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Abstract 

We report the development of a new method for calculating positron observables using a 

finite-element approach for the solution of the Schrodinger equation. This method combines 

the advantages of both basis-set and real-space-grid approaches. The strict locality in real 

space of the finite element basis functions results in a method that is well suited for calculating 

large systems of a thousand or more atoms, as required for calculations of extended defects such 

as dislocations. In addition, the method is variational in nature and its convergence can be 

controlled systematically. The calculation of positron observables is straightforward due to 

the real-space nature of this method. We illustrate the power of this method with positron 

lifetime calculations on defects and defect-free materials, using overlapping atomic charge 

densities. 
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Introduction 

Quantum mechanical calculations of positron states in materials provide the basis for 

the interpretation of positron annihilation experiments such as positron lifetimes, core-electron 

momentum measurements, and 2D-ACAR spectra [l]. Several methods that were originally 

developed for electronic structure calculations have been adapted to calculate the positron 

distributions and related observables in periodic systems. This has been very successful for 

simple metallic systems, where quantitative lifetime calculations yield results that agree 

with experiment to within a few picoseconds [2-41. Nevertheless, there are significant 

limitations in many of these approaches. Calculations based on the linear-muffin-tin orbital 

(LMTO) method [5,6] are well suited for electrons, but are less suitable for describing positron 

distributions in the interstitial region, especially for open structures that are difficult to treat 

in the atomic sphere approximation (ASA). In addition, traditional approaches for the 

solution of the Schrodinger equation result in computation times that grow with the third 

power of the system size, and at least quadratically in memory requirements. With currently 

available computers, practical calculations are limited to systems on the order of 100-200 

atoms, which is often too small to model grain boundaries, dislocations, defects on surfaces, and 

other systems of current interest to the positron annihilation community. Although methods 

with better scaling have been developed [7], there is still a clear need for a new approach that 

is suitable for very large systems and open structures with arbitrary geometry. 

This need has prompted us to develop a new method for calculating positron 

observables based on a finite-element (FE) approach which combines the favorable properties 

of both basis-set and real-space-grid approaches. This method is capable of treating very 

large systems of thousands of atoms with arbitrary accuracy. The method is a full-potential 

approach that makes no approximations to the shape of the positron potential, in contrast to 

ASA-based approaches like the LMTO. In this paper, we present a brief description of this 

method together with results of calculations on positron distributions and lifetimes in 

elemental metals, vacancies, and ordered pure and potassium-doped fullerenes. Our results 

demonstrate that this new method is very well suited for positron calculations and already 

provides reliable results for very large systems. 

Method 

The finite element method has a long history of success in diverse applications ranging 

from civil engineering to quantum mechanics [8,9]. There have been a number of applications to 

the electronic structure of atoms and molecules [lO,ll], but only a few to periodic solids [12-141. 

We have developed a full 3-D finite-element-based approach to the solution of the 

Schrodinger equation with boundary conditions appropriate to a periodic solid. This approach 



is developed in detail in reference 1141. Here, we summarize the approach and discuss its 

adaptation to positron calculations. 

In the FE method, solutions to differential equations (e.g. electron or positron 

wavefunctions) are described in terms of strictly local, piecewise polynomial basis functions. 

The unit cell is partitioned into subdomains called ehnents. Local polynomials are defined in 

each element and these polynomials are linked continuously to neighboring elements and across 

the domain boundaries to create piecewise continuous functions. These piecewise continuous 

polynomials form the basis functions of our approach. Expansions in terms of these basis 

functions can be used to describe an arbitrary function throughout the unit cell, and the accuracy 

of this representation can be improved systematically by increasing the order of the 

polynomials or the number of elements. The method therefore has all the advantages and 

flexibility of a variational basis-set method. In addition, the piecewise continuous basis 

functions are strictly local in real-space, which results in sparse Hamiltonian and overlap 

matrices and enables the efficient use of iterative diagonalization techniques and parallel 

computer architectures. The method therefore combines both the computational advantages of 

real-space-grid methods and the variational nature and convenient expansion properties of 

basis-set approaches. 

The number of elements required for an accurate calculation depends on the rapidity of 

wavefunction variation across the unit cell. Positrons typically occupy the interstitial region of 

the solid, with relatively modest variations in wavefunction across the unit cell, so we might 

expect that positron calculations can be performed fairly accurately with a small number of 

elements. Electron calculations with an empirical Si pseudopotential yield a band structure in 

excellent agreement with highly-converged plane-wave calculations with only 6x6x6 elements 

in the unit cell [14]. It is reasonable to expect similar, or even slightly better convergence for the 

positron calculations, and this is confirmed by our results reported below. 

The FE method needs a positron potential in order to calculate the positron 

wavefunction. This potential is currently obtained in our approach from overlapping atomic 

calculations. The electrostatic interactions with the electrons and the nuclei provide the 

dominant part of the potential, and this is obtained by overlapping atomic electrostatic 

potentials. The remaining electron-positron correlation potential is taken from a local-density- 

approximation (LDA) form [2] where the potential depends only on the electron charge density, 

which is also obtained by overlapping atomic charge densities. We have used both an LDA 

form [2] based on free-electron calculations by Arponen and Pajanne [16] and a more recent 

modification using a Generalized Gradient Approximation (GGA) [4]. The overlapping atomic 

charge density approach [17] has been used successfully to treat fairly large systems (of order 

256 atoms) in finite-difference calculations of positrons in solids [18]. At present, our positron 



calculations do not allow for electron or positron charge self-consistency, although this is 

planned for the future. This lack of self-consistency and uncertainties in the electron-positron 

interactions are the most significant limitations of the current implementation. 

Given a positron potential, the FE method can solve the Schrodinger equation for the 

lowest-energy positron state, and the positron charge density is obtained directly in real-space 

from the wavefunction expansion. The positron lifetime depends on the product of the electron 

and positron charge densities integrated over the unit cell together with an enhancement 

function that depends on the total electron density [l-4]. The enhancement function is again 

obtained from an LDA [l-3] or GGA [4] form. 

Matrix elements and other integrals over the unit cell such as positron lifetimes are 

easy to calculate in the FE approach, since the basis functions have a simple polynomial form, 

and resulting wavefunctions and related quantities are uniquely defined at all points in the unit 

cell in terms of the polynomial coefficients in the wavefunction expansion. This simple 

expansion property and the direct real-space nature of the method makes the calculation of 

positron observables straightforward. The current implementation provides positron 

distributions and lifetimes, and we plan to add calculation of electron-positron momentum 

densities in the near future. 

Positron lifetimes in metals and monovacancies 

Calculations of positron lifetimes in elemental metals provide a useful test of the 

reliability of any new method for positron calculations. Figure 1 shows a comparison between 

positron lifetimes calculated in the FE-LDA approach and those obtained using a traditional 

LMTO-ASA approach, both with the same local density form for the potential [2]. The 

corresponding FE, LMTO, and experimental lifetimes are given in Table 1, together with FE 

results using the GGA potential. The FE-LDA approach yields lifetimes that are in very good 

overall agreement with the LMTO method, although they tend to be slightly longer by about l- 

5 ps. This may be due to differences in the calculational details: the FE calculations are non- 

self-consistent while the LMTO calculations are based on self-consistent charge densities, and 

the FE calculations make no approximations to the shape of the potential while the LMTO 

calculations use the ASA. The calculations were performed for 4x4x4-, 6x6x6-, and 8x8x8- 

element meshes. In all cases the calculated lifetimes were essentially converged for the 4x4x4 

calculation, with changes in lifetimes of less than 0.5% and typically on the order of 0.1% with 

increasing numbers of elements. The most highly converged calculations (8x8~8) are reported in 

Table 1. 

The GGA results in Table 1 are in reasonable agreement with the calculations of Ref. [4] 

which used the same GGA functional within a finite difference method based on atomic 



superposition. There is excellent agreement for many of the elements, but there are significant 

differences for some transition metals which may be due to the choice of electronic configuration 

in the atomic calculations. Ref. [4] used atomic ground state configurations while the present 

calculation used configurations that more closely reflect the electronic structure of the solid. 

The overall agreement is still very good and confirms the accuracy the method for positron 

lifetime calculations. 

Table 1 also lists results for monovacancy lifetimes in Al, Cu, and Ag based on 31-atom 

supercells. The agreement with experiment is very good, although the FE method slightly 

underestimates the experimental lifetime values. The calculated values increase slightly to 

give better agreement with experiment when larger supercell sizes are used for the 

monovacancy calculations. 

It is known that calculated monovacancy lifetimes are sensitive to the supercell size 

[18], and the 31-atom calculations listed in table 2 are not quite converged with respect to 

supercell size. We have examined the convergence of the Al monovacancy with respect to both 

supercell size and the number of elements per unit cell. The results are shown in table 2. Note 

that the system is well converged to a value of 243 ps, very close to the experimental value of 

244 ps, with 16 elements per primitive unit cell and a 255 atom supercell. This convergence is 

confirmed by the absence of any further change in the lifetime upon increasing either the 

number of elements or the supercell size, or both. The largest supercell calculations for an 863- 

atom unit cell were well within the range of out FE implementation, indicating that the 

method is well suited for problems that require large system sizes, such as dislocations and 

other extended defects. 

Positrons in potassium-doped fullerenes 

The FE method has three significant advantages over our previous LMTO-ASA 

method. First, it is capable of treating very large systems, as illustrated by the 863-atom unit 

cell calculations for an Al monovacancy. Second, it is well suited for treating open structures 

where the atomic sphere approximation may give a poor description of the electron and 

positron charge distributions. Third, it provides a full three-dimensional representation of the 

positron distribution in real space, in contrast the the LMTO which distorts the representation 

of space through the atomic sphere approximation. All three of these advantages are 

illustrated here by a set of positron calculations on the low temperature structure of solid C60 

with and without potassium doping. 

Solid C60 fullerene forms a face-centered cubic structure at higher temperatures with 

the carbon fullerene molecules randomly oriented with respect to each other. At lower 

temperatures, the molecules orient to form a simple cubic structure consisting of four C60 



molecules to give a 240 atom unit cell. Potassium doping first fills the octahedral sites between 

the fullerene molecules (KC60) and with increasing doping, the tetrahedral sites are also 

occupied by potassium atoms (K3C60), resulting in a compound that exhibits high temperature 

superconductivity[l9]. Puska and Nieminen [20] have performed positron calculations on this 

system using a finite difference method [17]. They used a simplified structure for the C60 

orientation so that they could treat the system as face-centered cubic with a single fullerene 

molecule. We compare their results with our calculations based on the larger 240-atom simple 

cubic structure. 

Puska and Nieminen obtained lifetime values of 327,276, and 261 picoseconds for C60, 

KC60, and K3C60, respectively. Using a similar LDA enhancement and correlation function, we 

calculate corresponding lifetime values of 330,273, and 261 picoseconds, in excellent agreement 

with the earlier results. 

Calculations of the positron distribution indicate that the positron does not enter the 

fullerene molecule, but prefers to sit mostly in the octahedral site and partly in the tetrahedral 

site between molecules [20] . Potassium also preferentially occupies these octahedral sites, so 

the repulsion between the potassium nucleus and the positron will force a redistribution of the 

positron charge density in the material with doping. This is illustrated in Figure 2. With no 

potassium, the positron charge is localized in the octahedral site, and avoids the open space at 

the center of the fullerene molecule. Once the octahedral site is occupied by a potassium atom 

(KC60), the positron concentrates in the tetrahedral sites, still avoiding the centers of the 

fullerene molecules. When potassium atoms occupy the tetrahedral sites as well, the positron 

squeezes between the tetrahedral and octahedral site, and also shows a small buildup inside 

the fullerene molecule. The calculated positron lifetime changes with the potassium doping 

due to the redistribution of the positron charge density and the resulting change in the electron- 

positron charge density overlap. 

Conclusions 

We have successfully applied a new finite element electronic structure technique to 

calculate positron distributions and lifetimes in a variety of systems including elemental 

metals, vacancies in metals, and fullerene structures. Our FE approach has demonstrated its 

efficiency and applicability to very large systems by calculating the positron lifetime in an 

863-atom monovacancy structure, and larger calculations are feasible. The method is also well 

suited to calculations on open structures, as demonstrated by the results on potassium-doped 

fullerenes. The method readily provides positron distributions in real space that facilitate an 

understanding of the positron sensitivity to specific parts of the unit cell, and the polynomial 

basis functions make it easy to calculate positron observables such as lifetimes and momentum 



densities in real space. This approach is already a valuable method for performing positron 

calculations on very large systems, and promises to become even more powerful once charge self- 

consistency is implemented. 
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Figure Captions 

1. Comparison of positron lifetimes (in picoseconds) calculated in the LMTO-ASA and FE 

methods, using the same LDA form for the electron-postron correlation and enhancement. See 

Table 1 for more details. 

2. Positron charge distributions along the simple cubic (111) direction for potassium doped 

fullerenes: (a) C60, (b) KC60, (c) K3C60. Octahedral and tetrahedral sites are indicated and 

the end points are located at the centers of fullerene molecules. 



Tables 

Table 1. 

Positron lifetimes in picoseconds for selected elemental metals and monovacancies. LMTO 

calculations are taken from reference [2] using the same LDA electron-positron correlation 

potential and enhancement function as the present FE-LDA calculations. The GGA calculations 

use the functional form described in Ref [4] with alpha=0.22. Monovacancy calculations were 

performed with unrelaxed atomic positions. 

Element LMTO FE-LDA FE-GGA Expt. 

Li 295 296 283 291 
Na 319 321 341 338 
K 363 365 400 397 
Rb 372 374 418 406 
cs 385 385 434 418 
Al 163 168 159 163 
Pb 187 191 213 194 
Ti 143 152 164 147 
V 115 121 132 130 
Cr 101 103 110 120 
Fe 101 107 120 106 
Ni 97 98 108 110 
CU 103 107 119 110 
Zr 156 161 162 165 
Nb 121 125 128 119 
MO 104 109 112 103 
Pd 103 108 122 96 
45 120 127 149 131 
Ta 116 123 130 116 
W 100 104 108 105 
rt 96 98 106 99 
AU 108 114 131 117 
Gd 199 204 213 230 

Vacancies 
cu 
Al 
Ais 

164 169 173 
234 239 244 
194 199 198 



Table 2. 

Convergence results for a monovacancy in Al. The calculated lifetimes are in picoseconds. The 

horizontal axis gives the number of elements per primitive unit cell. For the 255 atom case, 16 

elements/unit cell corresponds to a 16x16~16 calculation in the supercell. 

number of atoms Elements/unit cell 
2 16 54 

31 242 240 239 
255 245 243 243 
863 245 243 243 
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