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1 Introduction 
In this paper we study a new method for solving hyperbolic conservation laws 
on a Cartesian mesh with some small cells. Our main task here is to devise 
a stable algorithm in the small zones. An algorithm proposed by Berger and 
LeVeque [l] [2] combines the small zones with neighboring zones and solves 
rotated Riemann problems. This method is very geometrically oriented. It 
requires knowledge of the areas of the small cells, as well as the areas of cells 
contained in various "boxes" drawn from the edges of the small cells. Here we 
propose a more algebraic algorithm: we combine an implicit method with an 
explicit second-order conservative finite difference scheme. In section 2 the basic 
algorithm in one dimension is presented, as well as the slopes calculations and 
the iterative procedure. In section 3 we present some numerical results for the 
1-D advection equation and the inviscid Burger's equation. 

2 The Implicit Flux Method 
2.1 The Basic Algorithm 
We want to solve 

ut + f (u)+ = 0 

on a one-dimensional grid with one small cell. If the grid size were uniform, our 
finite difference method would be 

where u? is the average of u in cell j at time level n, and f j+ ' l2  is the flux 
at the edge j + 1/2. fj+1/2, is computed by solving the Riemann problem 
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Figure 1: The finite difference mesh for ut + f ( u ) ~  = 0. 

The derivative e would be computed by a limited slopes formula. For example, 
the limiter due to van Leer [3]: 

0 

- 
Au; = min(2(ui - ~i-i(,21ui+l - ui ( ,  

qlUi+1  1 - ui-11) sign(u;+1 - ui-I), 
if (ui - u;- l ) (ui+~ - u;) > 0, 

otherwise 

We would like to develop a similar algorithm for the irregular mesh. The 
CFL condition should be independent of the size of small cells, even as they 
become arbitrarily small. This implies, however, that when the characteristics 
in a small cell are traced back from time level n + 1/2, they could reach into 
the neighboring zones, violating the CFL condition. In order to ensure stability 
everywhere, we compute the fluxes "implicitly" in the small cells, and explicitly 
elsewhere. 

Let cell 0 be the small cell of size h, and all other cells are of size Ax, 
as shown in figure 1. According to the idea above, we compute the Taylor 
expansion implicitly in cell 0. At edge 1/2, we only need to compute u 1 p ~  
implicitly, because it is the only state that comes from the small cell: 
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Instead of expanding u y g / 2  about the cell averages at time level n, we 
expand about the cell averages at time level n + 1. Similarly, at edge -1/2, we 
only need to compute U - ~ / ~ , R  implicitly: 

Assuming we know how to computed the limited slopes in cells near the small 
cell, we can compute these two states. Again, we can solve a Riemann problem 
at each edge on the whole grid. To update cells away from the small one, use (2); 
to update cells -1, 0, 1, the only cells affected by the implicit flux calculation, 
we take a mixture of the implicit and the explicit fluxes: 

un+l 
-1  

where fn+l is the flux calculated implicitly, and f n  is the flux calcuIated explic- 
itly, Where the implicit flux is not calculated by (7) and (8) ,  use the explicit 
flux. Note that if h = Aq(l0)  - (11) are reduced to (2). This is an implicit 
scheme, and so we need to update cells -1, 0, 1 by some iterative process. The 
iterative process will be discussed in section 2.2. 

We now describe the slope limiting process. The slopes in cells - l ,O,  and 
1 may involve cells of different sizes. According to the van Leer limiter, twice 
the forward or backward differences should not exceed the centered difference. 
Thus we compute the forward and backward differences in each of the three 
cells, and scale them so that the differences divided by Ax approximates the 
derivative to the first order. The centered differences in cell j are obtained by 
taking the derivative of the interpolated polynomial through the values in cells 
j - 1, j ,  j + 1. Again, scale the centered difference so that when divided by Ax 
it approximates the derivative to the second order. The slopes in the three cells 
are: 

au - w -  , i  = - l , O , l  dx Ax 

where for i = -1, 
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for i = 0, 

and for i = 1, 

2.2 The Iterative Method 
As mentioned above, an iterative procedure is needed for (10) - (11). One could 
simply iterate on un+l: 

When +is small, the iterations may converge very slowly. A relaxation tech- 
nique would speed up the iterative processes. A relaxation technique being used 
at this moment is 
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for u = 26-1, UO, u1. At this moment the radius of convergence of this technique 
cannot be calculated analytically. The iterative process stops when the differ- 
ence of uo from two consecutive iterations reaches below a tolerance level, or 
when the number of iterations becomes too large. 
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3 Numerical Examples 
We have implemented this implicit flux method for the advection equation and 
the inviscid Burger's equation. For the advection equation, we have also ana- 
lyzed the convergence rate of the relaxation technique in the absence of slopes. 

3.1 The Advection Equation 
We solve 

ut +au, = 0, 
for any a # 0. If a > 0, the implicit method would be to trace characteristics 
exactly, since the solution u j  at any time would only depend on u in the cells 
left of the j t h  cell. Thus we are interested in the case a < 0. 

In our example, we take a = -1, and the initial condition 

1.0 if 0.625 5 x 5 0.875 { 0.1 otherwise u(x,O) = 

We place a small cell near the center of the interval [0,1]. We have made runs for & = 0.05,0.25,0.375,0.5,0.625,0.75,1.0, with 64 points, at a CFL condition 
of 0.8. While the solutions with different aspect ratios do not differ much. 
the numbers of iterations taken to convergence are significantly different. In 
particular, the smaller the &, the more iterations it takes. For each &-, we 
have made runs using different relaxation parameters CY. For these runs, we have 
also simplified the underlying algorithm to a first-order one. In figure 2, we have 
plotted the (average) ratios of the differences between the convergent solution 
and the iterates. The approximated average ratios are plotted because the 
iteration scheme seems to be sensitive to the initial guesses. The ratios for each 
a are about the same on the average, indicating that the rate of convergence 
is approximately first-order, that is, e"+' = Ce". For each &-, there is an 
"optimal" a. At this value of a, the number of iterations is a minimum. For CY 

less than this optimal value the ratios oscillate about some average value then 
diverge. This oscillating behavior is not unlike that of the iterates in Newton's 
method for finding roots to nonlinear equations, if one of the iterates comes 
close an extremum. For a greater than the optimal value, the ratios decrease 
to a minimum; we have used this minimum in our plot. We suspect that the 
first guess in the iterations plays a significant role for the oscillatory behavior; 
however, the location of the optimal relaxation parameter is independent of the 
guesses. At a = 1, the iterations converge for > 0.5; the iterations converge 

to the wrong solution for fi < 0.5. For all f-, the iterative procedure does 
not converge within 40 iterations when a > 1. We have found that the accuracy 
is independent of the relaxation parameters. 

x -  

X 
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Figure 2: a vs. C 

3.2 Burgers Equation 
We solve the inviscid Burgers equation 

U t  + uu, = 0. 

Here j(u) = fu2 is the flux function. Again, we put the small cell jsmal l  near 
the center of the interval [0,1]. and we study a rarefaction wave with initial 
conditions 

(26) 

-1.0 if j < j smal l  + 1 
1.0 otherwise U ( S j , O )  = 

We have made runs using 64 points, with &= 1.0,0.05,0.25,0.5,0.75. For 
& # 1, we the solutions are shifted (see figures 3 - 6 ) .  Convergence studies 
show that the method is actually first-order (see tables 1 - 5), even with small 
cells. 
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No. of Pts 1 11e112 I llellm 
64 I 3.2 x 10-3 I 7.4 x 10-3 

128 1.6 x 10-3 3.7 x 10-3 
256 .80 x 10-3 1.9 x 10-3 

Table 1: Errors at t = 0.625 for & = 0.05. 

Table 2: Errors at t = 0.625 for & = 0.25. 

' No. of Pts /le112 llellm 
64 2.9 x 10-3 7.6 x 10-3 

128 1.5 x lo-' 3.8 x 
256 I .74 x 10-3 1 1.9 x 10-3 

Table 3: Errors at t = 0.625 for = 0.5. 

No. of Pts 11e112 Ilellm 
64 2.8 x 10-3 7.2 x 10-3 

128 1.5 x 3.7 x 

Table 4: Errors at t = 0.625 for -& = 0.75. 

Table 5: Errors at t = 0.625 for -& = 1. 
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Figure 3: A magnification of the solu- 
tion for & = 0.05 

Figure 5:  A magnification of the solu- 
tion for & = 0.50 

Figure 4: A magnification of the solu- 
tion for & = 0.25 

Figure 6: A magnification of the solu- 
tion for & = 0.75 
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4 Future Work 
We would like to implement this algorithm for systems of conservation laws 
in one space dimension. We would also like to implement it for two or three 
space dimensions. Two problems we may have in higher dimensions are the 
calculation of the transverse flux (if we use the unsplit method in [4]) and the 
complex geometries. The latter could complicate the iterative procedure. 

References 
[ 11 M. Berger and R. LeVeque, Cartesian Meshes and Adaptive Mesh Refine- 

ment for  Hyperbolic Partial Diflerential Equations Proc. 3rd Intl. Conf. 
Hyperbolic Problems, Uppsala, Sweden, June 1990 

[2] M. Berger and R. LeVeque, A Rotated Diflerence Scheme for  Cartesian 
Grids in CompIex Geometries, AIAA paper CP-91-1602 

[3] B. van Leer, J. Comp. Phys., 32, 101 (1979) 

[4] P. Colella, J. Comp. Phys., 87, 171 (1990) 

9 


