
'.. --. , -5 FEHMN MMS, ECD-22 
LA-UR-94-3787, Rev. 1 

Page 1 of 69 

MODELS AND METHODS 
SUMMARY 

for the 
FEHMN APPLICATION 

George A. Zyvoloski 
Bruce Aa Robinson 

Zora V. Dash 
Lynn La Trease 



FEHMN MMS, ECD-22 
LA-UR-94-3787, Rev. 1 
Page 2 of 69 

Modification date: 3/30/95 

- 7  . .  
e- . 



DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the 
United States Government. Neither the United States Government nor any agency 
thereof, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal liability or responsibility for the accuracy, completeness, or use- 
fulness of any information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference herein to any spe- 
cific commercial product, process, or service by trade name, trademark, manufac- 
turer, or otherwise does not necessarily constitute or imply its endorsement, ream- 
mendation, or favoring by the United States Government or any agency thereof. 
The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof. 

. 





DISCLAIMER 

Portions of this document may be illegible 
in electronic image products. Images are 
produced from the best available original 
document. 

. 





FEHMN MMS. ECD-22 
LA.UR.94.3787. Rev . 1 

Page 3 of 69 

TABLE OF CONTENTS 

TABLE OF CONTENTS .................................................. 3 

LIST OF TABLES ....................................................... 5 

LIST OF FIGURES ..................................................... 6 

1 . 0 

2.0 

3.0 

4.0 

5.0 

6.0 

7.0 

PURPOSE ........................................................ 7 

DEFINITIONS AND ACRONYMS ...................................... 7 
2.1 Definitions ................................................... 7 
2.2 Acronyms .................................................... 7 

REFERENCES .................................................... 7 

NOTATION ....................................................... 9 

STATEMENT AND DESCRIPTION OF THE PROBLEM . . . . . . . . . . . . . . . . . . .  16 

STRUCTURE OF THE SYSTEM MODEL .............................. 17 

GENERAL NUMERICAL PROCEDURE ................................ 17 

8.0 COMPONENT MODELS ............................................ 19 
Flow and Energy Transport ..................................... 19 
8.1.1 Purpose .............................................. 19 
8.1.2 Assumptions and Limitations .............................. 19 
8.1.3 Derivation ............................................. 19 
8.1.4 Applications ........................................... 23 
8.1.5 Numerical Method Type .................................. 24 
8.1.6 Derivation of Numerical Model ............................. 24 
8.1.7 Location .............................................. 32 
8.1.8 Numerical Stability and Accuracy .......................... 32 
8.1.9 Alternatives ........................................... 33 
Dual Porosity and Double Porosity / Double Permeability Formulation . . . .  33 
8.2.1 Purpose .............................................. 33 
8.2.2 Assumptions and Limitations .............................. 34 
8.2.3 Derivation ............................................. 34 
8.2.4 Application ............................................ 36 
8.2.5 Numerical Method Type .................................. 36 
8.2.6 Derivation of Numerical Model ............................. 36 
8.2.7 Location .............................................. 39 
8.2.8 Numerical Stability and Accuracy .......................... 39 
8.2.9 Alternatives ........................................... 39 

8.1 

8.2 

Modification date: 3/30/95 
..... .... . .  ... .. ...--. .I_. __.. . . 



FEHMN MMS. ECD-22 
LA.UR.94.3787. Rev . 1 
Page 4 of 69 

8.3 Solute Transport . Reactive Transport and Particle Tracking Models . . . . .  40 
8.3.1 Purpose .............................................. 40 
8.3.2 Assumptions and Limitations .............................. 40 
8.3.3 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40 
8.3.4 Applications ........................................... 53 

. 8.3.5 Numerical Method Type .................................. 53 
8.3.6 Derivation of Numerical Model ............................. 54 
8.3.7 Location .............................................. 56 
8.3.8 Numerical Stability and Accuracy .......................... 56 
8.3.9 Alternatives ........................................... 56 

8.4 Constitutive Relationships ...................................... 58 
8.4.1 Purpose .............................................. 58 

Assumptions and Limitations .............................. 58 
8.4.3 Derivation ............................................. 58 
8.4.4 Application ............................................ 64 
8.4.5 Numerical Method Type .................................. 64 
8.4.6 Derivation of Numerical Model ............................. 64 
8.4.7 Location .............................................. 64 
8.4.8 Numerical Stability and Accuracy .......................... 65 
8.4.9 Alternatives ........................................... 65 

8.4.2 

9.0 EXPERIENCE .................................................... 65 

10.0 APPENDIX ...................................................... 66 

Modification date: 3/30/95 
. . . . . .  .. . . . . . .  ., ......... -. .-.- . . I... ..i.. ............ . .  - - 



FEHMN MMS. ECD-22 
LA.UR.94.3787. Rev . 1 

Page 5 of 69 

LIST OF TABLES 

................................................. Table 1 . Nomenclature 9 

Table II . 
Table 1 1 1  . 

Sorption Isotherm Models ....................................... 42 

Polynomial Coefficients for Enthalpy Functions ...................... 66 

Table IV . Polynomial Coefficients for Density Functions ....................... 67 

Table V . Polynomial Coefficients for Viscosity Functions ...................... 68 

Table VI . Polynomial Coefficients for Saturation Functions ..................... 69 



FEHMN MMS, ECD-22 
LA-UR-94-3787, Rev. 1 
Page 6 of 69 

LIST OF FIGURES 

Figure 1. Simplified diagram of flow in the FEHMN application. . . . . . . . . . . . . . . . . .  18 

Figure 2. Comparison of nodal connections for conventional and Lobatto integrations 

for an orthogonal grid. . . . . . . . . . . . .  ........................... .27 

Figure 3. Area projections and internode distances used in Finite Volume calculations 

onaDelaunaygrid. ........................................... 27 

Figure 4. Computational volume elements showing dual porosity and double porosity / 

double permeability parameters. ................................ .34 

Figure 5. Model system used to formulated the residence time transfer function for 

matrix diffusion ............................................... .50 

Modification date: 3/30/95 
.. 7 - - - I - - . , .... . . .  . .\. . -; -: ~ , , , , ., .,> , *- . - ,  . . .-  -., L . .  -- . . . . .  . . . . .  



FEHMN MMS, ECD-22 
LA-UR-94-3787, Rev. 1 

Page 7 of 69 

1.0 PURPOSE 
This Models and Methods Summary provides a detailed description of the mathematical 
models and numerical methods employed by the FEHMN application. I 

2.0 DEFINITIONS AND  ACRONYM^ 
2.1 Definitions-----------’ 

/- - 
FEHM. Finite element heat and mass transfer code (Zyvoloski, et al. 1988). 

FEHMN. YMP version of FEHM (Zyvoloski, et al. 1992). 

2.2 Acronyms 
LANL. Los Alamos National Laboratory. 

RTD. Residence time distribution. 

RTTF. Residence time transfer function. 

SOR. Simultaneous over-relaxation. 

YMP. Yucca Mountain Site Characterization Project. 

3.0 REFERENCES 
Birdsell, K. H., K. Campbell, K. G. Eggert, and B. J. Travis, “Simulation of Radionuclide 
Retardation at Yucca Mountain Using a Stochastic MineralogicdGeochemical Model,” 
Proceedings of the First International Meeting on High Level Radioactive Waste 
Management, Las Vegas, Nevada, April 8-12 (1990). 
Brigham, W. E., “Mixing Equations in Short Laboratory Cores,” SOC. Pet. Eng. J. 14, 

Brownell, D. H., S. K. Garg, and J. W. Pritchett, “Computer Simulation of Geothermal 
Reservoirs,” Paper SPE 5381, Proceedings of the 45th California Regional Meeting of the 
SOC. Pet. Eng. of AIME, Ventura, California (1975). 
Bullivant, D. and G.A. Zyvoloski, “An Efficient Scheme for the Solution of Linear 
System Arising from Coupled Differential Equations,” Los Alamos document, LA-UR-90- 
3187 (1990). 
Corey, A. T., “The Interrelation Between Gas and Oil Relative Permeabilities,” Prod. 
Mon. 19, 38-41 (1954). 
Dalen, V., ”Simplified Finite-Element Models for Reservoir Flow Problems,” SOC. Pet. 
Eng. J. 14, 333-343 (1974). 
Friedly, J. C., and J. Rubin, “Solute Transport with Multiple Equilibrium-Controlled or 
Kinetically Controlled Chemical Reactions,” Water Resour. Res. 28:6, 1935-1953 (1992). 
Fung, L. S. K., L. Buchanan, and R. Sharma, “Hybrid-CVFE Method for Flexible -Grid 
Reservoir Simulation,” SOC. Pet. Eng. J. 19, 188-199 (1994) 
Gangi, A. F., “Variation of Whole and Fractured Porous Rock Permeability with 
Confining Pressure,” Rock Mech. Sci. and Geomech. Abstr. 15, 249-157 (1978). 
GZSOLVE Application (ECD-97). 

91-99 (1974). 
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Harr, L., J. Gallagher, and G. S. Kell, NBSINRC Steam Tables, Thermodynamics, and 
Transport Properties and Computer Programs for Vapor and Liquid States of Water, 
Hemisphere Press (1984). 
Hinton, E., and D. R. J. Owen, An Introduction to Finite Element Computations, 
Pineridge Press, Swansea, Wales (1979). 
Klavetter, E. A., and R. R. Peters, “Estimation of Hydrologic Properties of an 
Unsaturated Fractured Rock Mass,” Sandia Report SAND84-2642 (1986). 
Lu, N., “A Semianalytical Method of Path Line Computation for Transient Finite- 
Difference Groundwater Flow Models,” Water Resour. Res. 30:8, 2449-2459 (1994). 
Maloszewski, P., and A.,Zuber, “On the Theory of Tracer Experiments in fissured Rocks 
with a Porous Matrix,” J. Hydrol. 79, 333-358 (1985). 
Mercer, J. W., and C. R. Faust, “Simulation of Water- and Vapor-Dominated 
Hydrothermal Reservoirs,” Paper SPE 5520, Proceedings of the 50th Annual Fall 
Meeting of the SOC. Pet. Eng. of AIME, Dallas, Texas (1975). 
Moench, A. F., “Double-Porosity Models for a Fissured Groundwater Reservoir with 
Fracture Skin,” Water Resour. Res. 20:7, 831-846 (1984). 
Neretnicks, I., “Diffusion in the Rock Matrix: An Important Factor in Radionuclide 
Migration?”, J. Geophys. Res. 85, B8,4379-4397 (1980). 
Nitao, J., “Numerical Modeling of the Thermal and Hydrological Environment Around a 
Nuclear Waste Package Using the Equivalent Continuum Approximation: Horizontal 
Emplacement,” Lawrence Livermore National Laboratory Report UCID-21444(1988). 
Plummer, L. N., and E. Busenberg, “The Solubilities of Calcite, Argonite, and Vaterite 
in C02-H20 Solutions Between 0 and 90°C, and an Evaluation of the Aqueous model for 
the System CaC03-H20,” Geochim. et Cosmochim. Acta, 46,1101 (1982). 
Polzer, W. L., M. G. Rao, H. R. Fuentes, and R. J. Beckman, “Thermodynamically 
Derived Relationships Between the Modified Langmuir Isotherm and Experimental 
Parameters,” submitted to  Environmental Science and Technology (1992). 
Pruess, K., “TOUGH Users Guide,” Lawrence Berkeley Laboratory Report LBL-20709 
(June 1987). 
Reeves, M. (ea), “Review and Selection of Unsaturated Flow Models”, Intera Document 
B00000000-01425-2200-00001 Rev. 00, (1993). 
Reimus, P. W., “The Use of Synthetic Colloids in Tracer Transport Experiments in 
Saturated Rock Fractures,” Ph.D. Thesis, The University of New Mexico, Albuquerque, 
New Mexico (1995). 
Robinson, B., “Model and Methods Summary for the SORBEQ Application,” Los Alamos 
document SORBEQ MMS (ECD-20). 
Robinson, B. A,, “A Strategy for Validating a Conceptual Model for Radionuclide 
Migration in the Saturated Zone Beneath Yucca Mountain,” Rad. Waste Manag. Envir. 
Rest. 19, 73-96 (1994). 
Starr, R. C., R. W. Gillham, and E. A. Sudicky, “Experimental Investigation of Solute 
Transport in Stratified Porous Media 2. The Reactive Case,” Water Resour. Res. 21:7, 

Sychev, V. V., et al., Thermodynamic Properties of Air, Hemisphere Publishing Corp. 
(1988). 
Tang, D. H., E. 0. Frind, and E. A. Sudicky, “Contaminant Transport in Fractured 
Porous Media: Analytical Solution for a Single Fracture,” Water Resour. Res. 17:3, 

1043-1050 (1985). 

555-564 (1981). 

Modification date:. 3130195 
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A 
A 
- 

Tompson, A. F. B., and L. W. Gelhar, “Numerical simulation of Solute Transport in 
Three-Dimensional, Randomly Heterogeneous Porous Media,” Water Resour. Res., 26, 

van Genuchten, M. T., “A Closed Form Equation for Predicting Hydraulic Conductivity 
of Unsaturated Soils,” Soil Sci. SOC. Am. J. 44,892-898 (1980). 

10,2541-2562 (1990). 

Approximation of A 

Vector A 

Warren, J. E., and P. J. Root, “The Behavior of Naturally Fractured Reservoirs,” SOC. 
Pet. Eng. J. 3 245-255 (1963). 
Weeks, E. P., “Effect of Topography on Gas Flow in Unsaturated Fractured Rock: 
Concepts and Observations,” Proceedings of the American Geophysical Union 
Symposium on Flow and Transport in Unsaturated Fractured Rock, D. Evans and T. 
Nicholson, Eds., Geophysical Monograph 42, AGU (1987). 

( A )  

Yeh, G. T., and V. S. Tripathi, “A Critical Evaluation of Recent Developments in 
Hydrogeochemical Transport Models of Reactive Multichemical Components,” Water 
Resour. Res. 25, 93-108 (1989). 
Young, L. C., “A Finite Element Method for Reservoir Simulation,” SOC. Pet. Eng. J .  21, 

Zienkiewicz, 0. C., The Finite Element Method, McGraw-Hill, London (1977). 
Zienkiewicz, 0. C., and C. J. Parekh, “Transient Field Problems - Two and Three 
Dimensional Analysis by Isoparametric Finite Elements,” Int. J. Numer. Methods Eng. 

Zyvoloski, G., “Finite Element Methods for Geothermal Reservoir Simulation,” Int. J. 
Numer. Anal. Methods Geomech. 7 ,  75-86 (1983). 

115-128 (1981). 

2, 61-70 (1973). 

One dimensional arrayhector A 

Zyvoloski, G. A., M. J. O’Sullivan, and D. E. Krol, “Finite Difference Techniques for 
Modeling Geothermal Reservoirs,” Int. J. Numer. Anal. Methods Geomech. 3, 355-366 
(1979). 
Zyvoloski, G. A., Z. V. Dash, and S. Kelkar, “FEHM: Finite Element Heat and Mass 
Transfer Code,” LA-11224-MS (1988). 
Zyvoloski, G. A., Z. V. Dash, and S. Kelkar, “FEHMN 1.0: Finite Element Heat and Mass 
Transfer Code,” LA-12062-MS, Rev. 1 (1992). 
Zyvoloski, G. A., and Z. V. Dash, “Software Verification Report FEHMN Version 1.0,” 
LA-UR-91-609 (1991). 

4.0 NOTATION 
Variables used in derivation of the component and numerical model are enumerated in 
Table I with reference to  the equations in which they appear. 

[AI  TWO dimensional array A 

Modification date: 3/30/95 
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n, n+I 

Table 1. Nomenclature (Continued) 

Superscripts denoting timestep (i.e., nth timestep) 

ju bscripts 

a 

C 

CUP 

e 

f 
Jrow 
i J j J  

I 
lr 
m 

max 
min 
P 

P 
r 
S 
T 
V 

vr 

W 

. x, y, 

rl 
0 

I ,  2, . . ., m, 
m+I , .  . ., n 

;uDerscrip& 

Subscript denoting air properties ' 

Subscript denoting concentration 

Subscript denoting capillary values 

Subscript denoting energy 

Subscript denoting fracture properties 

Subscript denoting properties of flowing fluid 

Subscripts denoting nodal position (node indices) 

Subscript denoting liquid properties 

Subscript denoting residual liquid 

Subscript denoting mass or matrix property for dual porosity formulations 

Subscript denoting maximum value 

Subscript denoting minimum value 

Subscript denoting derivative with respect to pressure 

Subscript denoting fluid phase 

Subscript denoting rock properties 

Subscript denoting derivative with respect to saturation 

Subscript denoting derivative with respect to temperature 

Subscript denoting vapor properties 

Subscript denoting residual vapor 

Subscript denoting water properties 

Subscripts denoting coordinate direction 

Subscript denoting noncondensible gas 

Subscript denoting initial value 

Subscripts denoting the specie or component (i.e., nth component) 

Superscript denoting upstream-weighted value 

Superscripts denoting iteration (i.e., kth iteration) 

Modification date: 3/30/95 
- 7  ~ 
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Table 1. Nomenclature (Continued) 

AH 

AH, i y  i=1,5 

A, 

At? 

C 

C 

cP 

Units given in ML( 

Internode area projection for finite volume calculation (L2) [Figure 31 

Solution matrix for system of nonlinear equations [Equations (47) - (54), (64) - (72)] 

Arrhenius equation model parameter (frequency factor), for units see discussion of 
control statement mn in FEHMN.UM [Equation (85)] 

Henry’s Law coefficient model parameter - per mole fraction of liquid [Equation [(L2 1 
(80)l . 
Constants in temperature dependent Henry’s Law expression [Equation (82)] 

Concentration (solute) accumulation term ( - m;F) [Equations (36), (75), (76)] 

Mass accumulation term (3) [Equations (1 1, (21, (g), (2511 

Sonstants in temperature dependent equilibrium constant expression [Equation (89) 

Voncondensible gas accumulation term 

Stoichiometric coefficients used in reaction rate model [Equations (83), (84)] 

Species/solute in the reaction rate equation [Equations (83), (84), (go)] 

:xponent in the reaction rate equation [Equation (84)] 

4ir conservation variable [Equations (50), (51)] 

qesidual vector, right hand side (forcing function) for system of linear equations 
:Equations (46), (64) - (72)] 

2oncentration (solute) (-i;i.> [Equations (36), (37), (39), (73) - (76), (78), (79), 

rable Ill 

qormalized concentration [Equations (96)and (97)] 

2apacitance matrix [Equations (25), (26), (27), (32), (36)] 

2ompressibility ($) [Equation (129)] 

4eat capacity/Specific heat - [Page 20, Equations (113), (114)] 

- system of dimensions: mass [MI, length [L], time [e], temperature m 

[Equations (19), (20), (27)] (3) 

moles 

((9 
’ 

Modification date: 3130195 
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DAB 

4 1  

E 

At) 
Units given in MLf 

Table 1. Nomenclature (Continued) 

Solute diffusion coefficient (5) [Equation (77)] 

Combination of molecular diffusion and dispersivity ($) [Equation (77)] 

Air water diffusivity ($) [Equations (20), (21), (27), (30), (35)] 

Dispersion coefficient for tracer (5) [Equations (36), (38), (76)] 

Energy transmissibility term ($) [Equations (1 0), (1 2), (29), (34)] 

Effective dispersion coefficient of a solute [Equation (93)] 

Mass transmissibility term (e) [Equations (9), (II), (12), (20), (22), (23), (28), (33), 
(351, (37), (39), (7611 

internode distance for finite volume calculation (L) [Figure 31 

Young’s modulus (F) [Equation (78)l 

Arrhenius equation model parameter (activation energy) [ [Equation (85)] 
8 moles 

Equation residuals [Equations (25), (26), (27), (36), (42) - (54)] 

P norm of residuals (square root of the sum of the residuals squared) [Equations (44), 
(4511 

Jacobian matrix for nonlinear system [Equation (43)] 

Flux vector for concentration equations (7;;) - [Equation (73)] 

Flux vector for energy equation [Equations (4), (6)] ($1 
Flux vector for mass equation (2) [Equations (1 ), (311 

Flux vector for noncondensible gas equation (2) [Equation (17)] 

Function at time t [Equation (24)] - .  

r system of dimensions: mass [MI, length [L], time [e], temperature m 
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Table 1. Nomenclature (Continued) 

M r x n  

h 

Ie 

K 

Kd 

Ke4 

Keq, 25 

k e q  

kfact 

KH 

KH 

GI 
k 

kRn 
Units given in MLC 

Derivative off wih  respect to time [Equation (24)] 

Gravity term coefficients [Equations (25), (26)’ (27)’ (33) - (36)’ (39)] 

Acceleration of gravity 

(7611 
g times the unit vector in the gravitational (z) direction [Equations (7), (8)] 

Henry’s Law equation model parameter (heat of reaction) [ *) [Equation (80)] 
0 moles 

Equilibrium constant model parameter (heat of reaction) ($) [Equation (87)] 
0 moles 

Enthalpy [ $) [Equations (6), (12)’ (13), (62), (63)’ (113)’ (115)’ (116)l 

Mass flow impedance (:) [Equation (40)] 

Thermal conductivity ML [Equations (6)’ (16)’ (26)’ (31), Page 261 (3) 
Retardation coefficient (linear adsorption) [Table Ill 
Equilibrium constant [Equations (86)-(89)] 

Equilibrium constant at 25OC [Equation (87)] 

ntermediate term used in equilibrium constant expression [Equations (88) and (89)] 

Multiplier to increase reaction rates to approach equilibrium behavior 

ienry’s law constant ($1 [Equation (118)], per mole fraction of liquid 1 
:Equation (80)] 

ntermediate term used in expression of Henry’s law constant [Equation (82)] 

ntermediate term used in expression of Henry’s law constant [Equation (82)] 

ntrinsic rock permeability [ L ~ )  [Equations (7)’ (8)’ (11)’ (61)’ (62)’ (63)’ (132)] 

Forward and reverse reaction rate constants [Equation (84)’ (85)] 

’ladioactive decay rate constant [Equation (1 02)] 

r system of dimensions: mass [MI, length [L], time [e], temperature m 



FEHMN MMS, ECD-22 
LA-UR-94-3787, Rev. 1 
Page 14 of 69 

L 

P 

pc 
Pe 

4c 

4 e  

qfm 

4m 

R 

Rf 
RP 

rb 

S 

T 

[rl 
Units given in ML€ 

Table 1. Nomenclature (Continued) 
Flow path length (m) 
Length scales used in dual porosity and double porosity / double permeability 
problems [Equations (56), (58), (59), (60), Figure 41 
Molecular weight (M) [Equation (79)] 

Fluid mass in a cell (kg) [Equation (91)] 

Exponent used in Gangi stress model [Equation (130)] 

Outlet mass flow rate from one cell to another [Equation (91)] 
Experimental parameter used in van Genuchten relative permeability and capillary 
pressure models [Page 62, Page 631 

Finite element shape function [Page 24, Equations (28) - (34), (37) - (39)] 

Pressure - [Equations (7) - (IO), (20), (22), (23), (25), (26), (27), (36), (40), (47) 

- (541, 
Closure stress for use in Gangi stress model (ML) [Equations (130), (131)] 

Peclet number for dispersion [Equations (96) and (97)] 

($1 
(621, (631, (761, (79), (104) - (107), (111), (1181, (127) - (1291, (131)l 

Concentration source term (7:) - [Equations(36), (74), (76)] 

Energy source term 

Solute flux term from fracture to matrix in particle tracking model development 
[Equation (99)] 

Mass source term 

[Equations (4), (1 01, (1 31, (1 6)i (261, (41)l 

[Equations (l), (9), (14), (223, (23), (25), (40)] 

Noncondensible gas source term [Equations (18), (20), (27)] 

Universal gas constant (8.314 kJ/mol-K) [Equations (80), (85), (11 O)] 

Sorption retardation factor [Equation (92)] 

Relative permeability [Equations (7), (8), (II), (15), (121) - (126)] 

Parameters used in nonlinear adsorption model (Langmuir) [Table Ill 
Saturation [Equations (2), (5), (19), (22), (23), (53) - (54), (121) - (128)] 

Temperature (T) [Equations (6), (16), (41), (47), (48), (50) - (52), (80), (85), (104) 
:107), (Ill),  (113), (114), (131)] 

Stiffness matrix [Equations (25) - (29), (36), (37)] 
i system of dimensions: mass [MI, length [L], time [e], temperature m 

Modification date: 3/30/95 



FEHMN MMS, ECD-22 
LA-UR-94-3787, Rev. 1 

Page 15 of 69 

u 

V 

VT 

V 

li 

VI, x 
W 

X 

z 

a 

Yt*l 
Units given in MU 

Table 1. Nomenclature (Continued) 
Transfer terms in dual porosity solution [Equations (59) - (63)] 

Time (e) [Equations (I) ,  (4), (9), (IO), (16), (20) - (271, (361, (7611 

Internal energy [ 5) [Equation (5)] 

Integral volume [Equations (28) - (34), (37) - (39)] 
Volume fraction for fractures in a dual porosity and double porosity / double 
permeability problems [Equations (55) - (58)] 

Volume fractions for the matrix volumes used in dual porosity and double porosity / 
double permeability problems [Equations (55) - (58)] 

Total volume of computational cell (L3) [[Equation (59), (60)] 

Superficial velocity in one-dimensional model used in particle tracking model 
clevelopment [Equation (93)] 

Velocity vector (k) [Equations (3), (6) - (8), (1 7)] 

Darcy velocity of liquid phase, x-direction [Equation (77)] 

Neighting factor for time discretization [Equation (24)] 

'ressure or temperature variable in rational function approximation for saturation 
Zquations [Equations (1 08), (1 09)] 

Solution vector, [Equations (42), (43), (46), (64) - (72)] 

Vormalized distance along flow path [Equation (96)] 

>olynomial in numerator of rational function approximation [Equations (1 04) - (1 09)] 

Dolynomial in denominator of rational function approximation [Equations (1 04) - (1 09) 

2oordinate oriented in the direction of gravity [Equations (9), (1 0), (20), (33), (34), 
:39), (76)l 

2oefficient of thermal expansion (+) [Equation (131)] 

2oefficients used in sorption models [Equation (78), (go), Table Ill 

Iispersivity of solute in transport calculations ( L )  
Zxperimental parameter used in van Genuchten capillary pressure model [Page 631 

:xponent used in sorption models [Equation (78), (go), Table Ill 
3actional approach to equilibrium computed at an iteration in the reactive transport 
nodel [Equation (91)] 

'ractional approach to equilibrium specified for an equilibrium reaction [Equation (91) 

system of dimensions: mass [MI, length [L], time [e], temperature m 
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Table 1. Nomenclature (Continued) 
Tolerance taken for solution scheme [Equation (45)] 

Mass fraction of air [Equations (2), (3), (9), (17) - (20), (27), (35), (115) - (119)] 

Exponent used in the air/water diffusion model [Equation (21)] 

Normalized time [Equations (96)and (97)] 
Parameter used in nonlinear adsorption model (Freundlich, modified Freundlich) 
[Table 111 . 
Parameter used in van Genuchten relative permeability and capillary pressure models 
[Equation (125), Page 631 

Viscosity (E) [Equations (7), (8), (II), (15), (61), (62), (63), (119), (120)l 

Fractional vapor flow parameter [Equations (1 4), (1 5)] 

Density [Equations (3), (5), (7) - (II), (15), (17), (19) -(23), @I), (621, (63), (76), (3 
(go), (Il l) ,  (112), (117) 1 
In situ stress (F) [Equation (131)] 

Tortuosity factor in the aidwater diffusion model [Equation (21)] 

Particle age since entering the model domain [Equation (102)] 

Fluid residence time in a cell (s) [Equation (91)] 

Particle residence time in a cell (s) [Equation (91)] 

Radioactive decay half-life 
Porosity [Equations (2), (5), (19), (21) - (23), (go), (129), (130), (132)] 

Matrix porosity in particle tracking model [Equation (99)] 

Flow domain of the model [Equations (28) - (34), (37) - (39)] 
T system of dimensions: mass [MI, length [L], time [e], temperature m 

, 

5.0 STATEMENT AND DESCRIPTION OF THE PROBLEM 
Yucca Mountain is extremely complex both hydrologically and geologically. The r computer codes that are used t o  model flow must be able to  describe that complexity. 
For example, the flow at  Yucca Mountain, in both the saturated and unsaturated zones 
is dominated by fracture and fault flow in many areas. With permeation to  and from 
faults and fractures, the flow is inherently three-dimensional (3-D). Birdsell, et al. 
(1990) presented calculations showing the importance of 3-D flow at Yucca Mountain. 
Coupled heat and mass transport occurs in both the unsaturated and saturated zones. 
In the near field region surrounding the repository, the coupled flow effects dominate 
the fluid behavior. Here boiling, dryout, and condensation can occur (Nita33988kIn the 
far field unsaturated zone, Weeks (1987) has described natural convection that occurs 
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L 

6.0 

through Yucca Mountain due to  seasonal temperature changes. Heat and mass transfer 
are also important in matching saturated zone models t o  temperature logs and pressure 
tests and in modeling enhanced convection from repository heating. 

7.0 

The transport processes at Yucca Mountain are very complex. Various adsorption 
mechanisms ranging from simple linear relations to  nonlinear isotherms must be 
incorporated in the transport models. Multiple interacting chemical species must be 
modeled so that this structure can represent radioactive decay with daughter products 
and coupled geochemical transport. 
The primary use of the FEHMN application will be to  assist in the understanding of flow 
fields and mass transport in the saturated and unsaturated zones below the potential 
Yucca Mountain repository. Studies in the saturated zone are prescribed in YMP-LANL- 
SP-8.3.1.2.3.1.7 ( t h e - G - W e l l q ~ t )  and include use of the FEHMN code t o  design and 
analyze tracer tests (reaciiv*-and-non=reactive)-to characterize the flow field below 
Yucca Mountain. Studies in the unsaturated zone are prescribed in YMP-LANL-SP- 
8.3.1.3.7.1 and include the study of coupled processes, Cmulticomponentflow-and-natural- 
convection). ~ 

STRUCTURE OF THE SYSTEM MODEL 
The sub-models that make up the overall transport model are: 

Flow and Energy Transport Equations for simulation of processes within porous 
and permeable media which include: 

Heat conduction only; 
Heat and mass transfer with pressure and temperature dependent properties, 
relative permeabilities and capillary pressures; 
Isothermal air-water transport; and 
Heat and mass transfer with noncondensible gas. 

Dual Porosity and Double Porosity / Double Permeability Formulation for 
problems dominated by fracture flow; 

Solute Transport Models, including: 

A reactive transport model that simulates transport of multiple solutes with 

A particle tracking model. 
Constitutive Relationships for pressure and temperature dependent fluid/air/gas 
properties, relative permeabilities and capillary pressures, stress dependencies, 
and reactive and sorbing solutes which encompass: 

Thermodynamic equations, 
Air and AirfWater Vapor Mixtures, 
Equation of State Models, 
Relative Permeability and Capillary Pressure Functions, and 
Stress Dependent Properties. 

chemical reaction and 

GENERAL NUMERICAL PROCEDURE 
The numerical solution strategy for FEHMN is shown in Figure 1. 
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Figure 1. Simplified diagram of flow in the FEHMN application. 
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8.0 COMPONENT MODELS 
8.1 Flow and Energy Transport 

8.1 .I Purpose 
The purpose of this model is to  simulate heat conduction, heat and mass 
transfer for multiphase flow within porous and permeable media, and 
noncondensible gas flow within porous and permeable media. 
For heat conduction the input to  the model consists of an initial description 
of the media (rock) properties and state. The output consists of a final 
media state. 
For heat and mass transfer the input to  the model consists of an initial 
description of the fluid state as well as media properties. The output 
consists of a final fluid state. 
For noncondensible gas flow, in addition to  the initial media properties and 
fluid state, the description of the initial state of gas is required. The output 
consists of the final state of gas in addition t o  that described for the 
previous components. 

8.1.2 Assumptions and Limitations 
The major assumptions are those associated with Darcy's law for fluid flow. 
This restricts the velocity of fluid flow to be very slow. The exact 
quantification of the values is best addressed in the associated validation 
report. Another main assumption is one of thermal equilibrium between 
the fluid and the rock (locally). This is usually an excellent assumption as 
the thermal wave for rocks travels on the order of m is the 
upper limit of the pore size and fluid velocities are of the 'order of m/s. 
Other assumptions include an immovable rock phase and negligible viscous 
heating. The assumptions associated with flow are discussed in 
Brownell (1975). 

m/s, 

8.1.3 Derivation 
Because the derivation of the governing equations is analogous for heat 
conduction, heat and mass transfer for multiphase flow within porous and 
permeable media, noncondensible gas flow within porous and permeable 
media, and transport of multiple solutes within porous and permeable 
media, only the heat and mass derivation will be presented. 
Detailed derivations of the governing equations for two-phase flow 
including heat transfer have been presented by several investigators (e.g., 
Mercer and Faust, 1975, and Brownell, et al. 19751, and therefore only a 
brief development will be presented here. The notation used is given in 
Table I. 
Conservation of mass for water is expressed by the equation 

aA, - - 
-+V.f,+q, = 0 ,  
at 

where the mass per unit volume, A,, is given by 

Modification date: 3/30/95 
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and the mass flux, , is given by 

- z = (1 -?-Iv) P,<+ (1 -?-I11 P l V l  * (3) 

Here 4 is the porosity of the matrix, S is saturation, p is density, is the 
concentration of the noncondensible gas and is expressed as a fraction of 
the total mass, and ii is velocity with the subscripts v and I indicating 
quantities for the vapor phase and the liquid phase, respectively. Source 
and sink terms (such as bores, reinjection wells, o r  groundwater recharge) 
are represented by the term qm. 
Conservation of fluid-rock energy is expressed by the equation 

aA,+v.z+q, = 0 .  
at 

with u, = cprT, and the energy flux, , is given by 

= p,h,< + p,h,<-KVT . 

(4) 

Here the subscript r refers to  the rock matrix; u,, u,, and ul are specific 
internal energies; cpr is the specific heat; hv and hl are specific enthalpies; K 
is an effective thermal conductivity; Tis the temperature; and qe is the 
energy contributed from sources and sinks. 
To complete the governing equations it is assumed that Darcy's Law 
applies t o  the movement of each phase: 

and 

Modification date: 3/30/95 
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Here k is the permeability, R, and Rl are the relative permeabilities, p,, 
and pi are viscosities, P, and PI the phase pressures, and g represents the 
acceleration due to  gravity (the phase pressures are related by 
P, = PI + P,, , where P,, is the capillary pressure). For simplicity, the 
equations are shown for an isotropic medium, though this restriction does 
not exist in the computer code. 
Using Darcy's Law the basic conservation Equations (1) through (4) can be 
combined 

and 

where z is oriented in the direction of gravity. Here the transmissibilities 
are given by 

and 

The source and sink terms in Equations (1) and (4) arise from bores, and if 
the total mass withdrawal, qm, for each bore is specified, then the energy 
withdrawal, qe, is determined as follows: 

and 

Modification date: 3130195 
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The form of Equation (15) shows how important the relative permeability 
ratio RI /Rv is in controlling the discharge composition. Other source/sink 
terms arise from implementation of boundary conditions. These include 
specified pressure and temperatures and are discussed in  Section 8.1.6, 
“Derivation of Numerical Model” subsection “Boundary Conditions”. The 
relative permeability and capillary pressure functions are summarized in 
Section 8.4, “Constitutive Relationships”. 
The final form of the pure heat conduction equation is easily obtained from 
Equation (10) when all convective terms are eliminated: 

The mass flux, 7 , source (or sink) strength, q,, and accumulation term, rl 
A,, are defined as follows for the noncondensible gas conservation 
equation: 

The noncondensible gas conservation equation is 

Here q is the concentration of the noncondensible gas and is expressed as a 
fraction of the total mass. As with the water balance equations, source/sink 
terms are used t o  implement boundary conditions. The reader is referred to 
Section 8.1.6, “Derivation of Numerical Model” subsection “Boundary 
Conditions” for details. The air water diffusivity is given by 

Modification date: 3/30/95 
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0 where 7 is the tortuosity factor and Dva is the value of Dva at standard 

conditions. Within FEHMN the value of Dv, is set t o  2.4*10-5 m2/s, 8 is set 
t o  2.334, and the tortuosity factor is an input parameter. 
The Equations (91, (lo), (161, and (20) represent the model equations for 
fluid and energy transport in the computer code FEHMN. It should be 
noted that Equation (9) also represents pure water with q set t o  0. 
For situations in which heat effects are minimal, the model can be 
simplified. The isothermal air-water two phase system in FEHM is 
represented somewhat differently then the nonisothermal system defined 
above. Here the liquid phase is pure water and the vapor phase is pure air. 
The component mass balance equations are then also phase balance 
equations: 

where Equation (22) is the water balance equation and Equation (23) refers 
to  the conservation of air. Here the subscript I refers to  the liquid water 
properties and v refers to  air properties. One option in the model is t o  solve 
Equations (22) and (23) as a full two-phase flow problem. A further 
simplification can be made in which the air pressure is assumed to be 
constant. This leads to  an equation which is similar t o  the Richard’s 
equation for unsaturated flow. The method reduces to  using only 
Equation (22). The method is described further in Section 8.16 subsection 
“Reduced Degree of Freedom Algorithms”. 

8.1.4 Applications 
The component model described above may be used to model the flow of air, 
water, water vapor, and heat in a porous medium. The validity of the model 
is dependent on the validity of the equations described in Section 8.1.3. The 
flow of both air and water must be sufficiently small at all possible flow 
rates so that the above described equations will be valid. This is believed t o  
be the case at  Yucca Mountain. Of more concern is the accuracy of the 
required input and the numerical precision to  which these equations are 
able to  be solved. 
For the flow equations, the saturated permeabilities, porosities, and 
fracture permeabilities and volumes of hydrogeologic units are required. In 
addition, the relative permeability and capillary pressure functions are 
also required. Historically this information has been difficult t o  obtain. It 
is important to  note that the capillary pressure at  low liquid saturations is 
very important to  the validity of the calculations but is not available in 
regions near the residual saturations. 
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The issue of numerical accuracy is extremely important to  the usefulness of 
the results. The accuracy may be evaluated by solving the same problem 
using different size grids and evaluating the change in the solution. 

8.7.5 .Numerical Method Type 
The primary numerical method used in FEHMN is the Finite Element 
Method. The reader is referred t o  Zienkiewicz (1977) for an excellent 
account of the method. The summary of the numerics in FEHMN given in 
Section 8.1.6 assumes a basic knowledge of the numerical solution of 
Partial Differential Equations. In addition a working knowledge of the 
Finite Element method is helpful. 

8.1.6 Derivation of Numerical Model 
Discretization: The time derivatives in Equations (91, (lo), (161, (20), and 
(76) are discretized using the standard first order method (Hinton and 
Owen, 1979) given by 

f(t" + = At") + At [wf'(t" + + ( 1 - w)f'(t")] (24) 

where At" + I )  is the desired function at  time t" + , At') is the known value 

offat time t", At  is the time step, f" is the derivative offwith respect to  
time and w is a weighting factor. For w = 1 , the scheme is fully implicit 
(backward Euler) and for w = 0 , the scheme is fully explicit (forward 
Euler). 
The space derivatives in the governing equations are discretized using the 
finite element formulation. The finite element equations are generated 
using the Galerkin formulation. For a detailed presentation of the finite 
element method the reader is referred to Zienkiewicz (1977). In this 
method the flow domain, Q , is assumed t o  be divided into finite elements; 
and variables P, T, and q, along with the accumulation terms A,,,, A,, and 

A ,  are interpolated in each element: P, = [NJ (P,} , P, = [NJ (P,} , 

and A,  = [w ( A , }  where [Nl is the shape function. 

These approximations are introduced in Equations (9), (lo), (161, and (201, 
and the Galerkin formulation (described by Zienkiewicz and Parekh, 1973) 
is applied. The following equations are derived: 

Modification date: 3/30/95 
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and 

where 
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and 

mi UP Gqi = J 7 N . D m q  p, d V .  
Z J  

R 
(35) 

~ 2KiKj 
In the above equations K = - and the Dup terms indicate an 

upstream-weighted transmissibility (Dalen, 1979). This technique has 
worked well in the low-order elements (3-node triangle, 4-node 
quadrilateral), where the schemes resemble difference techniques. The 
upstream weighting is determined by evaluating the internode flux for the 
nodes i andj. The shape function coefficients are generated in a unique 
way that requires the integrations in Equations (33), (34), and (35) to  be 
performed only once and the nonlinear coefficients to  be separated from 
this integration. The reader is referred t o  Zyvoloski (1983) for more details. 
The integration schemes available in FEHMN are Gauss integration and a 
node point scheme used by Young (1981). His implementation differs from 
common methods in that it uses Lobatto instead of Gauss integration. The 
net effect is that, while retaining the same order of integration accuracy (at 
least for linear and quadratic elements), there are considerably fewer 
nonzero terms in the resulting matrix equations. Figure 2 shows a 
comparison of the nodal connections for Lobatto and Gauss integration 
methods. It should be noted that these results hold on an orthogonal grid 
only. If a nonorthogonal grid were introduced, then additional nonzero 
terms would appear in the Lobatto quadrature method. Note also that the 
linear elements yield the standard 5- or  7-point difference scheme. The 
reader is referred to  Young's paper for more details. 
In addition to  the Finite Element integration techniques described above, 
the code has provisions for Finite Volume calculation of the internode flow 
terms described by Equations (28) - (35). In the Finite Volume approach, 
the geometric terms are calculated as area projections and distances 
between nodes. The geometric part of Equations (281, (291, and (30) are 
given by the area between the nodes divided by the distance. The area is 
partitioned according to  the perpendicular bisectors of the midpoints of the 
sides of the elements. This is shown in Fig. 3 for triangles in two 
dimensions. An analogous approach is used in three dimensions for 
tetrahedrals. Quadrilaterals in two dimensions and hexahedrals in three 
dimensions are first decomposed into triangles and tetrahedrals, 
respectively, and the geometry coefficients formed as described above. For 
more details the reader is referred t o  Fung, et al. (1994). 
It is important t o  note here that with upwinding, the geometric factors that 
govern internode flow, regardless of whether calculated from a Finite 
Element or Finite Volume approach, must not change in sign. This requires 
a Delaunay grid. For two dimensions, this requires the angles in the 

K i + Y 7  

Modification date: 3/30/95 
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. 

Figure 2. Comparison of nodal connections for conventional ( 0 )  

and Lobatto (0) integrations for an orthogonal grid. 

k 

i i dij 

Figure 3. Area projections and internode distances used in 
Finite Volume calculations on a Delaunay grid. 

triangles t o  be less than n/2 radians for a triangle on the boundary and n 
radians for an interior triangle. The reader is again referred t o  Fung, et al. 
(1994) for more details. 
The development of the numerical approximation of the transport equation 
is similar to  that for the flow equations. Following the discussion above, 
the species concentration, C, and the species accumulation term, A,, are 

interpolated in each element: C = [IVl T T 
{ C) , A ,  = [IVl { A , )  . 

Using these approximations and a Galerkin approach, the following 
equation is obtained 
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where 

Tcii = J ' v N i -  DmCq UP - VNJ dV , 

n 

DCq = J' vNi  - D,VNJ d V ,  
n 

aivi UP - 
G,V= J ' z - D , C  V T d V ,  

n 

(36) 

(37) 

(39) 

UP and D, C is an upstream weighted concentration transmissibility. This 
approach is similar to  the finite difference method for solving the transport 
equations. 
Boundary Conditions: Two types of fluid (mass) sources and sinks are 
implemented: a specified-fl ow-rate source/sink and a specified-pressure 
condition at a sourcehink. No-flow or impermeable boundary conditions are 
automatically satisfied by the finite element mesh. The constant pressure 
boundary condition is implemented using a pressure dependent flow term 

where Pi is the pressure at the source node i, PfOw,i is the specified flowing 
pressure, Im,i is the impedance, and qm,i is the mass flow rate. By 
specifying a large I the pressure can be forced t o  be equal to  Pflow. The 
energy (temperature) specified at a sourcehink o r  flowing pressure node 
refers only t o  the incoming fluid value, if fluid flows out, stability dictates 
that the energy of the in-place fluid be used in calculations. 
In addition t o  the mass flow sourcehink, heat flow sources can also be 
provided. A specified heat flow can be input o r  a specified temperature 
obtained 

where Ti is the temperature at the source node i, T 

resistance), and qe,i is the heat flow. This heat flow is superimposed on any 

is the specified 
flowing temperature, Ie,i is the impedance t o  heat PWsi ow (thermal 

Modification date: 3/30/95 
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existing heat flow from other boundary conditions or  source terms. 
Specified saturations, relative humidities, air mass fractions as well as 
specified air flows are allowed. These use source/sinks t o  achieve the 
desired variable values in a way analogous t o  that described for pressure 
boundary conditions. 
In FEHMN there is also a provision for creating large volume reservoirs 
which effectively hold variables at  their initial values. The nodes are 
labeled on input and the volumes replaced after the calculation of the 
geometric coefficients with a reservoir volume of 1013 m3. 
Solution Method: The application of the discretization methods to  the 
governing partial differential equations yields a system of nonlinear 
algebraic equations. To solve these equations, the Newton-Raphson 
iterative procedure is used. This is an iterative procedure that makes use 
of the derivative information to  obtain an updated solution from an initial 
guess. Let the set equations to  be solved be given by 

where (x} is the vector of unknown values of the variables that satisfy 
the above equation. The procedure is started by making an initial guess at 

the solution, say (x} . This is usually taken as the solution from the 
previous time step. Denoting the value of ( x }  at the kth iteration by 

0 

k 
(x} , the updating procedure is given by 

k At each step, the residuals ( F }  
prescribed error tolerance. The prescribed error tolerance, E ,  is an input 

= ( F }  ( { x} 5 are compared with a 

2 parameter and an Z norm is used: 

Convergence is achieved when 

E is usually in the range 
designed based on the convergence of the Newton iterations. If the code is 

unable to  find a solution (x} 
the tolerance within a given number of iterations, the time step is reduced 
and the procedure repeated. On the other hand, if convergence is rapid, the 

- lo-'. Semiautomatic timestep control is 

k such that the residuals become less than 

Modification date: 3/30/95 
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timestep is increased by multiplying with a user supplied factor, thus 
allowing for large timesteps when possible. 
The linear equation set t o  be solved at each Newton-Raphson iteration of 
Equation (43) is 

k+ 1 where ( mk) is the Jacobian matrix, {Ax} is the change in the 
a 

k+l k+l k k solution vector { A x  = x --x } , and { F }  is the residual. It is 

solved with a reuse component, GZSOLVE, that provides a robust solution 
method for sparse systems of equations. Further details of the solution 
procedure can be found in the GZSOLVE MMS. 
Reduced Degree of Freedom Algorithms: In the coupled physical 
processes that describe flow in porous media, often one process is 
dominant. In heat and fluid flow, for example, the pressure changes more 
rapidly than the temperature. This fact may be used t o  simplify the linear 
equations solved at each step of a Newton-Raphson iteration and was 
recognized by Zyvoloski, et al. (1979). Solving the pure water heat and 
mass flow leads t o  the following set of linear equations at each Newton- 
Raphson iteration: 

The subscripts m and e refer to  the mass and energy balance equations 
respectively. The subscripts P and T refer to  derivatives with respect to 
pressure and temperature respectively. The superscripts indicating 
iteration number have been dropped for convenience. From Equations (9) 
and (10) it can be seen that the primary contribution of temperature is to 
affect the thermal conduction terms and the density and viscosities. 
Pressure, however, affects the density and is directly involved in the Darcy 
velocities. In other words, the pressure more directly affects the global 
transport of heat and mass. Guided by this reasoning, a computationally 
efficient scheme is obtained by neglecting the off-diagonal derivatives with 
respect to  temperature. With this modification the temperature change 
may be solved for using 

Modification date: 3130195 
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This may in turn be substituted in the mass balance portion of Equation 
(47) giving 

The indicated matrix inversions and multiplications are performed with 
diagonal matrices and the resulting matrix for the calculation of the 
pressure correction is a banded matrix of exactly the same structure as 
[Amp] . It was found that additional efficiency could be achieved by taking 

several passes of SOR iterations after the system in Equations (48) and 
(49) were solved (Bullivant and Zyvoloski,l990). 
The same process can be used to  reduce the aidwaterheat coupled system 
to a one or two degree of freedom problem. Here the coupled 3n by 3n 
system may be written as 

Here the subscript a refers t o  the conservation of air mass and derivatives 
with respect to the air variable. The air variable is eliminated in favor of 
the pressure and temperature using 

Substituting this in the mass and energy correction equations: 
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During the simulation, the phase state of the system can change. This 
makes it necessary t o  rearrange Equations (51) and (52). The method 
remains the same. The reduced Equations (51) and (52) are useful in 
thermal simulations where phase changes or  other factors reduce the 
timestep. The 3n by 3n system may further be reduced to  an n by n system. 
This is discussed in Bullivant and Zyvoloski (1991). Bullivant and 
Zyvoloski also showed that the operations given above can conveniently be 
done during the equation normalization process. 
The last reduced degree of freedom algorithm t o  be described reduces the 
isothermal air-water problem to  a one variable system. The result is 
similar t o  the Richard’s solution. To obtain a computationally efficient 
scheme, the air pressure is constrained t o  atmospheric pressure in the two- 
phase region and the liquid saturation is constrained t o  1.0 in the one- 
phase liquid region. The method involves switching variables and 
associated derivatives in the solution of the linear system that produces 
the Newton-Raphson correction. The matrix equation that describes the 
Jacobian matrices for an isothermal system is given by 

Here the subscript w refers to  the water conservation equation and the 
subscripts P and S refer to  dekvatives with respect to  pressure and 
saturation, respectively. Though Equation (53) has the appearance of being 
under constrained, for every matrix position there is only one non-zero 
entry in the two matrices [AwP] and [A,,] . This is a consequence of the 
variable switching just discussed. The algorithm consists of replacing 
terms in [AwP] with terms from [A,,] if two-phase conditions exist at  a 
node. The resulting system is 

where x represents pressure or saturation depending on the nodal phase 
state. 

8.1.7 Location 
The implementation sequence for the Flow and Energy Transport 
Equations may be seen in Fig. 1. The box ‘Form Equations, Solve Jacobian 
System’ indicates the position in the algorithm of the components of the 
Flow equations in the overall structure of FEHMN. 

8.1.8 Numerical Stability and Accuracy 
The equations which are solved are highly nonlinear and coupled. The 
stability of the system has been maximized by solving the fully coupled and 
fully implicit formulation of the problem. Because of the nonlinearity, 
however, stability cannot be guaranteed. Logic has been incorporated to  
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restart a timestep if the code realizes it is calculating in an area where the 
equation of state (as implemented by FEHMN) is not valid 
Accuracy of the simulations is also clouded by the nonlinearity issue. 
Formally the spatial differencing is second order accurate and the time 
terms are first order accurate. There is a provision (which is usually 
invoked) which upwinds the transmissibility terms. This reduces the 
spatial accuracy to  first order. It is difficult in practice to estimate the 
quality of a simulation from these theoretical considerations. The user is 
advised to  run a given problem with several grid sizes and time step sizes 
to  assess the quality of a particular solution obtained with FEHMN. The 
accuracy of the calculations is also addressed in the FEHMN verification 
report (Zyvoloski and Dash, 1991). 

8.1.9 Alternatives 
The primary alternative to  the formulation given here is an integrated 
finite difference formulation. The reader is referred to Nitao, et  al. (1988) 
and Pruess (1987) for details. The basic difference in theory is that 
FEHMN uses a node centered approach whereas the integrated finite 
difference formulation uses a cell centered approach. Classical finite 
differences may also be used to  solve the equations presented herein but 
lack the geometric flexibility of the methods mentioned. 

8.2 Dual Porosity and Double Porosity / Double Permeability 
Form u lat i o n 
8.2.1 Purpose 

Many problems are dominated by fracture flow. In these cases the fracture 
permeability controls the pressure communication in the reservoir even 
though local storage around the fracture may be dominated by the porous 
rock which communicates only with the closest fractures. This phenomena 
requires a model in which the fractures dominate the global pressure 
response of the reservoir. The fractures are needed merely as storage. 
Moench (1984) has studied several wells in the saturated zone beneath 
Yucca Mountain and found that results could be understood if dual porosity 
methods were used. The numerical model in which the matrix material is 
constrained t o  communicate only in the neighboring fractures is known as 
the Dual Porosity method. 
In a partially saturated porous medium, flow is often dominated by 
capillary suction. In a medium comprised of fractures and matrix, the 
matrix material has the highest capillary suction and under relatively 
static conditions the moisture resides in the matrix material. Infiltration 
events, such as severe rainfall, can saturate the porous medium allowing 
rapid flow in the fractures. To capture this flow phenomena, a system of 
equations allowing communication between the fractures and matrix blocks 
in the reservoir in addition to  the flow within the fractures and matrix 
blocks is necessary. This method is known as the Double Porosity / Double 
Permeability method. 
The decision about which fracture model to  use is often affected by the 
transient nature of the simulation. It is possible t o  obtain nearly the same 
results for a double permeability simulation using a less expensive 
equivalent continuum approach for a steady state solution but different 
results would be obtained for a transient solution. 

Modification date: 3/30/95 
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For transport, the alternative fracture formulations are even more 
important. Here the simulations are almost always transient. The matrix 
and fractures are in approximate pressure equilibrium and there is little 
flow from matrix t o  fracture. The tracer in this scenario is constrained t o  
stay in the fracture if it started there. This often produces erroneous 
results that can be improved if diffusion from matrix t o  fracture is 
included. The fracture formulations in FEHMN account for matrix to  
fraction diffusion. 

8.2.2 Assumptions and Limitations 
In the Dual Porosity method, the computational volume consists of a 
fracture which communicates with fractures in other computational cells, 
and matrix material which only communicates with the fracture in its own 
computational cell. This behavior of the matrix material is both a physical 
limitation and a computational tool. The physical limitation results from 
the model’s inability to  allow the matrix materials in different cells to  
communicate directly. This yields only minor errors in saturated zone 
calculations, but could pose larger errors in the unsaturated zone where 
capillary pressures would force significant flow t o  occur in the matrix 
material. The computational advantages will be addressed in Section 8.2.3. 
The Double Porosity / Double Permeability method differs from the Dual 
Porosity method in that the matrix can communicate with other matrix 
nodes. This produces a more realistic simulation but is computationally 
more expensive. 

8.2.3 Derivation 
Figure 4 depicts the double porosity / double permeability and dual 
porosity concepts. Two parameters characterize a double porosity / double 
permeability reservoir. The first is the volume fraction, V j  of the fractures 
in the computational cell. For the single matrix node system shown in 

b 

One matrix node 
(double porosity / 
double permeability) 

matrix 
material 

fracture 

matrix 
material 

Two matrix nodes 
(dual porosity) 

Figure 4. Computational volume elements showing dual porosity and double 
porosity / double permeability parameters. 

b 
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Fig. 4 this fraction is alb. The second parameter is related t o  the fracture’s 
ability to communicate with the local matrix material. In the literature 
this parameter takes a variety of forms. The simplest is a length scale, Ly 
This quantifies the average distance the matrix material is from the 
fracture. With just one node in the matrix material the transient behavior 
in the matrix material cannot be modeled. To improve this situation, two 
nodes are used in FEHMN to  represent the matrix material for a dual 
porosity reservoir. Conceptually, this is the same formulation as just 
described with the addition of a second fracture volume (it is assumed the 
length scale of each matrix volume is proportional t o  the volume fraction). 
This is the two matrix node system shown in Fig. 4. More matrix nodes 
could be added, but data is rarely good enough to justify the use of even two 
matrix nodes. The simple slab model depicted in Fig. 4 is just one of several 
different geometric arrangements. Moench (1984) and Warren and Root 
(1962) list other reservoir types. All of them are similar in the assumption 
of a local one dimensional connection of the matrix to the fracture. 
A volume fraction and length scale are used to  characterize the system. 
Equations (9), (lo), (20), and (76) are formulated for both the fracture and 
matrix computational grids. One dimensional versions are created t o  
locally couple the two sets of equations. The length scales are used t o  
modify spatial difference terms and the volume fractions are used t o  modify 
the accumulation terms. 
The volume fractions for the double porosity / double permeability 
formulation satisfy the following relationship 

yf+Vp = 1 (55)  

where Vfis the volume fraction of fractures and Vp is the fraction of the 
matrix volume. The length scales are partitioned for the fracture and 
matrix volumes using 

Lf = LBVf 
Lp = LflVfl 

where Lfis the length scale for the fracture volume, LIJ. is the length scale 
of the matrix volume, and L ,  is a characteristic length scale. 
The volume fractions for the dual porosity formulation satisfy the following 
relationship 

Vf+ Vp + vfl = 1 (57) 

where Vfis the volume fraction of fractures, Vp is the fraction of the first 
matrix volume, and Vp is the fraction of the second matrix volume. Recall 
that two nodes are used to  model the porous rock (matrix) and the matrix 
material communicates only with the local fractures. The length scales are 
given by 
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L* = LPV* 

Lp = LflVP 

Lrz = LpVn 

where Lfis the length scale for the fracture volume, Lfl is the length scale 
of the first matrix volume, Lp  is the length scale of the second matrix 
volume, and Lfo is a characteristic length scale. 

8.2.4 Application 
The fracture models are extremely useful in investigating flow and 
transport in the geologic repository because of the importance of fracture 
flow and transport. Large differences are expected between transport 
calculations from lumped (matrix and fracture) properties models and 
models that include fracture flow and transport. FEHMN through a 
realistic description of fractures, allows the use of more realistic 
radionuclide dose calculations in the performance assessment calculations. 

8.2.5 Numerical Method Type 
Only algebraic manipulations are used in the derivations described in 
Section 8.2.6. 

8.2.6 Derivation of Numerical Model 
8.2.6.1 Dual porosity 
Computationally, the volume fractions and length scales are used to create 
one dimensional versions of Equations (9), (lo), (201, and'(76). The length 
scale is used t o  modify spatial difference terms and the volume factors are 
used to  modify the accumulation terms [the 
and (2611. 
The geometric factor representing the spatial differencing of the one 
dimensional equation for flow between the fracture and the first matrix 
node [analogous to  the geometric part of Equations (28) and (2911 is given 

matrix in Equations (25) 

bY 

- - 1  - 
Trfl Lfl (L f+Lf l )  (59) 

where VT is the total volume of the computational cell. 

The analogous term for the flow from the first matrix volume to the second 
matrix volume is given by 

T I  

- "T 
T f l f l  - Lrz (Lfl + Lrz) 
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Using these geometric factors Equations (25), (26), and (27) are modified 
with the addition of the following flux terms 

and 

where m refers t o  the matrix andfto the fracture. The equation for the 
matrix consists of these transfer terms plus the accumulation terms 
analogous to  those for the fracture and shown in Equations (2), (51, (19), 
and (24). It should also be noted that the gravity terms are not shown in 
the transfer terms above for simplicity but are represented in an analogous 
way. 
The one dimensional nature of the equations provides a computationally 
efficient method t o  solve the algebraic equations arising from the dual 
porosity simulation. Equation (64) shows the matrix equation arising from 
a dual porosity simulation. 

Here the subscript 0 refers to the fracture, 1 refers t o  the first matrix 
volume, and 2 refers to the second matrix volume. The x represents the 
unknown variable or variable pair. The one dimensional character of the 
matrix diffusion means that the second matrix node can only depend on the 
first matrix node. Therefore, the submatrix [A20] is empty. The fact that 
matrix nodes cannot communicate with matrix nodes in other 
computational cells means that the submatrices [A21] and [A22] are 
diagonal, therefore 
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where the inversion is trivial because [A22] is diagonal. Substituting this 
expression into the equation for the first matrix node gives 

Rearranging, 

or 

and 

The inversion and multiplications are trivial because of the diagonal 
nature of the matrices involved. Equation (67) may next be substituted into 
the equation for the fracture variables. Noting that [Ao2] is empty (the 
fracture can only communicate with the first matrix volume) gives 

Rearranging terms results in 

Modification date: 3/30/95 
- ~ _  ~ . . .  



FEHMN MMS, ECD-22 
LA-UR-94-3787, Rev. 1 

Page 39 of 69 

8.2.7 

Equation (71) consists of an augmented fracture matrix of the same form as 
the original fracture matrix [A,,] . The operations carried out only add a 
few percent t o  the solution time required to  solve a single porosity system. 
After the solution of Equation (71) is obtained with the methods described 
in the GZSOLVE MMS, the solution in the fracture volume can be obtained 
by using Equations (65) and (67). 

The Double Porosity / Double Permeability method is analogous to  the Dual 
Porosity method described above with the exception that there is only one 
matrix node represented in the Double Porosity / Double Permeability 
method. The matrix node, however, can communicate globally to  other 
matrix nodes. This leads to  a system of equations of the form 

8.2.6.2 Double Porosity / Double Permeability 

In this system of linear equations, the submatrices Aoo and A l l  are sparse 
and Aol and Alo are diagonal. Currently this system of linear equations is 
solved directly, but research to  improve the efficiency of solution is 
ongoing. 

Location 
When enabled the fracture models are called during the equation 
generation and solution phases of the simulation. This is the same place as 
shown for the Flow and Transport models in Fig. 1. 

8.2.8 Numerical Stability and Accuracy 
The same considerations that were discussed in Section 8.1.8 for the Flow 
and Transport models are valid here. 

8.2.9 Alternatives 
Other approaches t o  modeling fractures include the equivalent continuum 
approach, in which the fracture and matrix properties are averaged, and 
the discrete fracture approach, in which the fractures are modeled as 
individual computational cells. Both of these methods are included in the 
model described in Section 8.1, “Flow and Energy Transport”. 
There has also been some effort to  use a combination of numerical and 
analytic techniques. In this approach the matrix flow is represented with a 
one dimensional analytic expression. Because of the nonlinear nature of 
the solution, this approach has not been pursued. 

Modification date: 3/30/95 
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8.3 Solute Transport - Reactive Transport and Particle Tracking 
Models 
8.3.1 Purpose 

The purpose of the reactive transport and particle tracking models are to  
simulate the movement of tracer solutes traveling in either the liquid o r  
gas phases. A variety of reactive transport capabilities are present in the 
models. To perform a reactive transport simulation, an initial description 
of each solute concentration in each phase, transport properties of the fluid 
and medium, and a specification of the adsorption model and parameters 
and any reaction models are required. The output consists of the final 
concentration of each solute in each phase. 

8.3.2 Assumptions and Limitations 
Solutes are assumed to  be present in trace quantities, such that their 
presence does not impact the fluid properties or the computed flow fields. A 
related assumption is that chemical reactions do not enter into the energy 
balance through endothermic or exothermic reaction terms. If reactions 
take place between the fluid and solid phases (dissolution and 
precipitation), the transfer of mass is assumed t o  have no impact on the 
hydrologic properties of the medium. 
Many other specific assumptions are built into the solute transport models 
related to  the nature of the transport and chemical reaction behavior. 
These assumptions are treated in Section 8.3.3. 

8.3.3 Derivation 
8.3.3.1 Reactive Transport Model 

The solute transport equations in the reactive transport model 
are not directly coupled t o  the heat and mass transfer system, 
but use the flow rates and temperatures obtained by the heat 
and mass transfer solution. The mass flux, , source (or sink) 
strength, qc, and accumulation term, A,, are defined as follows 
for a solute: 

A,  = Q (~,S,P, + C,S,P,) * 

The transport equation for a given solute is given by 

Modification date: 3/30/95 
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Here C is the concentration of the solute. The term 

V - D,VC is the dispersion term and p - is an 

equilibrium sorption term (see section below for the formulation 
for sorbing solutes). C, represents the adsorption of the solute 
onto the porous media. In addition, the term q, includes the 
source or  sink due to  chemical reaction. The chemical reaction 
terms are discussed in more detail below in the section titled 
"Chemical Reaction Module." 

acr [ J  at 

Equation (76) is a general equation for a solute present in either 
the liquid or  gas phases, or one that partitions between the 
liquid and gas. The model is capable of simulating any of these 
possibilities, as well as a solid species, for which only the 
accumulation and chemical reaction terms are present. Several 
solutes can be simulated simultaneously, and can interact with 
one another through the chemical reaction model. The transport 
terms can be set as a function of position, and there is no 
requirement that they be the same for all solutes present in a 
phase. 

The next four subsections elaborate on various transport, 
sorption, and reaction features of the reactive transport model. 

Dispersion Coefficients. The model uses a standard 
formulation for the dispersion coefficient, expressed as follows 
for the x-direction 

The Darcy velocity is computed from the solution of the fluid 
flow equation. The dispersivity a d  and the molecular diffusion 

coefficient DAB are properties of the medium, the fluid (liquid 
in the above equation) and the solute. Similar expressions are 
written for the y- and z-directions. 

Adsorbing Solutes. The general equilibrium model for 
adsorption of species onto the reservoir rock is given by (Polzer, 
et al. 1992) 
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Model Expression a1 a2 

Linear cr = Kdc1 Kd 0 .  

Freundlich Cr = ACp A 0 

cr = ACF AC,.,, A 

cr = m1 

Modijied 
Freundlich Cr, max - Cr 

Langmuir rb r ‘b c[ 

a, cp 
P ’  cr = 

1 +a,C1 

P 
1 

o < p < 1  

o < p < 1  

1 

MwKHcl cv = 
MVPV 
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where Mw is the molecular weight of water, My is the 

molecular weight of the vapor, P, is the gas pressure, and KH 
is the Henry’s law coefficient. Temperature dependence of the 
Henry’s Law constant is modeled using the following relation 

where AH and AHH are model parameters, R is the universal 
gas constant (8.314 x kJ/mol-K), and Tis the temperature 
in degrees Kelvin. The units for AHH are kJ/mol, and the units 

for AH and KH are MPaAiquid-mole-fraction. 

An alternate formulation of the temperature dependence of the 
Henry’s law coefficient is also available. It is included 
specifically to  model the dissolution of C02 into the liquid 
phase. The empirical correlation used t o  fit data for C02 
dissolution by Plummer and Busenberg (19821, after converting 
into the units required by FEHM, is 

- 
where KH = IOKH, and 

AH 3 kH = AH, + AH,2T+ 2 T 

Multiple, Interacting Solutes. Thus far, only the 
specification of an individual solute has been discussed. In the 
reactive transport model, chemical reactions involving one or  
more components can be specified with the following form: 

alBl  + a2B2 + ... + amBm = 

where the a’s are the stoichiometric coefficients and the B’s 
denote each solute present in a particular reaction (i.e., the mth 
or m+lth component). This relationship is formulated for each 
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reaction being modeled, and a solute may be present in any 
number of reactions as either a reactant or a product. 

The reactions may be specified either as kinetically controlled or 
equilibrium reactions. For a kinetically controlled reaction, the 
rate law governing each reversible reaction is specified as 
follows : 

n 
bi 

i = m + l  
-kre,, n [ B J b }  . 

i =  1 
(84) 

Here the square brackets [ ] denote concentration, the bi are 
exponents in tbe reaction rate or equilibrium equation (specified 
for every reactant in each reaction), and the forward and 
reverse reaction rate constants kfor and krev are governed by 
the Arrhenius equation: 

In Equation (84), the stoichiometric coefficient a. pre-multiplying 

the rate law expression is negative if 5’. is a reactant, since it is 
being consumed in the reaction. 

For equilibrium reactions, the following relationship is 
satisfied: 

i =  1 

where Keq is the equilibrium constant for the reaction. The 

temperature dependence of Keq can be expressed in two ways, 
similar to  the specification of Henry’s law constants above. In 
the first model, the van’t Hoff relationship is used: 
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Alternatively, a formulation allowing simulation of the 
carbonate reaction system is included, which uses the following 
form: 

Keq = loKeq 

where 

In Equations (87) and (891, the temperatures are in degrees 
Kelvin. 

For sorbing species, reaction may occur for solute in the fluid 
phase, in the sorbed phase, or both. For the modified Freundlich 
isotherm [Equation (78)1, the total concentration used in the 
reaction rate law for the case of fluid and sorbed phase solute 
participating in the reaction is 

P 
(90) 

where p r  is the bulk rock density, pp is the fluid density, Q is 

porosity, and a , a2,  and p are the sorption isotherm 
parameters. Effectively, the second term on the right hand side 
of Equation (90) is the equivalent concentration of the sorbed 
species if it were present in the fluid phase. The assumption 
that reactivity is identical for solute regardless of phase is valid 
for radioactive decay, but will certainly be incorrect for some 
chemical reactions. Thus, FEHMN provides an option whereby 
for each species in each reaction, the user may specify whether 
the reaction applies to  solute in the fluid phase (concentration of 
[Bi] 1, solute in the sorbed phase [concentration given by the 

fraction on the right hand side of Equation (9011, or both. For 
two-phase flow, p p  is replaced by Sppp,  where Sp is the 
saturation of the phase ( p )  containing the solute. 

For reactions involving a solid species, typically a zero order 
chemical reaction is assumed, though this is not required. The 
concentration of a solid is expressed in moles of species per kg 
rock, whereas, all other concentrations in the code are expressed 
in moles of species per kg of fluid. The model for solid reactions 
undergoing zero order reactions accounts for the degree of 
saturation when computing rates. When there is no solid 

Modification date: 3/30/95 

. I r--------- - 
I ,  

. ~ *-- - ., . . -- - .,-_I ___ 
. , .<. - 



FEHMN MMS, ECD-22 
LA-UR-94-3787, Rev. I 
Page 46 of 69 

8.3.3.2 

present, a solution must be supersaturated (the rate of the 
reaction forming the solid must be greater than the rate of the 
reaction consuming the solid), or else the reaction is assumed to  
not take place. 

Finally, when Henry’s law species are specified as undergoing 
chemical reactions, it is assumed that the reaction takes place 
for solute in either the liquid or vapor phases, but not both. The 
user must specify which phase participates in the reaction. 
When it is desired that the reaction take place in both phases 
(say, for a radioactive decay reaction), the user must specify two 
reactions with identical rate expressions, one for the liquid 
borne portion of the solute and one for the vapor borne portion. 

Solute Sources and Sinks. Solute sources or sinks are 
handled in a manner analogous t o  the fluid flow sources and 
sinks. If there is fluid flow out of the model domain (a fluid 
sink), the in-place solute concentration is used in the solute 
mass balance. For fluid entering the system, the solute 
concentration of the incoming fluid can be specified. 
Alternatively, the concentration at a node or nodes can be held 
at  a fixed concentration. This boundary condition can be either a 
source or sink for solute, depending on the gradient in 
concentration at locations adjacent to  the node at  which the 
boundary condition is applied. 

Particle Tracking Model 
The particle tracking method developed in FEHM views the 
fluid flow computational domain as an interconnected network 
of fluid storage volumes. The description that follows is 
applicable for steady state flow fields; the variations in the 
method for treating transient flow systems are discussed later. 
The two steps in the particle tracking approach are: 1) 
determine the time a particle spends in a given cell, and 2) 
determine which cell the particle travels to  next. These two 
steps are detailed below. 

The residence time that a particle spends in a cell is governed 
by a transfer function describing the probability of the particle 
spending a given length of time in the cell. Thus, this particle 
tracking approach is called the “residence time transfer 
function” (RTTF) method. For a cumulative probability 
distribution function of particle residence times, the residence 
time of a particle in a cell is computed by generating a random 
number between 0 and 1, and determining the corresponding 
residence time. If a large number of particles pass through the 
cell, the cumulative residence time distribution (RTD) of 
particles in the cell will be reproduced. 

From the solution of the flow field in a numerical model, the 
mass of fluid in the computational cell, and the mass flow rate 
t o  or from each adjacent cell is obtained. In the simplest case, 
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the residence time of a particle within each finite difference cell 
T~~~~ is given by 

where Mf is the fluid mass associated with the cell and the 
summation term in the denominator refers to  the outlet mass 
flow rates from the cell t o  adjacent cells. In the absence of 
dispersion or other transport mechanisms, the transfer function 
is a Heaviside function that is unity at the fluid residence time 
‘I: , since for this simple case all particles possess this residence f 
time. Equilibrium, linear sorption is included by correcting the 
residence time by a retardation factor R f ,  so that 

= R ‘I: , where Rf is given by ‘I:part f f 

R , - = l + - .  PbKd 

OS& 

In Equation (921, Kd is the equilibrium sorption coefficient, p b  

is the bulk rock density, Q is the porosity, Sf .is the saturation 

of the phase in which the particle is traveling, and pf is the 
density of the fluid. Once again, in the absence of other 
transport processes, the transfer function is a Heaviside 
function. 

Before discussing more complex examples of the RTTF method, 
the method for determining which cell a particle travels to after 
completing its stay at a given cell is outlined. The assumption 
that is consistent with the RTTF method is that the probability 
of traveling to  a neighboring cell is proportional to the mass 
flow rate t o  that cell. Only outflows are included in this 
calculation; the probability of traveling t o  an adjacent node is 0 
if flow is from that node t o  the current node. By generating a 
uniform random number from zero to one, the decision of which 
node to  travel t o  is straightforward. Thus the particle tracking 
algorithm is: 1) compute the residence time of a particle at a cell 
using the RTTF method; and 2) send the particle t o  an adjacent 
cell randomly, with the probability of traveling t o  a given cell 
proportional to the mass flow rate to that cell. 

The transfer function for transport processes such as dispersion 
are described now. Within a computational cell, it is assumed 
that one-dimensional, axial dispersion is valid. The transport 
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equation and boundary conditions for the one-dimensional, 
advective-dispersion equation are 

c = cin at x = 0 and 

- -  ac-  0 ,  
d X  

for x + co . 

In the equations above, C is the concentration, Cin is the 

injection concentration, v is the superficial flow velocity, and 
Defl is the effective dispersion coefficient, given by Defl = a v  , 
where a is the dispersivity of the medium. Here it is assumed 
that the flow dispersion component of Defl is large compared t o  

the molecular diffusion coefficient DAB. A nondimensional 
version of Equation (93) can be obtained using the following 
transformations: C = C/C,, j z  = x / L ,  8 = Rfv t /L  = RfTp 
where L is the distance along the flow path where the 
concentration is being measured. Then, Equation (93) becomes 

.. A 

(96) 

where Pe = vL/Defl is the Peclet number. Alternatively, 

Pe = L/a. The solution t o  this equation and boundary 
conditions is given by Brigham (1974) as 

The use of this solution in the RTTF particle tracking method 
requires that the transport problem be advection dominated, so 
that during the time spent in a computational cell, solute would 
not tend to spread a significant distance away from that cell. 
Then, the approximate use of a distribution of times within the 
cell should be adequate. Quantitatively, the criterion for 
applicability is based on the grid Peclet number Peg = Ada, 
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where Ax is the characteristic length scale of the computational 
cell. Note that in contrast to  conventional solutions t o  the 
advective-dispersion equations, coarse spatial discretization is 
helpful in satisfying this criterion, as long as the mesh spacing 
is small enough to  provide an accurate flow solution. Highly 
dispersive transport invalidates the assumptions of the RTTF 
particle tracking technique. This is not viewed as a severe 
limitation of the method, since accurate solutions t o  the 
advective-dispersion equation are easily obtained by 
conventional finite difference or finite element techniques for 
this case. The niche filled by this new technique is in the 
solution of advection-dominated problems involving the 
movement of sharp concentration fronts. 

For multi-dimensional flow systems, this method for simulating 
dispersion can be extended for the case of dispersion coefficient 
values aligned with the coordinate axes. For this case, the flow 
direction is determined by the vector drawn from the nodal 
position of the cell the particle traveled from to  the current cell, 
and the dispersivity for this flow direction is given by 

Axax + Ayct,, + &az 
L a =  

The RTTF particle tracking technique cannot be formulated 
with a longitudinal and transverse dispersion coefficient model, 
since the flow rates between cells are defined, rather than the 
actual flow velocity at a position. For a dispersion model aligned 
t o  the flow direction, the particle tracking method such as that 
of Tompson and Gelhar (1990) or a conventional finite element 
or finite difference solution to  the advective-dispersion equation 
should be used. 

Matrix Diffusion. Matrix diffusion has been recognized as an 
important transport mechanism for fractured porous media 
(Neretnicks, 1980, Robinson, 1994). For many hydrologic flow 
systems, fluid flow is dominated by fractures, because of the 
orders of magnitude larger permeabilities in the fractures 
compared t o  the surrounding rock matrix. However, even when 
the fluid in the matrix is completely stagnant, solute can move 
into the matrix via molecular diffusion, resulting in a physical 
retardation of solute compared t o  pure fracture transport. This 
effect has recently been demonstrated at the laboratory scale by 
Reimus (19951, and at the field scale by Maloszewski and Zuber 
(1985). 

To develop a transfer function for matrix diffusion, an idealized 
representation of the transport system must first be developed. 
Figure 5 shows the geometry of the model system used for this 
purpose. The geometry and flow system consists of equally 
spaced, parallel fractures, each of which transmits equal flow. 
Fluid in the rock matrix is stagnant. Transport in the fractures 
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is governed by Equation (93) with an additional term qfm on the 
right hand side, given by 

where $mat is the matrix porosity and bf is the fracture 
aperture. Transport between the fracture and matrix is 
governed by the one-dimensional diffusion equation: 

where RI; 
molecular diffusion coefficient is a function of the free diffusion 
coefficient of the solute in water and a tortuosity factor t o  
account for the details of diffusion through the tortuous, fluid 
filled pore network. In this model, D A B  is treated as the 
fundamental transport parameter, recognizing that it is a 
property of both the solute and the medium. Solutions t o  this 
transport problem depend on the nature of the boundary 
condition away from the fractures. An analytical solution is 
given by Tang, et al. (1981) for the semi-infinite boundary 

is the retardation coefficient for the matrix. The 
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Figure 5. Model system used to formulated the residence time 
transfer function for matrix diffusion 
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ac 
aY 

condition - = 0 as y + 00. For the case of plug flow (no 

dispersion) in the fractures, Starr, et al. (1985) show that the 
solution reduces to  

The semi-infinite boundary condition between fractures limits 
the validity of either of these solutions t o  situations in which 
the characteristic diffusion distance for the transport problem is 
small compared to  the fracture spacing. However, as long as the 
solute has insufficient time to  diffuse to  the centerline between 
fractures, the solutions provided by Tang, et al. or  Starr, et al. 
are valid to  represent the transfer function for the particle 
tracking technique. 

Although in principal the Tang, et al. solution could be used for 
the transfer function, its complex form makes it very 
inconvenient for rapidly computing particle residence times. 
Instead, a two-step process is used in which the residence time 
within the fracture is first computed using the transfer function 
for one-dimensional dispersion in Equation (97) without 
sorption. Then, the plug-flow equation with matrix diffusion and 
sorption (Equation (101)) is used with the value of the fracture 
residence time just determined to  set the transfer function for 
the matrix diffusion component of the model. To use 
Equation (101) as a transfer function, a subroutine was 
developed t o  determine the inverse of the error function, that is, 
the value of xd for a given value of yd, such that 

yd = erf(xd) . The numerical implementation of this method 
entails dividing the error function into piecewise continuous 
segments from which the value of xd is determined by 
interpolation. The use of the two-step approach is justified 
because of the principle of superposition, which allows the 
decoupling of the dispersive process in the fracture from the 
diffusive transport in the matrix. 

Radioactive decay. Radioactive decay is important t o  many of 
the applications for which this model was developed, namely 
nuclear waste repository studies. Natural isotopes such as 36Cl 
and C also require the simulation of radioactive decay. This 
phenomenon can be treated by introducing the decay equation 
for an irreversible first order reaction: 

14 
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where z 

kRn is the rate constant for radioactive decay, related t o  the 

radioactive decay half-life 'z: /2 by kRn = 0.693 /z ,2. 

is the particle age since entering the system, and age 

In this model, the concept of a fraction of a particle is used to  
incorporate radioactive decay into the calculation. The age of a 
particle, o r  time since entering the system, is used in 
Equation (102) to  compute the fraction of the particles 
remaining at the current time. When concentration values are 
computed from the composite behavior of a large number of 
particles, this method accurately accounts for radioactive decay. 

Particle Sources and Sinks. There are two methods for 
introducing particles into the flow system: 1) inject the particles 
with the source fluid entering the model domain, o r  2) release 
the particles at a particular node or set of nodes. The first 
method is used t o  track injected fluid as it passes through the 
system. The number of particles entering with the source fluid 
at each cell is proportional t o  the source flow rate at that node. 
The method is the particle tracking equivalent t o  a constant 
solute concentration in the source fluid. For method 2, an equal 
number of particles are released at each node specified, 
regardless of the source flow rate. In either case, the model calls 
for the particles t o  be released over a specified time interval. 
The code then computes a starting time for each particle. 

For fluid exiting the model domain, the model treats this flow as 
another outlet flow from the node. The decision of whether the 
particle leaves the system or  travels to  an adjacent node is then 
made on a probabilistic basis, just as though the fluid sink were 
another connected node. When a particle leaves the system, its 
sojourn through the model domain is completed; this fact is 
recorded as part of the statistics of the simulation. 

Transient Flow Fields. When RTTF particle tracking method 
is implemented for a time varying fluid flow system, the 
approach is somewhat more complex but still tractable. 
Consider a numerical simulation in which a discrete time step is 
taken at time t , and a new fluid flow field is computed. In this 
model, transient flows are handled by treating the new fluid 
flow time tne, as an intermediate time in the particle tracking 
calculation that the simulation must stop at. The fate of all 
particles is tracked from time t to time tnew assuming that the 
flow field is constant over this time interval. When the 
simulation reaches tnew, the position of the particle is recorded, 
along with the fractional time remaining for the particle at the 
cell, and the randomly generated y-coordinate of the transfer 
function used for that particle in the cell. When the new fluid 
flow solution is established, the process continues, but the 
remaining residence time for a particle is the time determined 
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from the new transfer function times the fractional time 
remaining in the cell. 

Another transient effect that must be considered is that the sum 
of the outlet mass flow rates z ~ o u t  in Equation (91) does not 
necessarily equal the sum of the inlet mass flow rates. When 
there is net fluid storage in a cell, the particle tracking 
algorithm uses the sum of the inlet flow rates in Equation (91), 
whereas Equation (91) itself is used when there is net drainage 
of fluid. 

8.3.4 Applications 
For transport calculations using either the reactive transport or  particle 
tracking models, the validity of the solution depends first on the accuracy 
of the flow equations. In addition, the reliability of the transport 
parameters is also a factor in the representativeness of any transport 
simulation. 
For the reactive transport model, the issue of numerical accuracy is 
extremely important to  the usefulness of the results. The accuracy may be 
evaluated by solving the same problem using different size grids and 
evaluating the change in the solution. The major source of numerical errors 
for transport solutions is anticipated t o  be the numerical dispersion 
resulting from the upwinding of the advection term. Alternatively, the 
particle tracking module can be used for advection-dominated problems to  
provide a solution that can be compared to  the reactive transport results. 
The primary applications of the particle tracking model are: 

To generate transport solutions that are able to  track sharp fronts in con- 
centration without numerical dispersion, thereby allowing results from 
the reactive transport model t o  be evaluated for numerical accuracy; 
To allow fluid pathways t o  be mapped out visually using particles that 
follow the fluid; 
To provide a transport solution for a solute that diffuses into the rock 

To compile statistics on the distribution of fluid ages present at  a given 
matrix; 

location. 
Several limitations of the particle tracking model should be noted. The 
particle tracking method produces a transport solution that is free of 
numerical dispersion when flow is predominantly aligned with the fluid 
flow finite element grid. Grid orientation effects may be present when flow 
travels diagonally across the grid. The dispersion model extends the 
transport solution beyond a simple “plug flow” transport model, but the 
RTTF method is only valid for advection-dominated problems. In regions of 
a model domain where the grid Peclet number is less than about 1, the 
method produces inaccurate results. Finally, the matrix diffusion method 
is valid only if the solute has insufficient time t o  diffuse fully between 
fractures during the time scale of a simulation. 

8.3.5 Numerical Method Type 
For the reactive transport model, the approximation of the partial 
differential equations for solute transport parallels exactly the theory 
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outlined for the solution of the flow and energy transport equations in 
Section 8.1.6. The concentrations of all solutes must be solved 
simultaneously, since the concentrations are coupled through the kinetic or 
equilibrium reaction terms. The code employs an option to  solve multiple 
solute concentrations directly using the multiple degree-of-freedom 
equation solver for up t o  four solutes. When more than four solutes are 
present, an iterative procedure is required. This method is outlined in 
detail in Section 8.3.6. 
The RTTF particle tracking method is a Lagrangian numerical method that 
employs transfer functions t o  compute particle residence times in each cell. 
Thus the time a particle spends in a cell, as well as the decision of which 
adjacent cell t o  travel to  next, are determined probabilistically. 

8.3.6 Derivation of Numerical Model 
8.3i6.1 Reactive Transport Model 

Since many aspects of the reactive transport numerical methods 
parallel the development of the fluid and energy transport 
numerical method, only the parts of the development that are 
unique to  solute transport are outlined here. Internal t o  the 
code, the chemical reaction terms of the solute mass balance 
equations are always formulated as kinetic expressions with 
forward and reverse rate terms. For kinetically controlled 
reactions, these rate terms are the two product terms of 
Equation (84). Equilibrium reactions use the fact that at 
equilibrium the forward and reverse rates are equal, so that 
Keq = kfor/krev. Forward and reverse rate constants are forced 
to  be in the correct ratio to simulate equilibrium, and as long as 
the rate constants are high enough, equilibrium is 
approximated. Of course, it is not known a priori what values to 
use for the rate constants. If the values are too low, equilibrium 
behavior is not approximated. A less obvious consideration is 
that if the values are too high, the rate terms in Equation (76) 
overwhelm the transport terms in the mass balance, and the 
reactive transport problem is not well-posed: the transport part 
of the mass balance gets lost in the solution of the equations. 

To circumvent these problems, on the first solute time step the 
model starts at a relatively low value for the forward rate 
constant, computes the corresponding reverse rate constant 
consistent with the equilibrium constant for the reaction, solves 
the reactive transport problem, then performs a check t o  ensure 
that equilibrium is approximated everywhere in the model 
domain. The check is 

. 

y,, = 1 -abs i = m + l  

i =  I 

(103) 
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where ytol is a user defined tolerance parameter defining how 
close to  equilibrium to  force each reaction. Comparing 
Equations (103) and (861, and making use of the fact that 
Keq = kfor/kre, at equilibrium, the value 1 -yrxn can be seen 
as the ratio of the equilibrium quotient (the right hand side of 
Equation (86)) to  the equilibrium constant. Setting ytol to, say, 
0.01 forces this ratio to  0.99, or  roughly speaking, 99% of the 
way to  equilibrium. If the check is not satisfied at  all positions, 
the minimum value 1 -yrxn is found, and the forward rate 

constant is multiplied by yrxn/kfact , where kfact is a user 
defined parameter (assumed to  be less than 1) that sets the rate 
at which the rate constants are increased to  approach 
equilibrium behavior. Alternatively, kfact can be chosen to be a 
direct multiplier t o  the current forward rate constant, in which 
case the value is set greater than 1. 

In either case, the process of solving the entire reactive 
transport system is repeated with higher and higher rate 
constants until Equation (103) is satisfied for all equilibrium 
reactions at  all positions. In portions of the model domain where 
concentrations are low, it is possible that the reaction rates are 
low or even 0 even when equilibrium behavior is specified. The 
model can be made to  skip the equilibrium check of 
Equation (103) when the forward rate (the denominator in 
Equation (103)) is less than a user specified reaction tolerance 
parameter, called rL tal. When a new time step is taken, the rate 
constants determined previously are used to  restart the process. 
These rate constants will usually be sufficient to  assure 
equilibrium behavior at subsequent time steps, but the 
equilibrium check is still performed, and rate constants 
increased if necessary. 

The system of equations representing the mass balance for each 
solute results in a coupled system of Nsol x Nes equations. When 
kinetics are rapid compared t o  transport, either because the 
rate constants are set large or the equilibrium reaction option is 
chosen, the solution technique must be quite robust. The 
multiple degree-of-freedom solver naturally handles this sort  of 
strongly coupled system of equations. However, the current 
solver handles up to  four degrees-of-freedom (in this case, four 
coupled solutes). To solve for more than four solutes, an 
iterative procedure has been implemented in which the solutes 
are placed into groups of up to  four solutes. The code solves the 
equations group by group. When a solute is not present in a 
group, the current values of concentrations are used in 
computing reaction rate terms, but those concentrations are not 
unknowns at  that particular step of the solution. 
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Since the calculation of concentrations in groups falling later in 
the sequence may impact the mass balance of solutes already 
solved for, the entire system is not necessarily converged after 
all groups are solved. An outer iterative loop over all groups is 
traversed until the residuals of all equations are low. At this 
point the entire system of equations is solved t o  the specified 
tolerance, and a new time step is taken. 

8.3.6.2 Particle Tracking Model 
All aspects of the numerical model for particle tracking are 
discussed in Section 8.3.3.2. 

8.3.7 Location 
The implementation sequence for either the Reactive Transport Model or 
the Particle Tracking Model is illustrated in Figure 1. The two models 
cannot be run simultaneously in the current version of FEHMN. After a 
heat and mass transfer time step is taken and the flow and temperature 
fields are determined, the solute transport solution is computed from the 
previous heat and mass time to  the current time. The flow field used for the 
transport calculations are assumed to  be unchanging during this time. 

8.3.8 Numerical Stability and Accuracy 
Reactive Transport Model. As in the heat and mass transfer solution 
discussion (Section 8.1.8), nonlinearities can give rise to  problems with 
stability of the solution. The formulation of the problem as a fully coupled, 
implicit solution maximizes the likelihood of obtaining a stable, accurate 
solution. Accuracy is also intimately tied to  the grid discretization, time 
step, and dispersion coefficients of the solutes. Advection .dominated 
transport with low dispersion coefficients is well known to be difficult t o  
simulate accurately with finite difference or  finite element techniques. 
Testing the solution against the results of a calculation with smaller grid 
spacings and time steps is one way t o  assess the level of numerical 
dispersion. Another way is t o  compare the solution to  a particle tracking 
simulation, which is designed to  minimize numerical inaccuracies. 
Particle Tracking Model. The accuracy of a RTTF particle tracking 
should be evaluated using the following considerations: 

The dispersion coefficient must be set high enough t o  avoid grid Peclet 
numbers less than 1; in fact, the code sets the Peclet number of a cell t o  1 
for any value lower than 1. 
Diffusion into the rock matrix must be slow enough that the solute has 
insufficient time t o  diffuse fully to the centerline between fractures. 
If the velocity vectors are not aligned with the finite element grid, some 
inaccuracies due t o  grid orientation effects are to be expected. 
The number of particles in the simulation must be sufficient t o  minimize 
errors induced by statistical fluctuations. 

8.3.9 Alternatives 
Reactive Transport Model. Many different numerical formulations of 
the reactive transport problem are possible. A review of these methods was 
performed by Yeh and Tripathi (1989). These models differ in the number 
of species that can be simulated, and the nature of the chemical reactions 
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that can be simulated. When equilibrium is assumed for all reactions, the 
reaction apart of the problem can effectively be decoupled from the 
transport, and considerable simplification results. For combined kinetic 
and equilibrium formulations, Friedly and Rubin (1992) have shown that 
similar simplifications are possible. Most models presented in the 
literature that use sophisticated chemical sub-models are restricted t o  
simplified flow geometries and flow physics or  require a flow solution as 
input, and the number of grid points that can practically be simulated is 
small. 
The reactive transport model developed here was specifically designed for 
use in the context of large-scale two- and three-dimensional simulations. It 
was assumed that in the near future, computational resources would be 
insufficient to  handle a large number of chemical species for a large-scale 
problem of many thousands of grid points. Therefore, the model 
development assumed that information from other sources (geochemical 
codes, literature data for a few key reactions and species) could be 
abstracted and distilled into a relatively small number of interacting 
solutes. Given this assumption, the logical method of solution was t o  utilize 
the multiple degree-of-freedom solution technology that is at the center of 
the FEHMN code. Alternative techniques such as those referred to above 
will be evaluated and incorporated into future versions of FEHMN, as 
needed. 
Particle Tracking Model. The RTTF particle tracking modeling approach 
in FEHMN differs from most groundwater particle tracking algorithms 
reported in the literature 1e.g. Tompson and Gelhar (19901, Lu (199411. 
These methods require that the velocity vector be resolved accurately at each 
location in the model domain. This usually involves an interpolation method to  
obtain the velocity at any position needed based on the values computed from a 
flow simulation (at cell faces or nodes, for example). Then, the algorithm 
consists of marching forward in small time steps, computing the trajectory and 
new location of the particle at the new time. Equilibrium, linear sorption is 
modeled by introducing a retardation factor t o  reduce the particle velocity. 
Dispersion is handled using a random walk approach that displaces the particle 
a certain amount during each time step, so that the particle samples a different 
velocity field than it would have in the absence of dispersion. 
By contrast, the approach used in the FEHMN particle tracking algorithm 
uses the fluid mass fluxes from node t o  node as the basis for moving 
particles. These are the quantities that are actually known in integrated 
finite difference and finite element calculations, while the velocity vectors 
are interpolated results. Thus the implementation of the RTTF technique 
in an existing code like FEHMN is straightforward. Another practical 
advantage is that the computations are extremely fast: simulations with 
several million particles are practical using conventional workstations. 
One compromise in the approach is the limitation to advection dominated 
transport systems. This was thought to be a reasonable compromise, 
especially in the context of a code that already has a reactive transport 
module that easily handles systems with high dispersion coefficients. 
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8.4 Constitutive Relationships 
8.4.1 Purpose 

The densities, viscosities, and enthalpies of water, water vapor, and air are 
required for the simulation of the Flow and Transport in a geologic 
repository. These constitutive relations depend on temperature and 
pressure. To be computationally efficient, the form of these relations must 
be easy t o  compute and accurate. To satisfy these needs rational 
polynomial fits t o  the National Bureau of Standards Steam Tables are 
used. The models require the pressure and temperature of a node as input 
and output the densities, viscosities, and enthalpies of the phases. 

8.4.2 Assumptions and Limitations 
At present, several fits of the data are available to  the user. These allow 
usage of the relations for temperatures up t o  360 O C  and pressures up t o  
110 MPa. If the variable exceeds the limits of the data, the FEHMN code 
will restart the timestep with a smaller time step size and try to  keep the 
variable within the bounds of the data. 

8.4.3 Derivation 
Pressure and Temperature Dependent Fluid Properties. A porous 
flow simulator, such as FEHMN, with heat and mass transfer capabilities 
requires the functional dependence of the phase densities, the phase 
enthalpies, and the phase viscosities on temperature (T) and pressure (P). 
Because FEHMN is an implicit code which uses a Newton-Raphson 
iteration, derivatives of the thermodynamic functions with respect t o  P and 
Tare also required. 
Rational function approximations are used t o  estimate the thermodynamic 
variables in FEHMN where the rational functions are a ratio of 
polynomials. Complete polynomials of order three are used in both the 
numerator and denominator. For example, the density is approximated as 

where 

and 
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This type of relationship has been shown by Zyvoloski and Dash (1991) to  
provide an accurate method for determining parameter values over a wide 
range of pressures and temperatures, as well as allowing derivatives with 
respect to  pressure and temperature to  be computed easily. 
Polynomial coefficients were obtained by fitting data from the National 
Bureau of Standards OSRD database 10, the database used for the NBS/ 
NRC Steam Tables (Harr, et al. 1984). The data fits result in errors less 
than one percent and often less than 0.1 percent. Two sets of coefficients 
are used in FEHMN one over the ranges 0.001 I P I 110.0 MPa and 
0.001 I T I  360 "C, and the other, for low pressures, with the ranges 
0.001 I P 
enthalpy, density, and viscosity functions are given in Tables Table 111, 
Table IV, and Table V, respectively, of the Appendix. 
Pressure as a function of saturation temperature / Temperature as 
a function of saturation pressure. The equation for the saturation line 
is important for the determination of the phase state of the liquid vapor 
system. The saturation line may be described in a water only system as the 
pressure above which boiling occurs. In a mixture of air or  other 
noncondensible gas, the saturation line is simply the partial pressure of 
water or  the vapor pressure of water. Rational function approximations are 
also used for the saturation line equations: 

20.0 MPa and 0.5 I T I  360 "C. Polynomial coefficients for the 

where 

and 

Y (x )  = Yo + Y*X+ Y$ + Y 3 2  + Y4X4 (108) 

X represents temperature or pressure in the respective relationships. 
Polynomial coefficients for the saturation functions are given in Table 
Table VI of the Appendix. 
FEHMN also allows for the inclusion of a vapor pressure lowering term 
which may be important in situations where high capillary forces are 
present. The modified vapor pressure is given by: 
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* 
where Pv 

pressure, and R is the gas constant divided by the molecular weight of 
water. 
Properties of Air and AirNapor Mixtures. Appropriate thermodynamic 
information for air and aidvapor mixtures are provided. The density of air 
is assumed t o  obey the ideal gas law. Using atmospheric conditions as the 
reference state 

is the new vapor pressure of water, P,, is the capillary 
* 

=' 1.292864( 273.15 )( " ) 
Pa T +273.15 0.101325 

(111) 

where pa has the units kg/m3, Tis in OC, and P is in MPa. The mixture 
density is given by 

where pv , is the density of water vapor. 
The enthalpy of air is specified as a function of temperature only 

where 

h, is the enthalpy of air (MJkg), and cpu is the heat capacity of air (MJkg 
"C). The parameters in Equation (114) were obtained by regression of a 
more complex correlation found in Sychev, et  al. (1988). The mixture 
enthalpy for the vapor phase is 

where h , ,  is the enthalpy of steam and qv is the fraction by mass of air in 
the vapor phase. The mixture enthalpy of the liquid phase is given by: 

where hi, , is the enthalpy of liquid water and qi is the mass fraction of air 
in the liquid phase. 
Assuming ideal gas behavior, the mass fraction of air in the vapor phase 
may be expressed as 

Modification date: 3/30/95 
. .~. . .  _ -  ...: - ,-,..--,.-. i--- - . . . . , 1 . . . _. ... . . .  ., - .  - ;I ._ .. , . ~~ 



FEHMN MMS, ECD-22 
LA-UR-94-3787, Rev. 1 

Page 61 of 69 

The mass fraction of air in the liquid phase is assumed t o  obey Henry’s law 
or 

where KH, a is the Henry’s law constant for air (ICH, a = 1.611 x Pa-l) 

and Pa is the partial pressure of air. 

The viscosity of the vapor phase is assumed t o  be a linear combination of 
the air viscosity and the water viscosity 

where pv 
viscosity of air is assumed constant 

is the steam viscosity and is obtained from steam data. The 

-8 N - s  pa = 1.82~ 10 7. 
m 

The liquid phase viscosity is assumed to  be independent of the amount of 
dissolved air and is obtained from a rational function approximation like 
those specified above. 
Relative Permeability and Capillary Pressure Functions. Relative 
permeabilities and capillary pressures can be strong functions of 
saturation. Several well known relative permeability functions are 
available to the user. They are the simple linear functions, the Corey 
(1954) relationships, and the van Genuchten (1980) functions. Composite 
relative permeability curves, as described by Klavetter and Peters (19861, 
are also a user option. 
The linear functions are given by 

I O3 
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I O7 Sv ' Svr 

where Slri is residual liquid saturation, SVr is residual vapor saturation, 
S!,,,, is maximum liquid saturation, and S,,, is maximum vapor 
saturation.. 
The Corey relative permeability functions are given by 

- 4  
R,  = S,, (123) 

and SI,. and S,, are the residual liquid and vapor '1-  '1r - Svr 
1 - Slr - Svr 

where $1 = 

saturations respectively. 
The van Genuchten relative permeability functions are described by the 
following formulae: 

R,  = { [ l.0-I l . o - q ] 2 & 7  

1 

Rv = 1.0-Rl 

1 .o, 
(125) 

(126) 

1 
n and h = 1 - - , where n is an experimentally ' 1  - Slr where 5 = 

Slm ax - Slr 
determined parameter. 
RI and R,  are restricted by the requirement that 0.0 5 R,  5 1 .O and 
0.0 I Rv'I 1 .O . The relative permeability functions are truncated t o  the 
appropriate value if the these conditions are violated. 
The capillary functions considered are the linear function and the van 
Genuchten capillary pressure model. Our terminology follows that of 
Pruess (1987). 
The linear capillary function model is given by the following equations 
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where Pcapmax is the maximum capillary pressure, 5‘1,. is the residual liquid 
saturation, and Slmax is the maximum liquid saturation. The restriction 
SImax > SIr is also necessary. 

The van Genuchten functions (van Genuchten, 1980) for capillary pressure 
are described by the following equations 

r 1  - 
h 

where Pcapl = Po is - 1 .O 

1 h = 1 - - , where n and C ~ G  are experimentally determined parameters. 

The van Genuchten capillary pressure curves approach an infinite value as 
Sl approaches 0 and 1. This requires the use of extrapolation techniques. At 
low saturations both linear and cubic fits are available. At  high saturations 
a linear fit is used. 
Stress Dependent Properties. Often it is necessary t o  accommodate 
changes in the rock porosity and permeability due to changes in effective 
stress caused by temperature and pore fluid pressure changes. A linear and 
nonlinear model are incorporated in the code for this purpose. 
The linear pore pressure model for porosity is given by 

n 

where 4 is the porosity at pressure P,  $0 is the porosity at  pressure PO, cy 
is the pore volume compressibility of the rock, and cg is the compressibility 
of the matrix grain material. 
The nonlinear model of fracture porosity (Gangi, 1978, Appendix) is given 
by 

Modification date: 3/30/95 
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and 

P, = o-P-aEAT (131) 

where P, is the closure stress, o is the in situ stress (assumed isotropic), a 
is the coefficient of thermal expansion of the rock, E is Young‘s modulus, 
AT is the temperature change of the rock, and Px and m are parameters in 
the model. 
For either case the effect of stress and temperature changes on 
permeability are modeled with 

= ko($-) o 3  

where ko is the permeability at porosity $0. 

8.4.4 Application 
The Constitutive Relationships discussed in Section 8.4 describe 
parameters that are used in the models described in previous sections. The 
discussion provided in Section 8.1.4 is also applicable here. 

8.4.5 Numerical Method Type 
The Newton Raphson method is used to  calculate saturation temperature 
as a function of pressure. The method has been previously described in 
Section 8.1.6. 

8.4.6 Derivation of Numerical Model 
The relative permeability and capillary functions represent the most 
nonlinear parts of FEHMN and special consideration has been given them. 
A procedure similar to  that used by Nitao (1988) is used t o  restrict the van 
Genuchten capillary function, Equation (128), t o  finite values when 
approaching zero saturation. The procedure is simple. At a low saturation, 
usually input by the user, the van Genuchten functions are replaced with 
linear fits that match the van Genuchten function at the specified 
saturation value and attain a maximum value, usually twice the value at  
the specified saturation, at zero saturation. This new capillary pressure is 
then used in the calculation of the relative permeability. The formulation 
in FEHMN differs from Nitao’s implementation in that it uses a cubic 
spline fit t o  match both the value and the slope at  the specified saturation. 
At zero saturation the coefficients of the spline are adjusted so a zero slope 
and a zero second derivative is achieved. This assures a monatomically 
increasing function for the capillary pressure. 

8.4.7 Location 
The constitutive relationships are used to  obtain the parameters that 
define the Flow and Energy Transport Equations. Referring to  Fig. 1, the 
box labeled ‘Get thermodynamic parameters’ represents calls t o  routines 
that form the constitutive relationships. 
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8.4.8 Numerical Stability and Accuracy 
The formulation of the constitutive relationship is directly related t o  the 
overall accuracy of the FEHMN application. The accurate formulation of 
the water properties described in Section 8.4.3 was motivated by the need 
t o  have accuracy combined with computability. The discussion in 
Section 8.4.6 showed the need to have continuous and finite values of the 
constitutive functions. The authors believe there is still much work to  be 
done in the area of extending the range of the functions as well as finding 
representations that will allow better convergence of the Newton Raphson 
iteration. 

8.4.9 Alternatives 
FEHMN uses analytic derivatives of the constitutive relationships 
described in Section 8.4. The TOUGH code described by Pruess (1987) and 
the variant of TOUGH used by Nitao (1988) use numerical differences of 
the fluid and energy balance equations in the Newton Raphson iteration. 
Both of the methods have merit. The numerical derivative approach allows 
for possibly faster incorporation of new fluid physics models while the 
analytic derivative approach uses less iterations on tested problems 
(Reeves, 1993). 
The functional representation of the constitutive models could be replaced 
by a tabular formulation. Several available codes have used tabular input 
for capillary and relative permeability data. FEHMN will also incorporate 
tabular representations in future versions. 

9.0 EXPERIENCE 
The FEHMN computer code and its predecessors have been used on a wide variety of 
problems ranging from geothermal to  environmental remediation to radioactive 
transport. When used in conjunction with its available grid generation package and post 
processing tools it has been a successful tool for modeling very complex geological 
settings and coupled fluid processes. When benchmarked against other codes it has been 
shown to be extremely competitive (Reeves, 1993). 
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10.0 APPENDIX 

Table 111. Polynomial Coefficients for Enthalpy Functions 
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.- 
E 
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Prer 

Temperature range 

Liquid 
0.25623465e-03 

0.1 01 84405e-02 

0.22554970e-04 

0.34836663e-07 

0.41 769866e-02 

-0.21 244879e-04 

0.2549351 6e-07 

0.89557885e-04 

0.1 0855046e-06 

-0.21 720560e-06 

0.1 0000000e+01 

0.2351 3278e-01 

0.4871 6386e-04 

-0.1 9935046e-08 

-0.50770309e-02 

0.57780287e-05 

0.9097291 6e-09 

-0.58981 537e-04 

-0.1 2990752e-07 

0.4587251 8e-08 
0.001 - 110 MPa 

15 - 36OoC 

Vapor 
0.31 290881 e+OO 

-0.1 0000000e+01 

0.25748596e-01 

0.388461 42e-03 

0.11 31 9298e-01 

0.20966376e-04 

0.74228083e-08 

0.1 92061 33e-02 

-0.1 0372453e-03 

0.591 04245e-07 

0.12511319e+00 

-0.36061 31 7e+00 

0.58668929e-02 

0.9905971 5e-04 

0.44331 61 1 e-02 

0.50902084e-05 

-0.1 0812602e-08 

0.9091 8809e-03 

-0.26960555e-04 

-0.36454880e-06 
0.001 - 20 MPa 

15 - 36OOC 

Liquid 
-0.28892688e-04 

0.1 01 551 28e-02 

0.381 82267e-04 

0.29406408e-06 

0.42068671 e-02 

-0.26722745e-04 

0.3996561 5e-07 

0.1 498341 7e-03 

0.111991 62e-05 

-0.44963038e-06 

0.1 0000000e+01 

0.38028489e-01 

0.32800006e-03 

0.381 64755e-07 

-0.6281 7403e-02 

0.8741 0801 e-05 

0.1 8991 534e-08 

-0.11 452490e-03 

-0.1 1 341 777e-06 

0.1 9903338e-08 
0.001 - 20 MPa 

0.5 - 36OOC 

Vapor 
0.4902341 5e+00 

-0.1 0000000e+01 

0.24474474e-01 

0.23476073e-03 

0.86459576e-02 

0.38256791 e-04 

0.1 91 90905e-07 

0.1 623761 Oe-02 

-0.741 26396e-04 

-0.780861 06e-06 

0.1 9602927e+00 

-0.35954866e+OO 

0.54884993e-02 

0.58496026e-04 

. 0.331 14850e-02 

0.1 2829588e-04 

-0.20053974e-08 

0.787841 57e-03 
-0.1 851 2345e-04 

-0.52896691 e-06 
0.001 - 20 MPa 

0.5 - 36OoC 
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Table IV. Polynomial Coefficients for Density Functions 

rernperature range 

Liauid 
0.1 0000000e+01 

0.1 7472599e-01 

-0.20443098e-04 

-0.1 744201 2e-06 

0.495641 09e-02 

-0.40757664e-04 

0.50676664e-07 

0.50330978e-04 

0.3391 481 4e-06 

-0.1 8383009e-06 

0.1 0009476e-02 

0.1 681 2589e-04 

-0.24582622e-07 

-0.1 7014984e-09 
0.48841 156e-05 

-0.32967985e-07 

0.2861 9380e-10 

0.53249055e-07 

0.30456698e-09 

-0.1 2221 899e-09 
0.001 - 11 0 MPa 

15 - 36OOC 

0.1 5089524e-05 

0.1 0000000e+01 

-0.1 0000000e+01 

-0.1 6676705e-02 

0.401 11 21 Oe-07 
0.2562531 6e-10 

-0.40479650e-12 

0.43379623e-01 

0.24991 800e-02 

-0.94755043e-04 

0.1 2636224e+00 

-0.30463489e+00 

0.27981 880e-02 

0.51 132337e-05 
0.5931 801 Oe-02 

0.80972509e-05 

-0.43798358e-07 

0.53046787e-03 

-0.8491 6607e-05 

0.4844491 9e-06 
0.001 - 20 MP a 

15 - 36OOC 

Liquid 
0.1 0000000e+01 

-0.50430220e-01 

0.1 21 47449e-02 

-0.29566543e-04 

0.1 171 9555e-01 

-0.1 0272834e-03 

0.1 6483547e-06 

0.74802254e-03 

0.1 7552861 e-05 

-0.1 6978281 e-05 

0.1 00201 70e-02 

-0.5271 1 077e-04 

0.145481 66e-05 

-0.36472636e-07 
0.1 1 71 881 6e-04 

-0.931 82060e-07 

0.1 2768238e-09 

0.72200359e-06 

0.1 8887078e-08 

-0.141 67944e-08 
0.001 - 20 MP a 

0.5 - 36OOC 

Vapor 
0.1 3299942e-04 

0.1 0000000e+01 

-0.1 0000000e+01 

-0.56746973e-02 

-0.32791 354e-06 

0.21 636240e-08 

!-0.38485869e-11 
0.40896880e-01 

0.27696827e-02 

-0.94741 649e-04 

0.1 2789230e+00 

-0.28996744e+00 

0.26873883e-02 

0.33783903e-04 
0.55690966e-02 

0.72603809e-05 

' -0.443231 27e-07 

0.49878874e-03 

-0.1 31 86635e-04 

0.72041 771 e-06 
0.001 - 20 MI-' a 

0.5 - 36OOC 
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Table V. Polynomial Coefficients for Viscosity Functions 

-emperature range 

Liquid 
0.1 7409149e-02 

0.1 8894882e-04 

-0.66439332e-07 

-0.231 22388e-09 

-0.31 53491 4e-05 

0.1 11 2071 6e-07 

-0.48576020e-10 

0.28006861 e-07 

0.23225035e-09 

0.471 801 71 e-1 0 

0.1 0000000e+01 

0.1 05231 53e-01 

-0.22658391 e-05 

-0.31 796607e-06 

0.298691 41 e-01 

0.21 844248e-03 

-0.87658855e-06 

0.41 690362e-03 

-0.251 47022e-05 

0.221 44660e-05 
0.001 - 110 MPa 
0.001 - 36OOC 
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Vapor 
-0.1 3920783e-03 

0.98434337e-02 

-0.51 504232e-03 

0.62554603e-04 

0.271 05772e-04 

0.84981 906e-05 

0.34539757e-07 

-0.25524682e-03 

0.00000000e+00 

0.1231 6788e-05 

0.1 0000000e+01 

0.1 0000000e+01 

-0.1 0000000e+01 

-0.1 0000000e+01 

0.1 0000000e+01 

0.1 0000000e+01 

-0.22934622e-03 

0.1 0000000e+01 

0.00000000e+00 

0.25834551 e-01 
0.001 - 20 MP a 

15 - 36OOC 

Liquid 
0.1 7395487e-02 

0.1 8724784e-04 

-0.1 5981 722e-06 

0.1 50811 23e-08 

0.64958498e-04 

-0.31 524525e-06 

0.1 6965774e-09 

0.1 7392236e-05 

0.279001 89e-08 

-0.1 7278880e-08 

0.1 0000000e+01 

0.1 21 4981 8e-01 

-0.8278631 7e-04 

0.90820763e-06 

0.5664291 3e-01 

0.20657804e-02 

-0.86925068e-05 

0.1 1471 862e-02 

0.00000000e+00 

0.473911 72e-04 
0.001 - 20 MPa 

0.5 - 36OOC 

Vapor 
-0.67484241 e-04 

0.368001 73e-02 

0.1 0553076e-02 

0.75936247e-04 

0.21 890632e-04 

0.86065590e-05 

0.3361 3345e-07 

-0.1 8856602e-03 

-0.44264826e-05 

0.641 08570e-06 

0.1 0000000e+01 

-0.1 0000000e+01 

-0.1 0000000e+01 

-0.1 6348067e+OO 

0.1 0000000e+01 

0.1 0000000e+01 

- -0.25908581 e-03 

-0.1 0000000e+01 

0.00000000e+00 

0.11181278e-01 
0.001 - 20 MP a 

0.5 - 36OOC 
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- 
Table VI. Polynomial Coefficients for Saturation Functions 

Pressure Temperature 
YO 0.71 725602e-03 -0.250481 21 e-05 

0.2260751 6e-04 0.45249584e-02 

y2 0.261 78556e-05 0.33551 528e+00 

y3 -0.1 051 6335e-07 0.1 0000000e+01 

y4 0.631 67028e-09 0.1 2254786e+00 

0.1 0000000e+01 0.20889841 e-06 

21 -0.2246001 2e-02 0.1 1587544e-03 

22 0.30234492e-05 0.31 934455e-02 

23 -0.32466525e-09 0.455381 51 e-02 

2 4  0.0 0.23756593e-03 
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