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CONTINUED FRACTIONS: YET ANOTHER TOOL TO OVERCOME THE 
CURSE OF DIMENSIONALI'IY 

ANDREW ZARDECKI 
Los A l m s  National Laboratory. MS ES41, b s  A l m s ,  N M  87545, USA 

E-Mail: azz@lanl.gov 

We provide a rapid prediction method, in which a larger number of antecedents than currently 
considered is accounted for. To this end, we encode the successive @ossibly rescaled) values 
of a time series, as the partial quotients of a continued fraction, resulting in a number from the 
unit interval. The accuracy of a ruled-based system utilizing this coding is investigated to some 
extenL Qualirative criteria for the applicability of the algorithm are formulaced. 

1 Introduction 

Fuzzy logic control is an effective approach to utilizing linguistic rules, whereas neu- 
ral control is suited for using numerical data pairs. Fuzzy basis functions, which are 
algebraic superpositions of fuzzy membership functions, can combine both numeri- 
cal data and linguistic information. In parallel with neural net numerical techniques, 
an increasing effort has been devoted to rule-based forecasting by employing fuzzy 
logic controllers. Wang and Mendel' developed a general method to generate fuzzy 
rules from numerical data and used their method for time series prediction. Subse- 
quently, Mendel and coworkers also represented fuzzy systems as series expansions 
of fuzzy basis functions (FBF), obtained as algebraic superpositions of fuzzy mem- 
bership functions.2 The FBF method avoids the combinatorial explosion problem 
associated with fuzzy logic systems having a large number of antecedents in the rule 
base? The prize one needs to pay, though, are long running times needed for the 
algorithm to converge. An alternative fuzzy rule configuration that avoids the combi- 
natorial explosion has recently been advanced by Combs and Andrews? 

The objective of this paper is to provide a rapid prediction method, in which a 
larger number of antecedents than currently considered is accounted for. To this end, 
we encode the successive (possibly rescaled) values of a time series, as the partial 
quotients of a continued fraction. (We recall that a set of natural numbers, called par- 
tial quotients, determines a simple continued fraction whose value belongs to the unit 
interval; conversely, given the value of a continued fraction, its partial quotients are 
readily recovered.) Within the 64 bit representation of the double precision numbers, 
we can thus encode up to 40 antecedents in the continued fraction form. When this 
representation is processed by a standard fuzzy logic controller, one obtains the rule 
base including the historical data for each term of the time series. One can speak 
about the dressed rules, in which not only the values, but also their history, is encap- 
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sulated. We study to some extent the accuracy of the continued fraction representa- 
tion. We also investigate the different decoding schemes that lead to different 
forecasting accuracy. In the simplest case, when the continued fraction is expressed 
in terms of its first partial quotient, a considerable increase in the forecasting power, 
as compared to the standard fuzzy controller-based technique, is achieved. This 
method can be viewed as a data compression technique for the time series. In the 
context of nuclear safeguards, we consider it a refinement of the anomaly detection 
algorithm proposed earlier? 

2 Continued Fractions 

Let x be a real number from the interval (0.1). An expression of the form 

1 
1 x =  

1 41 + 

q2+ 

is called a (simple) continued fraction6 representation of x; for reasons of technical 
convenience, Eq. 1 is often written as 

The numbers 41, 42, 43, ... are called the partial quotients, whereas the succes- 
sive approximations of x, obtained by retaining an increasing number of partial quo- 
tients are referred to as complete quotients or convergents. 
For our purpose, the most important results of the theory of continued fractions can 
be expressed as two theorems.‘ 
Theorem I. To every x E (0 , l )  , there corresponds a unique continued fraction with 
value equal to x. This fraction is finite if x is rational and infinite i fx  is irrational. 
Theorem 2. Let us agree to call a rational fraction a/b (b > 0) a best approximation of 
a real number x if every other rational fraction with the same or smaller denominator 
differs from x by a greater amount. Then every best approximation of x is a conver- 
gent or an intermediate fraction of the continued fraction representing that number. 

The one-to-one correspondence between x and the partial quotients of the con- 
tinued fraction representing X is readily obtained. In fact, given a number x in the 
unit interval, we can write x = ( l / (ql  + x’) ) ,  so that 41 is the integer part [Vx l  of l /x,  
and x’ is its fractional part ( U x ) .  If we define the functions 



T(x) = { l / x }  , (3) 

and 

q(x) = D/xI * (4) 

then qn(x) = q(P-'(x)), are just the partial quotients of the continued fraction expan- 
sion of x. Conversely, given the partial quotients, q1,42,43, ..., the number x repre- 
sented by them can be recovered through the successive approximations x = AJB, , 
where, for n 2 2 ,  the A, and 8, are given recursively as 

The initial values, for n = 0, are A0 = 1, BO = 0; for n = 1, we have A1 = 0, B1 = 1. 

3 Time Series Coding 

We encode a mapping X: 2 + 3 from integers to real numbers representing a time 
series by viewing each time series element X i  as a partial fraction in the continued 
fraction expansion? For reasons of accuracy, we employ a moving window covering 
about 40 elements of the time series. If X i  are restricted to interval (O,l), we scale 
them by a factor s ranging from 50 to 1ooO. Thus for i = k ,  ,..., k- we make the 
assignments qi = sX,, leading to the continued fraction expansion given by Eq. 1 
through the correspondence 

between an aggregate of the time series elements and its continued fraction represen- 
tation. The aggregation of the time series elements can be viewed as a mechanism of 
data compression. An interesting application of continued fractions to cryptography 
is the described by Jan and Kowng.8 

The accuracy of this assignment depends on the relative values of the partial 
quotients. For example, the fractional value of K has the following continued frac- 
tion expansion 

'. To distinguish between the elements Xi of a time series, and their continued fraction transforms. we use 
the lower case letters to denote the continued fractions, and the upper case letters to denote the elements of 
a time series. 



{x) = [7, 15,1,292,1,1,1,2,2,3 ,... ] . (7) 

When { lr ) is replaced by its decimal approximation 0.141592654, only the first four 
partial quotients are correctly recovered when the numerical algorithm of Sec. 2 is 
used. Because of the large value of 44, the first three partial quotients lead already to 
a good approximation of (IF ) . On the other hand, the partial quotients of the number 
(1 + 4 3 1 2  - 1 are all equal to 1; in the double precision arithmetic, their numeric 
assignment is correct up to 437. 

In traditional rule-based systems, a library of rules with n antecedents XI, .... X,, 
and output Y is constructed from input-output data pairs of the form 

where the index m labels the rules. Under the continued fraction encoding scheme, 
the rules can, similarly, have more than one antecedent. For example, with m = 5, 
we transform the fiist 5 elements of Xi, i = 1, ..., 5, into XI; the elements Xi, i = 2, .... 
6, are transformed into x2; the elements Xi, i = 3, ..., 7, are transformed into x3, etc., 
as shown schematically in Fig. 1. 

Figure 1: Aggregating the elements of a time series into continued fractions. 

Once the time series has been encoded, fuzzy rules are generated from examples 
according the scheme of Wang and Mendel.' The five steps of their algorithm are 
well known and will not be reproduced here. In the last step, which determines a 
mapping from the combined fuzzy rule base, the output is generated by adopting a 
centroid or center of gravity defuzzification schemes. This results in the numeric out- 
put for the continued fraction transform, from which the actual, non-transformed 



value needs to be decoded. The two possible encoding-decoding schemes, corre- 
spond to the order in which the elements Xi are aggregated into a continued fraction. 
For the natural order, as exemplified by Eq. 8, the most ancient element is the domi- 
nant partial fraction, 41; when the reverse order is used, the most resent element, 
Xkm-,  is dominant. 

4 Numerical Results 

The Lorenz model9 provides a well-known example of the chaotic motion; the solu- 
tion to the system of differential equations 

x = -a(X-Y), 

Y = -XZ+bX+Y, 
i = X Y - c z .  

(9) 

in which a, 6, and c are parameters, exhibits a strange attractor. 
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Figure 2: The normalized x component of the Lorenz attractor, together with the 
forecast error. 



Setting a = 10, b = 28, c = 8/3, the computed values of the x-component of the 
Lorenz system is displayed in the upper part of Fig. 2, whereas the forecast error is 
shown in the lower part of the figure. We used the continued fraction encoding with 
three antecedents. 

When the transformed data are used, the forecast error becomes much smaller. 
In Fig. 3 we show the situation after the times series is written in terms of the contin- 
uous fractions, using the algorithm of the preceding section. 

ol w 2 0.1 

% -0.1 

9 4.3 
L 

-0.5 
100 m 300 400 500 600 700 

Time 

Figure 3: The continued fraction transformation of the x component of the 
Lorenz system, displayed in Fig. 2, and its forecast error. 

As a quantitative measure of the forecasting efficiency, we can use the square 
root deviation per time step; with the continued fraction encoding, we gain about 
10% in the efficiency as compared to the standard fuzzy controller. 

For highly chaotic time series, exhibiting large oscillations between neighboring 
values, the rule system fails to capture the time evolution to a satisfactory degree of 
accuracy. For example, using the water flow data of Kasabov,'O we observe sizable 
forecast errors when the water flow rate changes abruptly, Fig. 4. In the continued 
fractions interpretation, this is due to differences in the dominant partial fraction of 
the time series encoding. 
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Figure 4: The transformed time series and its forecast error for the water flow 
data of Ref. 10. 

5 Conclusions 

To account for the past information contained in a time series and, simultaneously, to 
avoid the combinatorial explosion in the rule library, we have encoded the overlap- 
ping measurement windows into continued fractions through a one-to-one transfor- 
mation. The algorithm potentially captures the history of a large number of past 
events, leading to quantitatively better prediction results than the simple fuzzy con- 
troller. When the time series exhibits rapid oscillations, the algorithm is less success- 
ful. Future research will explore the applicability of this encoding scheme to radial 
basis functions approach;" we will also study the optimization of parameters 
through genetic algorithms. 
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