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1. Abstract 

Tomographic gamma scanning has been used to as- 
say special nuclear material for the past several 
years. Field experience suggests that the data anal- 
ysis techniques can significantly affect the assay un- 
certainty. For example, a positive bias has been 
observed for low-activity samples. Recent attempts 
to reduce the bias without unacceptable increase in 
variance have taken a non-Bayesian approach. This 
paper will compare some of these non-Bayesian ap- 
proaches to a Bayesian approach which is a mod- 
ification of an approach used in photon emission 
computed tomography [l]. The Bayesian approach 
is both more computationally demanding and more 
satisfying, though the choice of the prior probability 
for the distribution of nuclear material can impact 
the analysis. Assay results for scaled-down versions 
of the full-dimensioned problem will be presented for 
several methods and cases. 

2. Introduction 

Tomographic Gamma Scanning (TGS) is a y-ray 
nondestructive assay (NDA) method to assay special 
nuclear material (SNM) in heterogeneous samples, 
particularly residues and waste. The principle of the 
method is that the rate of y-ray emission is roughly 
proportional to the total SNM mass T .  However, 
sample-specific attention of the y-rays complicates 
the relation between the y-ray emission rate and T .  
Furthermore, because the samples could be hetero- 
geneous, both the y-ray attenuation and source rate 
vary within the volume of the sample. Therefore, 
TGS uses tomography to form 3-dimensional images 
of the y-ray attenuation. In effect, the attenuation 
coefficient is estimated in each of many small volume 
elements (voxels) of the sample. An isotopic trans- 
mission source that emits more than one y-ray (usu- 
ally Se75) is used to obtain attenuation images as 
a function of energy. The emission images are then 

corrected for the attenuation of y-rays by using the 
linear attenuation coefficient images. The amount 
of radioactivity, or the mass if desired, in any region 
of interest in the sample can then be estimated by 
integrating the transmission-corrected emission im- 
age over the volume of the region. In this paper, the 
region of interest is the entire sample. The goal is to 
study the performance of candidate analysis meth- 
ods in estimating total mass T .  See [2] and [3] for 
more details and caveats about where TGS is appli- 
cable. 

3. TGS Image Reconstruction 

The volume of a 55-gal drum is typically divided into 
N = 1600 3-dimensional voxels. In a standard scan 
protocol, data is collected at 150 individual points 
in polar coordinate (displacement-angle) space for 
each of 16 vertical layers, giving a total of M = 2400 
measurement positions (bins) [3]. During an initial 
scan, transmission measurements are made using an 
external Se75 source to characterize the y-ray at- 
tenuation of the drum. This allows reconstruction 
(estimation) of the so-called system matrix A M x N .  
Because of interactions that affect y-ray energies, the 
y count rate at a given energy channel includes the 
effects of y’s that originated with higher energy but 
appeared at the given energy channel. The simplest 
way to account for this underlying background is to 
measure the (background) y-rays in energy channels 
near the channel(s) of interest. The net y count rate 
n = g - c * b where g is the observed gross counts in 
the energy region of interest (ROI) energy channels, 
b is the observed background counts near the ROI, 
and c is the ratio of the number of peak ROI channels 
to the number of background ROI channels. Also, 
the detection rate of y-rays must be corrected to a 
full-energy interaction (FEI) rate that accounts for 
losses due to deadtime and pulse pileup (detector re- 
sponse issues). The FEI can be estimated by using a 
Cd109 source that emits an 88 keV y-ray [3], and de- 
fined by FEI = CF(RL) x n, where CF(RL)  is the 
estimated correction factor for rate loss. Following 
[2] we will include CF(RL) in the definition of the 
A M x N  matrix, which means that when we consider 
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estimation errors in A M x N ,  we must include esti- 
mation errors in CF(RL).  With i indexing bins and 
j indexing voxels, the image reconstruction problem 
can then be cast most simply as 

gi N Poisson(C A ~ ~ x ~  + CPb,i), (1) 
j 

where x is a vector of nonnegative values that de- 
scribes the distribution of y emitting material within 
the drum, and Pb,i is the true background count rate 
from bin i. The observed background counts bi are 
well modeled by a Poisson(pb,i) distribution. For 
our purposes here we can assume that T = xi 
is the mass of sample. Therefore, our problem is to 
estimate total mass T = N xi. 

4. Statistical Issues 

We assume that M > N in Eq. (1) so ordinary least 
squares (OLS), or weighted least squares (WLS) are 
options for estimating each xi and therefore also T.  
In fact, Eq. (1) is essentially the same as what com- 
monly appears in a typical 2-stage calibration exper- 
iment (stage 1 is the equivalent of our “estimate A 
stage” and stage 2, which concerns us here, uses the 
estimated A to estimate T = xzl xi. The unique 
features of our application of Eq. (1) are: 

1) The dimension of A is very large (M-by- 
N is approximately 2400-by-1600) and A is ill- 
conditioned. 

2) There can be significant spatial correlation 
among neighboring xi. This is the main reason for 
the introduction of Bayesian methods in image anal- 
ysis. Further, it is the main reason for the recent 
popularity of Markov Chain Monte Carlo (MCMC) 
methods [4]. MCMC methods are useful for in- 
terpreting the nonstandard, large dimensional ( N  
dimensional in this case) posterior probability dis- 
tributions that arise from using nonstandard prior 
probability distributions for xN.  

3) The error structure of the net response is non- 
standard, being n - Poisson(p,) - c x Poisson(pb). 
When g is small, it might be important to use the 
Poisson distribution rather than an approximating 
Gaussian. 
4) There can sometimes be non-negligible errors in 

the A matrix. One TGS system [3] deliberately col- 
lapses some bins to reduce variance at the expense 
of slightly increased bias. The usual bias-variance 
tradeoff suggests that this is a good idea. To date we 
have ignored the possibility of bias in the A matrix. 
That is, our errors in A are all modeled as random 
errors (with standard deviation denoted O A  here) so 

future work must include both (1) treatment of pos- 
sible bias in some entries of the A matrix, and (2) a 
plan for dealing with dynamically changing dimen- 
sion of the A matrix due to bin collapsing. 

We define our performance measure, PMl = 
E{+ - T } 2 ,  where E is the expected value with 
respect to the distribution of ?. A more typical 
perfnrmsnw mpiwre in multivariate cslibratim is 
PM2 = E{CE,(di., - xi)’}. Note that PMl = 
E{[CE,(di - xi)I2}, so that covariances among the 
& can potentially degrade or improve performance, 
depending on their sign. Very few image analyses are 
concerned with this particular global performance 
measure (image analyses tend to try to “sharpen fea- 
tures” or detect edges). It is well known that there 
is guaranteed to be a biased solution vector 2 that 
has lower (better) PM2 than does the OLS solution 
vector d [5]. We expect there is a similar result for 
PMI  but we are unaware of it. 

Space does not permit us to review all the estima- 
tion methods we have implemented and tested on 
scaled-down versions of Eq. (1) (using M = 8 to 
100 and N = 6 to 50). But we will group them into 
5 categories: 

A) Methods such as OLS or WLS that do not take 
explicit account of the Poisson(g) - c x Poisson(pb) 
error structure and are concerned only with min- 
imizing the sum of squared residuals subject to 

Ri = 0 (OLS, and more generally WLS, give 
the minimum variance unbiased residuals [5 ] ) .  

B) Methods such as the generalized linear model 
(GLM) which do take explicit account of the Pois- 
son error structure structure. Our GLM implemen- 
tation assumes that Pb,i is known and equal to bi. 
An “empirical Bayed’ argument could justify using 
j&,i = abi + (1 - a)6) where the weight a could be 
selected according to the relative variances of the 
prior and likelihood. But, to date we have only used 
f ib$  = bi (which [2] calls the MLEM-FB (fixed back- 
ground) method) for all of our methods except for 
MLEM. MLEM jointly estimates and pg by max- 
imizing their joint likelihood. 

C) Methods that make some prior assumptions 
about the magnitudes of the x entries. For example, 
ridge regression [5] implicitly makes such assump- 
tions and thereby has a Bayesian justification. 

D) Methods that make prior assumptions about 
both the magnitudes of the x entries and their spatial 
correlation. 

E) Methods that consider errors in the A matrix 
(error in variables (EIV) methods [SI). 

Many of our methods can enforce the xi 2 0 con- 
straint in various ways. The OLS estimates of xi can 
be negative, so the simplest approach (which we use) 



is to use max(0, xi) to enforce the nonnegativity con- 
straint. Elsewhere [7] we report results for methods 
that both do and do not enforce the nonnegativity 
constraint. 

The methods that work with either the Poisson 
probability structure (MLEM) of the observed data 
or that plus a prior probability for each xi on (0, C) 
fcr come large upper limit C (Bayesian ncthods) 
deal most naturally with the nonnegativity con- 
straint. For example, we can modify Eq. (1) in 
[l] to work with g so that the joint probability of g 
given x, A, pb, and c is 

where pg,i = cj Aijxj + cpb,i is the mean of the 
gross counts at bin i due to all voxels. Reference [SI 
presented a way to view the transition from max- 
imizing the likelihood in Eq. ( 2 )  to maximizing a 
suitable posterior probability for x that involved a 
temporary assumption that we could see the contri- 
bution at bin i from each individual voxel j. Note 
however that the mean for gi at bin i is generally 
affected by more than one voxel j. 

For our Bayesian analysis, we need to specify a 
prior probability for z. The prior for x in [SI (with 
the constants c1 and c2 absorbed in the definitions 
of p and 6) is 

(3) 
and the prior for z in [l] is 

where E is a small positive constant (used in El] to 
make the prior integrate to l), i - j indicates that 
the summation is over pairs of “neighbors” (only di- 
rectly or diagonally adjacent voxels will be assumed 
to be neighbors), and wi,j is a weight that codes the 
strength of the neighborliness between voxels i and 
j. We use wi,j = 1 if i ,  j are orthogonal nearest 
neighbors, w i j  = if i, j are diagonal nearest 
neighbors, and wi,j = 0 otherwise. 

If the constants 6 and p in the prior for x are 
assumed known, then we have essentially the ap- 
proach in [8]. If the constants 6 and f i  are estimated 

from the data, then we use a hyperprior ( q r g ,  sg), 
r(rp,  sp)  for 6 and p, respectively, following [l]). We 
need to make a minor modification to accommodate 
the presence of cpb,i in either case. While it is more 
satisfying to try to estimate 6 and p from the data 
(empirical Bayes), it is also more computationally 
challenging. We have implemented both Eqs (3) and 
(<). FUisg (-t), we fallow [I] aid iesort LO MCMC io 
generate observations from the posterior of x. The 
most challenging obstacle to date for us has been 
to implement the reverse logistic regression method 
outlined in [l] to estimate the normalization con- 
stants for Eq. (4) over a grid of p values. Often 
with MCMC we can work with unnormalized priors, 
but in this case, because we use a hyperprior for ,f?, 
the MCMC updates require the ratio of normaliza- 
tion constants for various p values. 

There are always technical issues involving the use 
of MCMC [4] which must be considered (for exam- 
ple, rate of convergence, proposal distribution pa- 
rameters, and required chain length). See the ap- 
pendix of [l] for MCMC convergence issues in our 
setting. To date, we have used only an informal- 
method to show that the Markov chain does con- 
verge to the correct posterior distribution. We sim- 
ply use different starting values for z, p, and 6, and 
check that the estimated posterior distribution is in- 
sensitive to the starting values. More complete di- 
agnostic tests will eventually be required if this par- 
ticular Bayes method is implemented in the actual 
TGS system. Assuming we do generate observations 
from the posterior distribution for x, these observa- 
tions can be averaged to give a good estimate of x. 
Alternatively, when we use Eq. (3), we use the much 
faster “one step late” (OSL) method from [8] which 
appears to converge (no proof yet available) to the 
maximum of the posterior distribution for 2. 

5. Simulation Study 

Elsewhere [7] we report simulated assay results of 
several classical and Bayesian methods for a 26 full 
factorial experimental design varying the following 
six factors with N = 6 (using values that agree rea- 
sonably well with those of real containers except that 
we use very small M ) :  

(1) condition of A (High or Low), 
(2) M = 8 or 16, 
(3) QA = 0 or 
(4) ~g~ xi = 1 or 10, 
( 5 )  os = 0 or > 0, (0: is the variance of the xi) 

(6)  noise to signal ratio, 2 = .2 or 1. 

0.2 x A, 

and 



6. Simulation Results 
Table 1: Median of PM1 = E(?-T12 results for 100 

Here we give assay results for simulated data for a 
25 full factorial using only the M = 8 cases from the 
the 26 full factorial from [7]. Because C(ATA)-’ x 
38,000 for cond(A) = H, all the “matrix-inversion” 
based methods (OLS, WLS, RR, EIV for example) 
performed badly fnr c o d (  A )  = H (a? ~ x p e  
classical theory). However, MLEM did remarkably 
well with only occasional large PM1 values. The 
cond(A) = L cases had C(ATA)-l M 5, so they 
are expected to do far better than the cond(A)= H 
cases. 

Both Green’s OSL and Weir’s empirical Bayes 
methods had to be modified slightly to accommo- 
date the Cp+ term. We have also used a Bayesian 
analysis as outlined in [9], and the GLM modeling 
function in S-Plus. Generally, the Bayesian analy- 
sis we implemented based on results in [9] (for the 
distribution of net counts n assuming a nearly flat 
Gamma prior for p g  and pb) is slower to implement 
and has not performed any better than WLS. And, 
we have had poor results with GLM in S-plus so we 
will not report those results here. 

In Table 1 we present the estimated PMl = 
E{? - ~ ) 2  values for OLS, WLS, RR, MLEM, 
MLEM-FB, OSL, and EB for for cases 1-32 of a full 
25 factorial design from [7], varying first the condi- 
tion of A,  then the error variance of A,  then T ,  then 
cz, and finally NSR. That is, run 1 is LLLLL for 
the 5 factors, run 2 is HLLLL, run 3 is LHLLL, run4 
is HHLLL, ..., and run 32 is HHHHH. Table entries 
are based on 100 simulations per run, so generally, 
reported PM1 values are within approximately 20% 
of their true values. 

For OSL, we tried (P,6) values of 

These values were determined by simulation exper- 
iments designed to make the OSL give reasonable 
values. That is, we “calibrated” Eq. (3) for a few 
known cases and it does appear ([l]) that good 
{P ,S )  values depend mainly on the number of 
voxels N .  

An advantage of EB is that is can estimate good 
values for {P ,  8). The EB method estimated “good 
values” for {p ,  S} to be approximately 0.2 for 0 and 
0.1 to 0.9 for 6, depending mostly on N .  Our OSL 
results were not terribly sensitive to variations in 
{P ,S }  within these ranges, so here we report results 
for “middle values” of {p, 6) = (.2, .02). 

Concerning the large PM1 values (1000 or higher) 
in Table 1, we have observed two types of erratic 
behavior. First, for MLEM and MLEM-FB, some 
of the sets of 100 runs had one or two large out- 

{(.2, .02), (.02, .002), (2, .002), (.02, .2), (2, .2)}- 

simulations per run (e3 entries denote times IO3). 
Run OLS WLS RR MLEM FB OSL EB 

1 3.3 2.7 1.6 
2 31e3 19e3 15e3 
3 2.7 1.7 1.5 
4 34 23 20 
5 31 30 16 
6 330e3 320e3 150e3 
7 39 41 24 
8 90 89 36 
9 3.5 3.2 1.6 

10 32e3 21e3 16e3 
11 2.8 1.8 1.2 
12 16 7.5 7.7 
13 1.5e3 1.3e3 760 
14 330e3 330e3 160e3 
15 290 330 130 
16 100 89 54 
17 9.4 8 5.1 
18 59e3 50e3 28e3 
19 200 120 47 
20 53 50 30 
21 6.3e3 6.le3 3.3e3 
22 680e3 650e3 320e3 
23 64 66 29 
24 200 190 110 
25 7.5 6.7 3.4 
26 68e3 55e3 29e3 
27 140 110 50 
28 14 11 5.4 
29 99 96 50 
30 850e3 810e3 400e3 
31 71 68 39 
32 400 410 150 

0.57 0.34 0.35 0.18 
0.77 0.53 0.57 0.21 
0.52 0.3 0.31 0.2 
0.71 0.59 0.72 0.22 
6.7 6.9 6.1 17 
7.9 7.7 7 19 

5 5.1 4.3 12 
6.3 7.7 5.5 8.6 

0.69 0.56 0.57 0.55 
0.58 0.46 0.45 0.28 
0.52 0.41 0.44 0.33 
0.66 0.6 0.59 0.31 
240 280 130 32 
7.5 7.6 7 6.4 
49 79 34 24 
6 6.2 5.6 7.6 

0.85 1.3 1.3 1.1 
1.3 1.8 1.9 0.41 
9.9 22 17 0.39 

0.81 1.1 1.2 0.24 - 
l.le3 1.3e3 490 11 

19 24 17 12 
10 17 9.6 28 
15 19 13 14 
1.3 1.8 1.8 0.46 
1.1 1.5 1.5 0.33 
12 24 20 1.8 
1.1 1.3 1.3 0.47 
16 17 16 90 
16 22 16 11 
14 21 15 12 
16 51 16 12 

liers that dramatically affected the estimated PM1. 
We suspect this is due to division by small numbers 
in the MLEM method. This can also lead to poor 
starting values for the Bayes methods (because we 
use the MLEM results as starting values in the Bayes 
methods). Second, some of the runs had large ran- 
dom variance, as is expected in the classical “matrix- 
inversion” based methods. Because of the occasional 
outlier that we do not yet have an explanation for, 
it is safest to report median values (Fig. 1) of PM1 
to compare methods. 

In Fig. la we show the median PMl value over 
all 32 runs for each method. The clear winners are 

In Figs. lb-f we plot the results for the L value 
followed by results for the H value for each factor for 

MLEM, MLEM-FB, OSL, and EB. 
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the seven me$hods. All L and H values were defined 
so that we expected smaller PM1 (better results) 
for the L value than for the H value. Therefore, the 
surprises are in Figs. l b  and IC. 

In Fig. lb,  PMl is smaller for the H value of the 
condition of A for MLEM, MLEM-FB, OSL, and 
EB. Normally we expect worse performance as the 
condition niimhw of A increases (as we we ir\ Fig. 
l b  for the OLS, WLS, and RR methods). The L 
value of condition(A) was approximately 20 (ratio 
of largest to smallest singular value). The H value 
of condition(A) was approximately 1300. (This H 
value is the reason for the very poor performance of 
all “matrix inversion” based classical methods such 
as OLS or RR). 

In Fig. IC, we are surprised that increasing UA im- 
proved the performance of OLS, WLS, and RR (the 
H value for UA gives PM1 values that are essentially 
0 on the scale shown). Perhaps this result is related 
to our observations that the EIV-based method from 
[SI did so poorly. When A is both poorly conditioned 
and measured with error, perhaps it is better to let 
the errors in A try to shrink the OLS solution toward 
0 to mitigate the high variability of T that results 
from A being poorly conditioned. 

Also, note that in Figs. l b  and IC, we report 
1/100 times the median of PM1 for the first three 
methods (WLS, OSL, and RR). This is simply for 
plotting purposes so that results from all methods 
are comparably valued. 

The L value of condition(A) was approximately 
20 (ratio of largest to smallest singular value). The 
H value of condition(A) was approximately 1300. 
(This H value is the reason for the very poor per- 
formance of all “matrix inversion” based classical 
methods such as OLS or RR). 

The behavior in Figs. IC - f is as anticipated 
in that PM1 is higher for the H value of the corre- 
sponding factor in our experiment. One exception is 
that EB did as well at the H value for a, as for the 
L value, which is a possible advantage. 

It is interesting to see which methods are more 
sensitive to which factors. We plan to investigate 
interactions among the five factors in future work. 

7. Summary 

We have presented a comparison of two Bayesian 
methods to several “classical” methods. And, we 
noted that although RR has a Bayesian motiva- 
tion, there is no attempt to define a neighborhood 
structure among the zs, so we consider RR to be 
non-Bayesian in our context. The “best” classical 
method was MLEM or MLEM-FB, which both per- 

formed approximately the same as the two Bayesian 
methods. 

The source of bias in the MLEM method is of in- 
terest, as are ways to reduce its bias. Reference [lo] 
presents some methods for reducing bias in maxi- 
mum likelihood methods. The factors from our list 
of six candidate factors that actually impact the bias 
in MLEM are identifpc! in [7]. We believe it :vi11 bc 
easier to characterize the bias of MLEM than the 
bias of any Bayesian method (bias in Bayes meth- 
ods arises from “incorrect” priors). 

Future work will consider the utility of including a 
probability model for the true A matrix as a way to 
handle the “errors in variables” aspect to TGS. An 
additional source of error in A arises from lumpiness 
of the nuclear material, so current work is aimed at 
characterizing all error sources in A. However, our 
initial results suggests that both OSL and the EB 
methods are not very sensitive to errors in A, so are 
unlikely to be improved much by treating A as a 
random variable in a fully Bayesian approach. 

The main appeal of an MCMC-based implemen- 
tation of a Bayesian approach is that we can use 
the observations from the posterior p(zl,8,6) to esti-- 
mate the variability of f. So in our case we prefer 
our EB over OSL because EB gives us more infor- 
mation. This is because the OSL method finds the 
maximum of the posterior p(zIp,  S), so it cannot be 
used to estimate the variability of 3?. 

Estimates of the variability of the MLEM esti- 
mator have also been developed [ll]. Field studies 
currently suggest that the actual variability is some- 
what smaller than those predicted in Ell]. For most 
applications, we would rather overestimate than un- 
derestimate the true variability, so that we tend 
to be conservative in our claims. Because these 
variability estimates are available for the MLEM 
method, an MCMC-based Bayes method is not 
clearly preferred over MLEM. 

We hope to discover through further study 
whether the ability to estimate p and 6 using EB 
is an important advantage over the simpler OSL 
method, which must assume a value for both p and 
6. 

Possibly we will use assumed values for both ,# 
and 6 to avoid the computational burden of estimat- 
ing normalization constants, but still use MCMC to 
generate observations from the posterior p(zIp, 6). 

As a result of this study, we believe we can 
restrict attention to MLEM and MCMC-based 
Bayesian methods. The main appeal of MCMC- 
based Bayesian methods is their ability to estimate 
the variability of while performing reasonably well 
on PM1 compared to MLEM. 
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Figure 1: (a) The median of PMl = E{? - T } 2  for 
OLS, WLS, RR, MLEM, MLEM-FB, OSL, and EB. 
(b-f) Same as (a), but grouped by L and H values of 
each of the five factors. 


