676.31 D u r n  lead = (00167~ 203400) = 341.0 grams of lead 

4) Chloride Calculation (not including surrogates) 
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30 cc/min x 55.5 hrs x 60 min/hr =99,900 milliliters 
1 1.77% x 99,900 milliliters = 11,688 g of chlorides 

Effluent: 

938-1 6 grams 

Sodium 2000 ppm 
(.012 grams) 
Chloride ND 
Nickel 48000 ppm 
(.288 grams) 
Cerium 98000 ppm 
(.588 grams) 
Lead 8200 ppm 
(.05 grams) 
zinc 64000 ppm 
(.38 grams) 

938-2 17.8 grams 

Sodium 54000 ppm 
(.96 grams) 
Chloride 3800 ppm 
(.068 grams) 
Nickel 74000 ppm 
(1.317 grams) 
Cerium 180000 ppm 
(3.2 grams) 
Lead 120 ppm 
(.0021 grams) 
Zinc 30000 ppm 
(.53 grams ) 

938-3 4.5 

Sodium 170000 ppm 
(.765 grams) 
Chloride 350 ppm 
(.0016 grams) 
Nickel 71000 ppm 
(.32 grams) 
Cerium 90000 ppm 
(.405 grams) 

(.0003 grams) 
Zinc 34000 ppm 
(.15 grams) 

Lead 70 PPm 

Liquid Effluent (1250 cc/min x 56.5 x 60 min) = 4, 237.5 liters 
Chloride 2500 ppm, Sulfate 190 ppm, Chromium 2.7 ppm, Iron .3 ppm, lead .4 ppm, moly 
2.3 ppm, nickel 3.9 ppm, potassium 53 ppm, sodium 3000 ppm, zinc 9.6 ppm 
Chloride : (.0025 x 4237500) = 10,593.75 grams 
Zinc: 9.6 E-6 x 4237500 = 40.68 + 1.06 = 41.74 grams 41.74/234.7 = 17.8% 
Lead 1.695 + .0524 = 1.747 grams 1.747/341.0 = .51% 
Cerium 4.193 grams 4.193/623.8 = .67% 
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940 Cyclone 3.5 g 

Run 939-940 
This run is for 59.6 hours 
Feed: 
WaterMetals Solution - 60 cdmin x (59.6 hrs x 60 min) = 214.56 
1) Cerium calculation 
Cerium 140.12 
Chloride 3 5.453 
CeC1, 140.12 + (35.453~3) = 246.479 
Cerium 140.12/246.479 = -5679 

liters 

.5679 x 5400 ppm = 3067 pprn cerium = c.003 ~214560) = 643.68 prams of cerium 

940 Composite Rinse 
unknown mass 

2) Zinc Calculation 
Zinc 65.37 
Chlorine 35.454 
ZC1, (65.37) + (35.454 x 2) = 136.28 
65.37A36.28 = .48 
.48 x 2850 ppm = 1368 pp m of zinc = (.0014x214560) = 293.52 grams of zinc 

Sodium 59000 ppm 
(1.2 grams) 
Chloride 1900 ppm 
(.04 grams) 
Nickel 3000 ppm 
(.06 grams) 
Cerium 3 10,000 ppm 
(6.29 grams) 
Lead 18,000 ppm 
(-37 grams) 
Zinc 17,000 ppm 
(.35 grams) 

3) Lead Calculation 
Lead 207.19 
Chlorine 35.453 
PbC1, 207.19 + (35.454 x2) = 278.1 
207.19/278.1 = .745 
.745 x 2250 = 1676.31 ppm lead = (00167~ 214560) = 358.32 mams of lead 

Sodium 76,000 ppm 
(1.82 grams) 
Chloride 14,000 ppm 
(.33 grams) 
Nickel 39,000 ppm 
(.93 grams) 
Cerium 68,000 ppm 
(1.63 grams) 
Lead 25,000 ppm 
(.6 grams) 
Zinc 19,000'ppm 
(.45 grams) 

4) Chloride Calculation (not including surrogates) 
30 cc/min x 59.6 hr x 60 min/hr = 107280 milliliters 
11.77% x 107280 milliliters = 12,552 g of chlorides 

Sodium 2,200 ppm 
(.01 grams) 
Chloride780 ppm 
(.002 grams) 
Nickel 20,000 ppm 
(.07 grams) 
Cerium 46,000 ppm 
(. 16 grams) 
Lead 270,000 ppm 
(.95 grams) 
Zinc 12,000 ppm 
(.042 grams) 

Effluent: 

Sodium 4,000 ppm 
Chloride 5200 ppm 
Nickel 11,000 ppm 
Cerium 160,000 ppm 
Lead 10,000 ppm 
Zinc 6,200 ppm 

940 Hot Zone 20.3 g 1940 Quench 23.9 g 
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Run 941-942 
This run is for 118 hrs 
The feed consisted of the waterlmetal solution running at 80 cc/min, and the TrimSol at 40 

cc/min. 
The metal solution consisted of: 
5400 ppm of CeCI,, 2200 pprn of ZnCl,, and 2250 ppm of PbC1,. 
The watedmetals solution created a total volume of: 
80 cc/min x (1 18 hrs x 60 mi&) = 566.4 liters 
The TrimSol solution created a total volume of: 
40 cc/min x (1 18 hr x 60 min/hr) = 283.2 liters 

The chloride content of the feed stream is calculated below: 
1) TrimSol ( 30% C2,,H3&I5) 
Carbon 12 
Hydrogen 1 
Chlorine 35.453 
( C,,H3,C15) = (12x20) + 37 + ( 35.453~5) = 454.265 

Chloride 177.265/454.265 = .39 
.39 x .3 = 11.77 % 
40 ‘cc/min x 1 18 hr x 60 mi& = 283200 milliliters 
11.77% chloride x 283200 milliliters = 33,332.64 grams of chlorides 

2) CeCI, 140.12 + (35.453 x 3) = 246.479 
chloride 106.36/246.48 = .43 
.43 x 5400 ppm = 2330 ppm 
.002330 gramdm1 x 566400 = 1319.7 grams of chlorides 

3) PbCl, 207.19 + (35.454 x2) = 278.1 
chloride 70.9U278.1 = .255 
.255 x 2250 = 573.69 ppm 
.00057 grams/ml x 566400 = 322.85 grams of chlorides 

4) ZnC1, 65.37 + (35.454 x 2) = 136.278 
Chloride 70.9U136.278 = .52 
.52 x 2200 ppm = 1144.73 ppm 
,001 1 grams/ml x 566400 = 623.04 grams of chlorides 

Total Chlorides: 
33,332.64 + 1319.7 + 322.85 + 623.04 = 35,598.24 grams of chlorides 

It is important to note that the metal solution contributed 6.36% of the chloride loading. The 
metals solution did not impact the chloride loading of the system. 
The total volume of flow into the system was: 
TrimSol 283200 ml 
Watedmetals 566400 ml 
Purge Lines 1,628,400 ml 
Annulus 2,124,000 ml 
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Liquid Effluent: 
Chloride 1300 ppm, Sulfate 230 ppm, Chromium 3.9 ppm, Iron .36 ppm, Moly 1.5 ppm, 
Nickel 7.98 ppm, Potassium 38 ppm, Sodium 2000 ppm, Zinc 17 ppm 

1250 cc/min x 59.6 hrs x 60 minfhr = 4,470 liters 
Chlorides: 58 1 1 grams 
Cerium : 8.08 grams 
Zinc: .84 grams 
Lead 1.92 grams 

8.08/643.68 = 1.26% 
341 236.02 = .36% 

1.921 358.32 = .54% 

Composite Rinse: 188 liters 
Chloride 170 ppm, Sulfate 2300 ppm, Chromium 1.4 ppm, Iron -38 ppm, Moly 1.5 ppm, 
Nickel 11.5 ppm, Potassium 140 ppm, Sodium 1400 ppm, Zinc 6.2 ppm 
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Total 4,602,000 ml 

The amount of chlorides entering the system was 
35,598.24/4,602,000 ml = .0077 gramslml = 7,735 ppm of chlorides 

In Section 4 the steam was diluted at 350 cc/min or a total flow of 2,478,000 ml. This 
lowered the concentration of chlorides to: 
35,598.24/7,119648 = 5000 ppm of chlorides. 

The liquid effluent had a total flow of: 
1250 cc/min x 118 hr x 60 min/hr = 8,850 liter 
The lab analysis showed a chloride concentration of 1800 ppm 

,0018 x 8850000 = 15,930 grams of chloride 
The chlorides collected from the various solid samples (see Table 5) was only .3792 grams 
15,930.4/ 35,598 = .4475 or 44.75 % mass balance on the chlorides fiom the effluent. This 
does not account for the amount of chlorides recovered fiom the post test rinse or that 
remained settled in the feed tank as part of the surrogates. 
The solids were collected from several locations in the system.( See diagram in Appendix C). 
The rod that held the metal coupons became a deposition surface within the casing. 
The mass balance for the metals used the following calculations: 
1) Cerium calculation 
Cerium 140.12 
Chloride 35.453 
CeC1, 140.12 + (35.453~3) = 246.479 
Cerium 140.12/246.479 = .5679 
,5679 x 5400 ppm = 3067 Dp m cerium = (.003 x 566400) = 1.699.2 mams of cenum * 

2) Zinc Calculation 
Zinc 65.37 
Chlorine 35.454 
ZC1, (65.37) + (35.454 x 2) = 136.28 

c = (,0014 x 566400) = 774.32 mams of zinc 
65.37D36.28 = .48 
.48 x 2850 ppm = 1367.1 pprn of zin 

3) Lead Calculation 
Lead 207.19 
Chlorine 35.453 
PbCl, 207.19 + (35.454 x2) = 278.1 
207.19/278.1 = .745 
.745 x 2250 = 1676.31 ppm lead = (00167~ 566 400) = 945.89 m a s  of lead 

The metals mass balance takes into account the amount of surrogates that settled to the 
bottom of the tank, and the amount found in the post test rinses. The feed contained 
approximately: 
1699 grams of cerium 
774 grams ofzinc 
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946 grams of lead 
Lab analysis of the metal feeds indicates that only 4500 ppm of cerium instead of 5400, 1230 
ppm of lead instead of 2250, and 1840 ppm of zinc instead of 2850, actually went into the 
system as feed with the remainder left behind at the bottom of the tank. This results in the 
total metals in the feed as 1447 grams of cerium instead of 1699 grams, 519 grams of lead 
instead of 946 grams 
and 50Q grams of zinc instead of 774 grams. 
The solids effluent from Table 5 gives the following results: 
Cerium 156.86 grams 
Zinc 25.09 grams 
Lead 14.76 grams 

The liquid effluent from Table 6 gives the following results: 
Cerium ND 
Zinc 150.45 grams 
Lead 2.56 grams 

The post test rinses from Table 7 gives the following results: 
Cerium 450 grams 
Zinc 140 grams 
Lead 110 grams 

The total cerium regained was 606.86 grams. This is 606.9/1447 = 42% 
The total zinc regained was 315.54 grams. This is 315/500 = 63% 
The total lead regained was 127.32 grams. This is 127/519 = 24.5% 

0 bservations: 

rod and then the titanium liner, with a small amount found in the cyclone, and none in the 
liquid effluent. It would appear that as soon as the surrogates mix with the oxidant the cerium 
begins depositing and probably coated most surfaces inside the casing. The recovery of 
cerium was 42% with most of that from the post test rinses. It can be assumed that the 
remaining cerium is on the ceramic rings. This resistance to rinsing illustrates the importance 
of controlling deposition on walls versus relying on post test rinsing to recover deposits. 
Further investigation is needed of the affect of cerium depositing on the ceramic rings. The 
SEM analysis shows the cerium showing up on the surface of the ceramic coatings but not 
being absorbed into the cracks of the coatings. The controlling mechanism for this behavior is 
not understood. 

In the 120 hour run, there were 1447 grams of cerium fed into the system or 
approximately 12 grams/hour. The amount of cerium that would be captured in the brine of 
an ongoing system run is not known. A buildup of an actual radionuclide such as plutonium 
c6uld occur on the scale of several gramsh. The amount of deposition at the top of the 
reactor could become an operating constaint. 

in the cyclone. The rinsing process recovered most of the lead while relatively little was 

The cerium deposits were seen primarily at the top of the rod, then the middle .of the 

Deposits of lead were found further downstream than cerium on the titanium liner and 
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found in the top or the middle rod deposits. A brine level in the reactor would most likely 
increase lead recovery. 

processes. 
The zinc had the highest recovery rate, appearing mostly in the cyclone and rinse 

Table 5: Solid Effluent 

942 Top Rod 
70 grams 

Sodium 12,000 ppm 
(.84 grams) 
Chloride 490 ppm 
(.034) 
Nickel 270 ppm 

L:Z??O% 
1(35 grams) 

(.21 grams) 
,Lead 3000 ppm 

'Zinc 380 ppm 
l(.027 grams) 

942 Mid Rod 942 Cyclone 16 grams 942 Titanium Liner 
~ 35 grams 568 grams 

,Sodium 66,000 ppm Sodium 840 ppm Sodium 39000 ppm 
,(2.31 grams) (.0134 grams) (22.15 grams) 
Chloride 480 ppm Chloride 2400 ppm Chloride 510 ppm 
(.0168 grams) (.038 grams) (-29 grams) 
Nickel 7400 ppm Nickel 27000 ppm Nickel 32000 ppm 
(.26 grams) (.43 grams) (18.18 grams) 
Cerium 36% Cerium 8.4% Cerium 19% 
(12.6 grams) (1.34 grams) (107.92 grams) 
Lead 14,000 ppm Lead 27,000 ppm Lead 24,000 ppm 
(.49 grams) (.43 grams) (13.63 grams) 
Zinc 430 ppm Zinc 110,000 ppm Zinc 41000 ppm 
(.015 grams) (1.76 grams) (23.29 grams) 

Table 6: 

iLiquid Effluent: 1250 cc/min x 118 hours x 60 min/hr = 8850 liters 
~~ -~ 

'Chloride 1800 ppm 

Sulfate 300 ppm 

Cerium . ND 

chromium 3.2 ppm 

Iron .12 ppm 
~ 

Lead .29 ppm 

Moly -53 ppm 
~ 

Nickel 5.27 ppm 

Potassium 20 PPm 
~ 

Sodium 2500 ppm 

zinc 17 PPm 
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VesseYBrine Take Off Rinse #1 
(17 liters) (1517 grams) 

1 gram of cerium 334 grams of cerium 

73 grams of lead 

15 grams of zinc 

Rinse #2 Supernatant 
(2988 gr) (215 liters) 

63 grams of cerium 

36 grams of lead 

78 grams ofzinc 47 grams of zinc 

52 grams of cerium 

1 gram of lead 
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ABSTRACT 

The process of supercritical water oxidation creates a material 
challenge in several zones. Ceramics are known to have a high 
degree of corrosion resistance in many environments. This test will 
evaluate multilayered ceramics that have been applied by the 
thermal process. The ceramic will be sprayed to the inside of rings 
and exposed to the supercritical water oxidation environment. 
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SUMMARY 

The goal of the test is to investigate and identify ceramic coatings for use in supercritical 
water oxidation (SCWO) environments. The test evaluates three coatings in two different SCWO 
environments. 

The ceramic coatings have been applied to the internal diameter of rings using a thermal 
spray process. Several different layers are applied to accommodate the thermal expansion of the 
substrate at operating conditions. The rings will be evaluated in MODAR's SCWO reactor. 
TrimSol, water, and air will be introduced into the reactor at 3,400 psi and 600°C. The rings will 
be exposed to 600°C in the top zone of the reactor and 350°C at the bottom of the reactor. 

The first test run will be 60 hours with five temperature cycles, the second test run will be 
for 60 hours with two temperature cycles, and the third test run will be for 120 hours with two 
temperature cycles. The rings in the center of the reactor could see up to 240 hours of testing. 
The rings will be visually inspected, then sectioned. Micrographic analysis will be used to define 
the mechanisms of corrosion and failure of the rings. 
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INEL Corrosion Test Plan 

1. GENERAL DESCRIPTION 

The process of supercritical water oxidation (SCWO) engenders some extremely aggressive 
environments in the course of treating many wastes of interest. The difficult challenge presented 
to system materials of construction can sometimes be answered by noble metals such as gold and 
platinum; however, the high cost of these materials is likely to be prohibitive for most 
applications. Ceramics are known to have a high degree of corrosion resistance in many 
environments, are generally modest in cost, and are thus favored candidates for SCWO 
applications. 

The goal of the current project is to investigate and hopefully identify suitable ceramic 
coatings for use in SCWO environments. The project entails moderate duration testing of three 
different thermal spray coatings in two different SCWO environments. The chemical composition 
of these environments is based on TrimSol cutting fluid, and has been described in the Statement 
of Work (Appendix A). The TrimSol will be diluted to provide a chloride level of at least 
5,000 mgkg on an aqueous basis in the SCWO environments. Neutralkition will be carried out 
only after the process fluid has exited the test zones. 

The primary purpose of ceramic coatings in SCWO systems is expected .to be the protection 
of equipment sudaces exposed to the most demanding areas of the process environment. As 
such, cylinder inside diameters are the most important geometry, and given that the coatings are 
geometry sensitive, it is this configuration which has been chosen for testing. Furthermore, 
coating of cylinder inside diameters less than about 4 in. is difficult and would require additional 
developmental work. For these tests, a cylinder inside diameter of about 7 in. will be used, a size 
range that is within common practice and very relevant to pilot-scale reactor vessels. The tests 
will be carried out in MODAR's pilot-scale SCWO system. 

1 



2. SYSTEM CONFIGURATION 

The system configuration to be used for these tests is shown in Figure 1. One part of 
TrimSol at about 13 wt% in water is pumped up to system operating pressure of about 3,400 psi 
and introduced to the reactor through a .downward-pointing insulated nozzle. Air and an 
appropriate amount of water are pumped to pressure, heated to about 600°C with electrical 
radiant heaters in a "hot box," and introduced to the reactor through an annulus around the cool 
core feed stream. The two streams mix and reaction commences, achieving a final reaction 
temperature of about 600°C. Acids and salts form within the reaction zone; some of the salts will 
adhere to the ceramic coated walls in the reaction zone. The reacted process stream continues in 
downflow until it enters the cooldown zone, which is maintained by a separate stream of cold 
water. The process stream continues along its downward path until it reaches the approximate 
location of the exit tube. At this point, the process stream mixes with cool dilute caustic and is 
neutralized. The warm mixed stream exits from the vessel and passes through a heat exchanger to 
be brought to near-ambient temperature. After two stages of insoluble solids removal, pressure is 
let down to about 1,500 psi and a liquid vapor separation carried out (V-491). The liquid and gas 
streams drawn off fiom the separation vessel are reduced to near ambient pressure and then 
vented, drained, and analyzed online or collected for analysis. 

As shown in Figure 1, the reactor vessel possesses horizontal arms. These house either 
filtration or quenching apparatus for a reversing flow mode of operation, and will not be used in 
these tests. The axial temperature profile will be monitored by thermocouples located within the 
central thermowell. Temperature will be monitored at least four axial positions within the 
internal can. 
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The detailed setup to be used for the corrosion samples is shown in Figure 2 Fifteen 
coated rings, 3 in. high and about 7 in. ID after coating, will be stacked and potted with an inert 
mortar inside a 45-in. high casing. The casing in turn will be mounted within the pilot plant vessel 
reactor. A cover plate is bolted onto the cylindrical casing and an Alloy 625 rod protrudes down 
into the stack of rings from its lower surface. A short length of threaded rod is welded onto the 
main rod at each ring position, allowing the mounting of 1 or 2 metallic corrosion coupons. 
These coupons will include at least one each of Alloys 625 and C276 in each zone to serve as 
reference materials, as these alloys Iiave the largest exposure database available from prior 
studies. 

It is believed that the internal can of Figure 2 will provide excellent protection for the 
reactor vessel walls. A major concern which remains, however, is the survivability of exposed 
metallic parts, in particular the feed nozzle, the cover plate, the thermowell, and the metallic 
coupon rack. It is conceivable that these pieces will have to be replaced regularly or, if possible, 
constructed of more durable materials. As such construction is difficult, it will not be attempted 
unless early experimental results indicate a need. One possibility is the use of platinum; however, 
even this metal has questionable survivability under the conditions specified. In their corrosion 
tests for ARPA, General Atomics found platinum unsuitable for umeutraIized mustard agent, a 
chlorine and sulfur containing organic as is TrimSol. Platinum wires will be included in the test 
rig of Figure 2 to obtain information in this regard. 
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Figure 2. Corrosion sample cartridge. 
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4. TEST MATRIX AND SCHEDULE 

A viable coating must be able to withstand extended -periods at operating conditions as well 
as repetitive thermal cycling. For convenience, samples will be designated as hours/cycles/zone/set 
(e.g., the first set of samples seeing 60 hours of exposure and five thermal cycles in the reaction 
zone is designated as 60/5/R/l). 

The coatings to be tested are two types of zirconia and one type of titania. The inert mortar 
is based on calcium sulfate. 

The test matrix is comprised of four tests, as follows: 

1. BaselineTest 

The down flow mode of operation desmied in Section 2 has been previously used on 
the MODAR bench-scale system, but not on the pilot-scale system. The use of an 
internal "can" with perhaps excellent insulating properties is also a nonstandard 
arrangement. For these reasons, a baseline test will be required to establish 
appropriate flow rates for the various streams. The baseline test necessarily involves 
the full system setup including the corrosion rig, so that the corrosion samples in place 
will see noncorrosive SCWO exposure time. This time is not counted toward the 
exposure time with TrimSol feed running. Figure 3a shows the corrosion rings that will 
be in place for the baseline test as well as the 60-hour test that follows. 

2. 60-Hour Test with Thermal Cycles 

Thermal cycling is of importance in materials testing because it involves stresses and 
environments which are different, and frequently more severe, than those encountered 
during steady state operation. For example, ceramic coatings may be most susceptible 
to delamination when subjected to the temperature gradients of a startup procedure. 
In this test, the 60-hour exposure time will be artificially interrupted five times, and 
reactor temperatures allowed to drop below 300°C or less. These thermal cycles will 
not all be evenly spaced because the first .run segment will be terminated after about 
4 hours to veri@ that the internal can is indeed protecting the pressure vessel from 
corrosive attack. Thus, after this first short segment, the reactor head will be removed, 
the internal can removed, and the equipment Visually inspected for corrosion locales. 
Assuming the equipment is functioning as planned, the reactor will be reassembled and 
the test continued. Should the equipment not be functioning in the desired fashion, 
the possibilities for modification will be considered, and implemented if deemed 
practical. After 60 hours of exposure and five thermal cycles (with the possibility that 
some of these cycles will comprise full shutdowns with coating and reactor inspections), 
the reactor will be opened, the internal can removed, and the 60-hour samples removed 
from the casing. The corresponding metal coupons will also be removed. The rings 
and coupons will then be replaced with a second set of 60/5 samples. It is unknown 
how difficult it will be to remove the potted rings from the inert mortar that backs 
them. In the extreme case, the casing cylinder will have to be cut up. A spare casing 
cylinder will be kept on hand to avoid schedule delays in this eventuality. 
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3. 60-Hour Test with Thermal Cycles 

Figure 3b shows the test rings as configured for this second 60-hour test. This test 
should be similar to the 5rst a h o u r  test, but with less of a need for full shutdowns 
because the Viability of the setup will no longer be in question. Following this test, the 
second set of 60/5 samples and the 120/10 set of samples will be removed and replaced 
with two sets of 120/1 samples. 

4. 120-Hour Continuous Test 

Figure 3c shows the test rings as configured for this test, The duration of this test is 
nominal. Should it be found that budgetary limits are being approached, the time may 
be reduced. Likewise, should the project be proceeding smoothly, an extension of this 
run will be considered. This test involves only a single thermal cycle. 

The test matrix descriied will require 36 coated rings as follows: 

Twelve 6015 rings 

six 120/10rings 

Twelve 120/1 rings 

0 Three240/11 rings 

Three unused reference.rings. 

The scheme will allow duplicate comparisons to be made between two sets of 6015 rings 
tested in different runs and two sets of 120/1 rings tested in the same run. The effect of thermal 
cycling can also be gauged by comparison of the 120/1 and 120/10 ring sets. It should be noted 
that the 240-hour exposure time is obtained by having a single set of rings which is in place for all 
of the tests (60 + 60 + 120), as shown in Figure 3. The number of thermal cycles and exposure 
times provided for by this scheme are consistent with failure histories of similar ceramics 
previously tested at MODAR. In these previous tests, coatings have failed at exposure times 
between 100 and 200 hours. 

Analytical procedures'for the test project have been described in the proposal Description of 
Work. The analytical contract has not yet been assigned by EG&G Idaho. 

Figure 4 shows the prospective schedule for the test matrk It should be emphasized that 
both the test matrix and schedule are success oriented, presuming for example that the samples 
and system will maintain their integrity for extended periods of time. The number and duration of 
tests, as well as the schedule and Test Plan, may have to be modified as events dictate. 
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5. QUALITY PROGRAM 

During the execution phase of the project, engineering and technical personnel will 
continually monitor progress and effectiveness so that any necessary cost saving adjustments can 
be made to optimize results. Engineering personnel will have the principal responsibility of 
ensuring the quality of all work performed. Management personnel will provide an appropriate 
level of independent verification. This verification will rely heavily on performance-based 
verification methods (as opposed to after-the-fact programmatic audit techniques). This will 
provide for real-time problem identification and resolution, as well as feedback to the planning 
process for quality improvement. Deficiencies noted will be reported to and resolved by 
engineering personnel. 

Our approach to quality assurance results from our extensive experience in design, 
engineering, and construction of SCWO facilities, including three pilot plant configurations and 
numerous bench-scale projects. It is based on the recognition that quality achievement is the 
responsibility of those personnel performing work, that quality leads to improved productivity, and 
that appropriate verification of that quality is an important management tool in preventing and 
resolving problems, improving work product quality, enhancing performance, and satisfying 
contractual and regulatory requirements and co-tments. 

Specific responsibilities for this project are: 

Procurement 

Inspection, measuring, and testing equipment 

Document control 

Control of SCWO process 

Control of project nonconformances 

Project Technical Director 

Operations Supervisor 

Project Technical Director 

Project Engineer 

Project Manager 

As called for in the Scope of Work, our quality assurance and control procedures will be 
reviewed with and approved by EG&G Idaho in the earliest phase of the &tract. 
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6. PARTS LIST 

The following parts are specific to the current project: 

2 casing cylinders. 

1 casing cover plate 0 

0 1 bolting ring 

1 cover plate extension 

1 raisingAowering cross piece 

1 feed nozzle assembly 

1 reactor themowell assembly 

6-ft threaded rod, 1/4-20 

50 ceramic shoulder washers 

30 titanium nuts, 1/4-20. 

In addition, various nonspecific parts such as those listed in Table 1 will be required. No 
major equipment will be purchased. 
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Table 1. Generic parts list for SCWO units. 

Pipe, tubing, hose (not made of Inconel 625) 
Includes C-276, C-22,316 SS, 304 SS, plastic, rubber, PVC, CVPC, carbon steel, brass, 

copper 

Valves (except those made of specialty alloys) 
Manual, automatic with actuators, relief valves, vacuum breakers, valve trims 

Maintenance parts, spare parts 

Electrical equipment 
Enclosures, wiring, contactors, circuit breakers, tie wraps, trays, conduit, junction boxes, fuse 
holders, fuses, relays, switches, heaters, heating tape, Variacs, terminals, transformers, cable, 
grounding equipment, lighting 

Instrumentation (excluding computer control system) 
Pressuretransducers, gauges, UP converters 
Temperature-thermocouples, thermowelis, gauges 
Level-differential pressure transducers, gauges 
Flow-difTerential pressure transducers, dry test meter 
Safety devices 
Local temperature controllers 
Local level controls 

Insulation 
Board, blanket, fiber, powder, molded forms for pge, i,aminurn sheathing, tie wire 

Structural support 
Unistrut, angle iron, sheet, guard rails, hangers, clips, square tubing, I-beams, ladders, fittings, 
plate, walkways, stairs, scaffolding 

Fittings 
High pressure-(e.g., Autoclave Engineers) 
Low pressurdwagelok 
Flanges 
Seal M g s  

Miscellaneous items 
Tools 
Shielding (e.g., Lexan) 
FIoor drain covers 
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7. 

Typical consurnables for SCWO testing are given in Table 2. 

Table 2. Generic consumables list for SCWO testing. 

Analytical consumables 
Sample bottles or containers 
Labels 
Colorimetric gas analysis tubes 
Tenax traps 
XAD resin’traps 
TOCA reagents 
Caliiration gases 
GC carrier gas 

PH paper 
Chloride strips 
Gas absorption solutions 
Gases for atomic absorption spectrophotometer 
Chemicals for wet chemical analyses 
Chemicals for ion specific electrode analyses 

Carbon traps for vent gas -- -- 
Ion exchange resins for feed water and effluent 
Feed chemicals 
Efauentbrine treatment chemicals 
Neutralizing reagent (e.g., NaOH) 
Welding consumables (e.g., wire, gases) 
Propane for torch, fork truck 
Filter elements 
Computer consumables 

Floppy disks 
Printer paper 
Printer ribbons 

Modification materials 
Repair materials 
Batteries 
Lubricants (for pumps, motors) 
Joint sealants 
Cleaning solutions 
Paint, primer, brushes, rollers, thinner, sandblasting materials 
Shipping materials 
Thermocouple wire 
Tool expendables (e.g., drill bits, saw blades) 
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Appendix A 
Statement of Work 

introduction 

Many of the Department of Energy (DOE) sites are generating and/or storing radionuclide 
contaminated hazardous wastes, i.e. mixed wastes, that are classified as Land Disposal Restricted 
(LDR) under the Resource Conservation and Recovery Act (RCRA). The Federal Facility 
Compliance Act of 1992 requires each facility at which the DOE generates or stores mixed waste 
to generate plans for treatment of all mixed wastes, or, for cases where no treatment technology 
currently exists, to generate plans for developing such technology. This act, which amends the 
RCRA, provides the impetus for accelerated efforts to develop, design, and construct facilities 
that will render DOE mixed wastes into forms that can be legally and inexpensively disposed of. 

The Supercritical Water Oxidation (SCWO) technology holds promise of treating a portion 
of DOE mixed waste. The DOE strategy calls for demonstration of a mixed waste pilot plant 
designed for handling radioactive and hazardous waste. To support the design of this pilot plant, 
more data are required to solve the technical constraints of the process. One of these technical 
constraints is the selection of the materials of construction. Corrosion of SCWO reactors has been 
identified as a technical constraint to construction. This constraint can be eliminated by either 
preventing the corrosive elements of the waste stream from coming into contact with the 
materials of coqstruction, or by identifying materials capable of withstanding the corrosivity of the 
fluid. Corrosion testing of various materials of construction is needed to identify materials capable 
of withstanding supercritical conditions. 

Purpose 

Specific testing will be conducted on a variety of coupons using selected waste streams. The 
coupons will be analyzed for types and amount of corrosion. A comparison will be made between 
the corrosion of the Hastelloy C-276, Inconel 625, other selected metals and ceramic lined 
coupons. The data from these tests will be used to conclude whether ceramic liners or other 
specialized metals are viable materials to be used in SCWO. 

Work Scope 

The contractor shall provide a system for demonstrating materials performance under the 
following conditions: 

3,500 psi 

100OC to 650OC 

The ceramic coupons shall at least 2.7 in. in width, 0.125 in. thick, with 0.25 in. of 
clearance around the coupon. 
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0 The feed to be oxidized shall consist of TrimSol, a chlorinated cutting oil, and selected 
radionuclide surrogates (see Table 1) diluted to bring the chlorine content down to 
5,000 ppm- 

Flow-through pressure vessel containing a coupon tree 

- A test plan shall be written and submitted to EG&G for approval prior to the 
start of testing. The contractor shall have a quality program that addresses 
procurement; responsibility and authority of inspection and test personnel; 
document control; inspection and testing; control of special processes; inspection, 
measuring and testing equipment; inspection and test status; and control of 
nonconformances. 

- The design of the test setup shall be submitted to EG&G for approval prior to 
the start of testing. The design package shall include detailed drawing of the 
location of the coupons in the system. It is assumed by EG&G that the contractor 
has an existing system for SCWO and the design would involve modifying the 
existing system to accept the piping and pressure vessels needed for this particular 
test. 

- Coupons shall be tested at the three significant temperatures of the process 
including the transition temperature as the process goes from the supercritical 
phase to the subcritical phase. 

- The contractor shall propose the approach for mounting and retrieving the 
coupon tree. Each run shall go for at least 60 hours, with coupons removed at set 
intervals according to the test plan. Six to eight coupons will be placed in the 
pressure vessel for each run. Hastelloy C-276 and Inconel 625 coupons shall be 
included in each run as a reference. 

- The ceramic coated and metal coupons shall be provided by EG&G for the tests. 
AU piping, pressure vessels, and valves exposed to the unneutralized waste stream 
at high temperatures and pressures shall be considered consumables for the test. 
The coupons and all hardware acquired for testing such as piping, pressure vessels, 
and valves shall be delivered to EG&G for analysis. 

- Solid, liquid, and gas effluent from each run shall be collected and analyzed for at 
least chrome, nickel, chloride, potassium, sodium, molybdenum, iron, sulphate, 
TOC, TOX, pH, oxygen, carbon dioxide, methane, nitrogen, lead, cerium, and 
zinc. The lab analysis contract will be let by EG&G under advisement from the 
contractor. 
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Table 1. TrimSol with surrogates. 

Chlorine 130,000 ppm 

Sodium >700 ppm 

Calcium, potassium >300 ppm each 

Iron, titanium, zinc, lead 

Cerium 

Total solids 

Delivera bles 

1. 

2. Final Approved Test Plan 

Draft Test Plan including experiment desi&, parts lists, consumables, and schedule 

3: All test logs and instrument readings 

4. Allcoupons 

5. System hardware procured under contract .. -- 
6. Effluent data. 

' Schedule 

Draft Test Plan November 22,1993 

Final Test Plan 

Procurement 

System assembled 

System checkout 

Testing complete 

Hardware delivered 

December 10,1993 

December 10,1993 

February 19, 1994 

March 25, 1994 

'July 29, 1994 

August 26, 1994 
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