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A NOTE ON THE STABILITY AND ACCURACY OF FINITE

DIFFERENCE APPROXIMATIONS TO DIFFERENTIAL EQUATIONS

Lawrence D. Cloutman
Lawrence Livermore National Laboratory

Livermore, California

ABSTRACT

There are many finite difference approximations to ordinary and partial differential
equations, and these vary in their accuracy and stability properties. We examine selected
commonly used methods and illustrate their stability and accuracy using both linear stability
analysis and numerical examples. We find that the formal order of accuracy alone gives an
incomplete picture of the accuracy of the method. Specifically, the Adams-Bashforth and
Crank-Nicholson methods are shown to have some undesirable features for both ordinary

and partial differential equations.




I. INTRODUCTION

There seems to be a widespread misperception that high order accuracy and implic-
itness (which often confers unconditional stability) implies that numerical solutions will be
accurate approximations to solutions of the original differential equations. In this report we
demonstrate that this article of faith is often violated in practice, and that the real situation
is far more complex and subtle than is often appreciated. We shall show simple examples
where stable solutions can be quite inaccurate, possibly including pathological features. In
some examples, the lower order method is shown to be more accurate.

We consider three cases to illustrate the point. The first is a comparison of Euler’s
method (first order) and the Adams-Bashforth method (second order) for a pair of simple
ordinary differential equations. Conventional wisdom would have it that the former method
is inferior in accuracy. The second example is a simple diffusion equation solved by an implicit
method that is second order in space and either first or second order in time depending on the
value of a time centering parameter. A special case is Crank-Nicholson differencing, which is
second order. We demonstrate that this method has undesirable features at sufficiently large
time step in spite of its formal unconditional stability. The third case is a demonstration of
unconditional instability in two approximations to the first order wave equation.

The next section presents a discussion of the Adams-Bashforth method applied to
ordinary differential equations. Section III explores the accuracy and stability of some com-
mon differencing methods for the diffusion equation. Section IV illustrates instabilities in the
solution of the first order wave equation. Section V contains the summary and conclusions.

I1. ORDINARY DIFFERENTIAL EQUATIONS

Let us consider the Adams-Bashforth method for integrating ordinary differential
equations. Consider the equation

dy
Y = fw.). M
The Adams-Bashforth method is

v =95+ 3 B 2) = F w02, @)

where h is the step size in z, and y; is the numerical approximation to y(z;) = y(j x h).
This method is second-order. We shall compare this method with the simple first-order Euler
method,

Yi+1 = Yj + b f (5, 25).- (3)




First we perform a stability analysis on both methods. We apply both difference
approximations to the linear equation

% — _Ky, K>0, (4)
which has the solution
y(z) = y(0) exp(—Kz). (5)
Substituting Eq. 4 into Eqgs. 2 and 3, we obtain
Yir1 = Yj — %IE (395 — y5-1) (6)
and
Yi+1 =y; —h Ky, (7)

Next we look for solutions of the form y; = rJ. Making this substitution into Eq. 6 and
letting H = hK, we find
r? + (1.5H — 1)r — 0.5H = 0, (8)

This equation has 2 solutions,

1—-15H%[(1—15H)+2H]"
ry = [( o ) ] . ()

In the limit H << 1,
re~1—H, —05H. (10)

The general solution of Eq. 6 in this limit is
y; = A(1 — H)Y + B(-0.5 HY, (11)

where A and B are constants of integration. For H < 1, the first term decays monotoni-
cally, just as the solution of the differential equation does. The second solution introduces
nonphysical oscillatory behavior into the numerical solution, even for small H, which is an
undesirable feature of the Adams-Bashforth method. A more careful examination of Eq. 9
shows that the exact formal stability limit is H = 1; for larger H, r_ < —1 and the numerical
solution grows without bound.

The analogous analysis of Eq. 7 shows that the difference equation has only one

solution with
r=1-H. (12)

The solution becomes oscillatory for H > 1, and the method becomes unstable for H# > 2.
We see the Euler method is qualitatively well-behaved for H < 1, whereas the Adams-
Bashforth method has a nonphysical oscillatory parasitic solution for all H, no matter how

close to zero.




Now we consider a nonlinear example, the logistic equation. This equation is widely
used as a particularly simple population dynamics model. It can also be used as a simple
surrogate for a nonlinear chemical rate equation.

dN

@ IC—N)’ (13)

= aN—ﬂNz =QN(T

where N is the population, and K = ¢/ is the carrying capacity of the environment. The
first term on the right hand side represents the familiar exponential growth of the population
via a constant difference between birth and mortality rates. The nonlinear term is one
plausible representation of an increase in mortality or decrease in fertility due to crowding.
The logistic equation has a simple general solution. At first glance this equation
appears to have two free parameters, but it has a self-similar solution with no parameters.
Let us make the linear changes of variables N = N/K and 7 = ot + t;, where #; is a
constant adjusted to make 7 = 0 at the start of the problem. Then Eq. 13 becomes

dN
- = N — N2 (14)

We assume that at 7 = 0 we know the value of A'(0). Equation 14 is easily solved by
separation of variables, which gives

N(0)

(1)

Nr) = N(0) + [1 = N(0)] exp(—T7)

This solution is valid provided the interval of integration of Eq. 14 over A does not include

either zero or unity, where the integrand has singularities. These singularities are related to
two constant equilibrium solutions, A’ = 0 and 1.

The ecologically interesting case is 0 < N (0) < 1. In this case, the solution rises
monotonically to unity at late times. The solution does not overshoot the carrying capacity.
The equilibrium solution A'(7) = 1 is stable. If the equilibrium is perturbed by decreasing the
population, A" grows monotonically back to unity. If the perturbation causes the population
to exceed the carrying capacity, it decays monotonically back to equilibrium.

The equilibrium solution at A’ = 0 is unstable. For a positive perturbation (that
is, the creation of a new species), the solution follows Eq. 15 to unity. For a negative
perturbation, the formal solution diverges to —oo in a finite time. The negative perturbation
is not realizable physically for either chemistry or population dynamics.

To illustrate these theoretical results, we now show some simple numerical examples.
We solve both Egs. 4 and 14 using both Egs. 2 and 3. The listing of the Fortran computer
program is given in Table 1, and selected numerical results are shown in Table 2. The listing
shows the code as used to solve the differential equations with the Adams-Bashforth method,
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Eq. 2. The éomplete listing is provided for the purpose of completely, precisely, and concisely
documenting how the calculations were performed. It is trivial to change the calculations of
the variables yjp and zjp to use Euler’s method, Eq. 3, simply by using the statements that
have been commmented out.

The output in Table 2 shows four cases. The first is the Adams-Bashforth method
with H = delx = 0.9, which should be stable according to the linear stability analysis. The
table provides both the numerical and exact solutions for each differential equation. We see
that both the decaying exponential and the logistic numerical solutions show the oscillatory
parasitic solution. For the exponential, the amplitude of the oscillations is several orders of
magnitude larger than the exact solution, a highly undersirable result. The oscillations in the
logistic solution are seen around J = 22 and are not large. For large J, the oscillations damp
out in both solutions and the correct steady state is approached. The next page shows the
same problem run with the Euler technique. There are no oscillations. The time marching
is not terribly accurate, especially for the exponential. Accuracy of the logistic solution is
not all that bad considering the large step size. The y = 0.5 point is off by about 3 steps
out of 10. At least the method preserves the qualitative features of the analytic solutions.

The next two cases are for H = 1.05, for which Adams-Bashforth is linearly unstable
and Euler should exhibit damped oscillations. That is precisely what is observed for the
exponential decay solutions. Note that the Euler method’s oscillations are much smaller
than the magnitude of the exact solution, which is the opposite of what was seen with
Adams-Bashforth with H = 0.9. The logistic solutions are far more interesting. The Euler
solution has a slight oscillation around J = 13, but is otherwise well-behaved. The Adams-
Bashforth solution is initially well-behaved, but it develops a growing oscillatory mode that
can be seen starting around J = 12. However, the oscillation saturates around J = 100,
whereas the linear stability analysis predicts that it should grow without bound.

This unanticipated behavior is easily explained. These two finite difference methods
are nonlinear iterated maps. Furthermore, they are related to the well-studied logistic map.
It is well known that as one increases the parameter in the logistic map, the long-term solution
changes from a steady state to a set of periodic solutions (that exhibit period doubling) to
chaotic solutions to an unbounded solution. We hypothesize that what we have seen here is
the first periodic solution on the route to chaotic solutions, and finally unbounded solutions,
as H is increased (Yee et al. 1991). This question will be examined in more detail in a future

report.




III. THE DIFFUSION EQUATION

The diffusion equation is

oT T
o~ Ko | (16)
where K is the constant thermal diffusivity. Consider the finite difference approximation
+1 _ Kt n +1 m+1 m+1
T =T7+ o (1= 9T — 2T7 + TR0) + (TR 277 + 7)), (1)

where T is the value of T' at grid point j and time step n, 6t is the time step, dz is the space
step, and 0 < ¢ < 1 is the time-centering parameter. For ¢ = 0.5, the method is second
order in both space and time. Stability analysis is performed by considering solutions of the
form

T} =r" exp(ij k 6z), (18)

where i = —11/2 and k is the wavenumber of the mode. Substituting Eq. 18 into Eq. 17, we

find
_ 1+2(1 — @)€[cos(kdz) —1] 1—4(1 — )¢

1 —2¢€[cos(kdx) —1] =~ 1+4¢f ° (19)
where £ = K 6t/6z%. We have made use of the fact that the most unstable mode is for
cos(k dz) = —1. There are three interesting special cases. First, the explicit case with ¢ =0,

which is unstable if £ > 0.5. Second, the implicit case with ¢ = 1, which is unconditionally
stable. Furthermore, the worst mode decays monotonically for all £. Third, the Crank-
Nicholson method with £ = 0.5, which is formally unconditionally stable. However, its
solutions can contain a nonphysical oscillatory component for £ > 1.

~ Table 3 lists the Fortran code that was used to produce the numerical examples given
in Table 4. The boundary conditions are zero gradient on the left boundary (J = 1.5) and
T = 100 on the right boundary (J = 46.5). The initial condition is 7" = 100 in zones 1-15 and
T = 300 elsewhere. This problem has two discontinuities, one at J = 15 and the other at the
right boundary. Zones 1 and 47 are fictitious zones used for imposing boundary conditions.
The column labels indicate the numerical parameters used in the calculation. For example,
T(CN,10.0) means that the column contains values of T calculated with Crank-Nicholson
(¢ = 0.5) and £ = 10.0. The indicator IM means the solution was computed with the fully
implicit method, ¢ = 1.0. Solutions are shown for £ = 0.5 and 10.0 at times of 0, 50,
100, and 500. Both methods get about the same answers for £ = 0.5, which is the explicit
stability limit. This is not too surprising, even though one method is first order and the
other is second order, since the explicit stability limit is also a reasonable accuracy criterion
for time marching. At TIME = 50, the Crank-Nicholson solution with £ = 10.0 shows
large nonphysical oscillations in the vicinity of both initial discontinuities. Taking the two




solutions with £ = 0.5 to be correct to the extent that they agree with one another, we see
that in the neighborhood of the initial discontinuities, the first-order implicit method is more
accurate. In the smooth part of the solution, the Crank Nicholson method is excellent, but
the errors in the implicit method are only a couple of percent. As expected, the oscillations
slowly damp out at late times. However, the first order implicit scheme never develops
either large errors or nonphysical behavior. The slow damping of the every-other zone mode
is unacceptable for large eddy simulations (LES) or direct numerical simulations (DNS) of
turbulent flows because, physically, the diffusion operator for the eddy viscosity terms will
damp the highest wavenumbers the fastest, and that property of the differential equation
does not carry over to the Crank-Nicholson difference operator at time steps significantly
larger than the explicit stability limit.

IV. THE FIRST ORDER WAVE EQUATION

The Adams-Bashforth method is sometimes advocated for treating advection terms
in fluid dynamics codes. A simple surrogate problem is the linear wave equation

—+c—=0, (20)

where ¢ > 0 is the constant advection speed and T is the dependent variable, for example,
the fluid temperature. Any differentiable function f(z — ct) is a solution to this equation.
We wish to point out that spatially centered differencing of Eq. 20 has some severe stability
problems and should never be used without a careful stability analysis. So, let us consider
both the Euler method and Adams-Bashforth for time marching and centered differences in
space. Then the difference equations are

Tjn+1 - 17 7, - 17

J J i-1 _
5 + =S 0 (21)

and

T+l — 7 L 15 ( - Tj"-l) —05 ( pee szz_—ll)
ot 26z
Again, stability analysis is performed by considering solutions of the form

=0, (22)

T} = r" exp(éj k 0z), (23)

where i = —1'/2 and k is the wavenumber of the mode. Substituting Eq. 23 into Eq. 21, we
obtain

r=1—148sin(kdz) (24)




and

rr* = 1+ % sin®(k dz), (25)
where 3 = cdt/dz. Clearly, this method is unconditionally unstable. No matter how small
we make the time step, the numerical solution will eventually blow up. The most unstable

mode has a wavelength of 4 §z. Interestingly, the every-other-zone mode is neutrally stable.
If we apply the same analysis to Eq. 22, we obtain a quadratic equation for two growth rates,

re — [1 — 3?Z—ﬁsin(k éx)} r— %sin(k oz) = 0. | (26)

If we take sin(k éz) = 0 (the wavelength of the mode is either infinite or equal to twice the
zone size), then the values of r are zero and unity, and the method is neutrally stable. If we
take sin(k dz) = 1, then

oo L-L5if+ (1—iB — 2.254%)1/2
= 5 _

Table 5 shows values of r and rr* for various values of 3. These were evaluated numerically

(27)

with a short Fortran program using complex arithmetic (also presented in Table 5), so they
are accurate to about 6 digits. The method is neutrally stable for 8 = 0. For larger values
- of B, the method is weakly unstable. For computational efficiency, we want to run fluid
dynamical calculations with § around 0.2. So let us look at a simple test problem with
B=0.1.
~ Table 6 lists a simple Fortran code that calculates the numerical examples given in
Table 7. The solution is a sine wave of wavelength 4 6z and amplitude 1.0. Periodic boundary
conditions are used, so the analytic solution simply propagates the sine wave to the right
with ¢ = 1.0 without a change of shape or amplitude. The analytic solution is constrained
- to have values between -1.0 and +1.0 at all grid points at all times. Table 7 shows solutions
for the 12 zone solutions using both Euler’s method and the Adams-Bashforth method at
* several different times. Both solutions develop nonphysical numerical oscillations during the
first few cycles. The Euler’s method solution has a growth rate of 1.01, and it blows up very
quickly. The Adams-Bashforth solution has a theoretical growth rate of 1.000051, which is
consistent with what we observe in this example. For thousands of cycles, we see no clear
evidence of the unbounded growth because it is masked by numerical oscillations caused by
dispersive truncation errors. However, by cycle 100,000, the amplitude is clearly outside the
phyical limit of unity and is growing.
There is a clear warning here. Consider Lax’s Equivalence Theorem: Given a prop-
erly posed initial-value problem and a finite-difference approximation to it that satisfies
the consistency condition, stability is the necessary and sufficient condition for convergence
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(Richtmyer 1957). Both the Euler method and the Adams-Bashforth method satisfy the
consistency condition, but they are unstable. Therefore, they are not convergent. There is
little danger of the Euler time marching being used due to its strong instability. However,
the weak instability of Adams-Bashforth may be overlooked if problems are run for too short
a time for the instability to manifest itself. The real danger is that a nonconvergent solution
may be accepted as an approximate solution to the differential equation. Since this problem
will carry over to numerical solution of the Euler equations, Adams-Bashforth time marching
and centered differencing of the advection terms should be avoided.

V. CONCLUSIONS

The purpose of this study is to show that some elementary finite difference meth-
ods have some undesirable properties that should preclude their use in computational fluid
dynamics. This is especially true for LES and DNS, which make severe demands on nu-
merical methods. In both cases, we are trying to obtain significant results near the grid
scale. Since small scale oscillatory flow features (vortices) are continuously driven by the
turbulence, we cannot recommend the use of Adams-Bashforth differencing because it can
produce unphysical oscillations in time that switch sign on alternate time steps.

We also recommend prudence in use of the Crank-Nicholson method for treating the
diffusion terms. This method has spurious oscillations unless the time step is kept below
twice the explicit stability limit (which is also a good accuracy limit). Given the increased
amount of arithmetic needed to implement implicit methods, it may in fact be more efficient
to use the explicit method. One could eliminate the oscillation problem by going fully
implicit, but accuracy will suffer if large time steps are used unless the solution is nearly
steady.
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Table 1.
Adams-Bashforth ODE Program

Test Program for Ordinary Differential Equations

program adams
¢ +++ Adams-Bashforth testing

implicit double precision (a-h,o0-z)

open (unit=12,file=’adams.out’,form=’formatted’)
¢ +++ initialize parameters

delx = 0.9d+00
npts = 200
j. =0
j = 1.4+00

¢ +++ Euler first step
yjm = 7yj

c +++ Exact solution for first step
yjm = exp(delx)
yjp =733
yex =733
zj =1.4-03
zjp = zj
zex = zj
z0 = 2zj

¢ +++ Euler first step
zjm = zj

c +++ Exact solution for first step
zjm = 20 / (20 + (1.d+00 - z0) * yjm)

write (12,10) delx
10 format (/’ = Adams-Bashforth tests for delx =’,1p,d16.8/

1°? j x exponential logistic’/
2’ numerical exact numerical’,
3 exact’)

write (12,20) j, x, yjp, yex, zjp, zex
20 format (ix,i4,1p,5d14.6)

do j = 1, npts

¢ +++ dy/dh = -
cce yijp = yj - delx * yj
yjp = yj - delx * (1.5d+00 * yj - 0.5d+00 * yjm)
c +++ dz/dh = z ~ zx*2
cce zjp = zj + delx * (zj - zj**2)
zjp = zj + delx * (1.5d+00 * (zj - zj**2)

- 0.5d+00 * (zjm - zjm**2))

c +++ exact solutions
x = real(j) * delx
yex = exp(-x)
zex = z0 / (20 + (1.4+00 - z0) * yex)
write (12,20) j, x, yjp, yex, zjp, zex
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yjm = yj
yJ =17Y¥JpP
ZJm = ZJ
zj =2zjp
enddo
close (unit=12)
stop
end
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Table 2.
Ordinary Differential Equation Solutions

Exponential Decay and Logistic Equations

Adams-Bashforth tests for delx
j exponential

J

OCO~NONPBWNNERLO

WWWNNNNNNNNMNDNDNE b e b b e e e o = OQOO~NOMERWN OO

e el

X

.000000D+00
.000000D-01
.800000D+00
.700000D+00
.600000D+00
.500000D+00
.400000D+00
.300000D+00
.200000D+00
.100000D+00
.000000D+00
.800000D+00
.080000D+01
.170000D+01
.260000D+01
.350000D+01
.440000D+01
.530000D+01
.620000D+01
.710000D+01
.800000D+01
.890000D+01
.980000D+01
.070000D+01
.160000D+01
.250000D+01
.340000D+01
.430000D+01
.520000D+01
.610000D+01
.700000D+01
.790000D+01
.880000D+01
.970000D+01
.060000D+01
.150000D+01
.240000D+01

. 755000D+02
.764000D+02
.773000D+02
.782000D+02
.791000D+02
.800000D+02

| |} | | } | | 1 i 1 | | | 1
NNWWEP RO =N ]

R REREREONDNDWWP OO N 00 R e N

numerical

.000000D+00
.568214D-01
.851125D-01
.757803D-01
.322246D-02
.287290D-01
.100525D-02
.577987D~-02
.947532D-02
.141730D-02
.025995D-02
.722877D-02
.114705D-02
.765441D-02
.369522D-02
.073781D-02
.792108D-02
.560439D-02
.352602D-02
.175609D-02
.020134D-02
.860708D-03
.691851D-03
.679466D-03
.799146D-03
.035461D-03
.372027D-03
.796167D-03
.296071D-03
.861900D-03
.484897D-03
.157569D-03
.873353D-03
.626579D-03
.412311D-03
.226270D-03
.064735D-03

.876946D-13
.629698D~13
.415020D~-13
.228621D-13
.066777D~-13
.262514D~-14

ONNFE WNEPLPRENOR P RN WONANEWON U WO - i

D= OND

9.00000000D-01

exact

.000000D+00
.065697D-01
.652989D-01
.720551D-02
.732372D-02
.110900D-02
.516581D-03
.836305D-03
.465858D-04
.035391D-04
.234098D-04
.017468D-05
.039950D-05
.293819D-06
.372015D-06
.370959D-06
.573904D-07
.266180D-07
.213601D-08
.745971D-08
.522998D-08
.192048D-09
.517499D-09
.023539D-09
.161397D-10
.691898D-10
.878744D-11
.796688D-11
.137049D-11
.622895D-12
.879529D-12
.641594D-13
.106840D-13
.263147D-13
.135572D-14
.087968D-14
.489044D-15

.043916D~-77
.457273D-77
.990526D-78
.061845D-78
.651423D-78
.714184D-79
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e N e

logistic
numerical

.000000D-03
.165659D-03
.633418D-03
.887114D-03
.102737D-02
.441221D-02
.244254D-02
.866055D-01
.537601D-01
.940861D-01
.167594D-01
.102886D-01
.531854D-01
.766780D-01
.873481D-01
.939619D-01
.964428D-01
.985272D-01
.989175D-01
.997155D-01
.996129D-01
.000007D+00
.998233D-01
.000065D+00
.998977D-01
.000065D+00
.999312D-01
.000053D+00
.999504D-01
.000041D+00
.999632D-01
.000032D+00
.8999724D-01
.000024D+00
.999792D-01
.000018D+00
.999844D-01

.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00

o e b b e e e DD WD OWWOWWWWWWWWWWONUTWE W N -

N

exact

.000000D-03
.456018D~-03
.019252D-03
.467603D-02
.534019D-02
.265806D-02
.814202D-01
.527998D-01
.727904D-01
.673210D-01
.902449D-01
.522680D-01
.800279D-01
.917826D-01
.966427D-01
.986323D-01
.994435D-01
.997737D-01
.999080D-01
.999626D-01
.999848D-01
.989938D-01
.999975D-01
.999990D-01
.999996D-01
.999998D-01
.999999D-01
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00

.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00




Euler tests for delx =

J

WO~NONBWNE=O

T Y Y WU
WONONP»WN=O

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

192
193
194
195
196
197
198
199
200

T N N e

WWWWWWWRNNNNNNNDNNNDN = b b b b b b b b = =D OO NP W ROO

X

.000000D+00
.000000D-01
.800000D+00
.700000D+00
.600000D+00
.500000D+00
.400000D+00
.300000D+00
.200000D+00
.100000D+00
.000000D+00
.900000D+00
.080000D+01
.170000D+01
.260000D+01
.350000D+01
.440000D+01
.530000D+01
.620000D+01
.710000D+01
.800000D+01
.890000D+01
.980000D+01
.070000D+01
.160000D+01
.250000D+01
.340000D+01
.430000D+01
.520000D+01
.610000D+01
.700000D+01
.790000D+01
.880000D+01
.970000D+01
.060000D+01
.150000D+01
.240000D+01
.330000D+01
.420000D+01
.510000D+01
.600000D+01

.728000D+02
.737000D+02
.746000D+02
.755000D+02
.764000D+02
.773000D+02
.782000D+02
.791000D+02
.800000D+02

exponential
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numerical

.000000D+00
.000000D-01
.000000D-02
.000000D~-03
.000000D-04
.000000D-05
.000000D-06
.000000D-07
.000000D-08
.000000D-09
.000000D-10
.000000D-11
.000000D-12
.000000D-13
.000000D-14
.000000D-15
.000000D-16
.000000D~17
.000000D-18
.000000D-19
.000000D-20
.000000D-21
.000000D~-22
.000000D-23
.000000D-24
.000000D-25
.000000D-26
.000000D-27
.000000D-28
.000000D-29
.000000D-30
.000000D-31
.000000D-32
.000000D-33
.000000D-34
.000000D-35
.000000D-36
.000000D-37
.000000D-38
.000000D-39
.000000D-40

.000000-192
.000000-193
.000000-194
.000000-195
.000000-196
.000000-197
.000000-198
.000000-199
.000000-200

NORWONNWSNESPRERNNORPENORWONOFWONO - W =P N0

ORI ONOD W

9.00000000D-01

exact

.000000D+00
.065697D-01
.652989D-01
.720551D-02
.732372D-02
.110900D-02
.516581D-03
.836305D-03
.465858D-04 -
.035391D-04
.234098D-04
.017468D-05
.039950D-05
.293819D-06
.372015D-06
.370959D-06
.573904D-07
.266180D-07
.213601D-08
.745971D-08
.522998D-08
.192048D-09
.517499D-0%
.023539D-0%
.161397D-10
.691898D-10
.878744D-11
.796688D~11
.137049D-11
.622895D~12
.879529D-12
.641594D-13
.106840D-13
.263147D-13
.135572D-14
.087968D-14
.489044D-15
.451388D-15
.403230D-15
.705106D-16
.319523D-16

.993185D-76
.656356D-76
.486563D-76
.043916D-77
.457273D~-77
.990526D-78
.061845D-78
.651423D-78
.714184D-79
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logistic
numerical

.000000D-03
.899100D-03
.605044D-03
.837887D-03
.294990D-02
.445389D-02
.592419D-02
.535784D-02
.556225D-01
.738863D-01
.528716D-01
.758726D-01
.730346D-01
.727953D-01
.966134D-01
.996510D-01
.999650D-01
.999965D-01
.999996D-01
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00

.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00

b b b b b b b b ek b b b b R O O OO O WWWWWWWWWWWWOO U WE00WE NN

L N T =Y

exact

.000000D-03
.456018D-03
.019252D-03
.467603D-02
.534019D-02
.265906D-02
.814202D-01
.527998D-01
.727904D-01
.673210D-01
.902449D-01
.522680D-01
.800279D-01
.917826D-01
.966427D-01
.986323D-01
.994435D-01
.997737D-01
.999080D-01
.999626D-01
.999848D-01
.999938D~-01
.999975D-01
.999990D-01
.999996D-01
.999998D-01
.999999D-01
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00

.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00




Adams-Bashforth tests for delx

J

- -
HPOWR~NNMAONEWN=O

N b b b b 2 3
QWO WM

NNNDNN
O W N =

NNNNDODNDONDND BPWWWWWWWWWWNNPODNNNNDNDN R PR el OO NON D WN =O

X

.000000D+00
.050000D+00
. 100000D+00
.150000D+00
.200000D+00
.250000D+00
.300000D+00
.350000D+00
.400000D+00
.450000D+00
.050000D+01
.155000D+01
.260000D+01
.365000D+01
.470000D+01
.575000D+01
.680000D+01
.785000D+01
.890000D+01
.995000D+01
.100000D+01
.205000D+01
.310000D+01
.415000D+01
.520000D+01
.625000D+01
.730000D+01
.835000D+01
.940000D+01
.045000D+01
.150000D+01
.255000D+01
.360000D+01
.465000D+01
.570000D+01
.675000D+01
.780000D+01
.885000D+01
.990000D+01
.095000D+01
.200000D+01

.016000D+02
.026500D+02
.037000D+02
.047500D+02
.058000D+02
.068500D+02
.079000D+02
.089500D+02
.100000D+02

exponential

1

numerical

.000000D+00
.252668D-01
.028431D-03
.898064D-01
.853286D-01
.212123D-01
.919946D-01
.465334D-01
.625539D-01
.003985D-01
.305699D-01
.677869D-01
.050267D-01
.459785D-01
.890766D-01
.353578D-01
.845960D-01
.372055D-01
.933060D-01
.531839D-01
.017066D+00
.085235D+00
.157970D+00
.235581D+00
.318393D+00
.406756D+00
.501041D+00
.601646D+00
.708993D+00
.823535D+00
.945754D+00
.076164D+00
.215315D+00
.363792D+00
.522221D+00
.691268D+00
.871645D+00
.064112D+00
.269478D+00
.488608D+00
.722426D+00

.132576D+04
.610623D+04
.120710D+04
.664986D+04
.245740D+04
.865418D+04
.052663D+05
.123216D+05
.198497D+05

O b O D WWON G =W WONNNAR P R WEWONNNDR U D WONNN O O

1.05000000D+00

exact

.000000D+00
.499377D-01
.224564D-01
.285213D-02
.499558D-02
.247518D-03
.836305D-03
.425924D-04
.248673D-04
.868957D-05
.753645D-05
.636043D-06
.372015D-06
.179995D-06
.129249D-07
.444980D-07
.056531D-08
.769471D-08
.192048D~-09
.166831D-09
.582560D-10
.653424D-10
.285333D-11
.249288D-11
.137049D-11
.978963D-12
.392389D-12
.872495D-13
.705070D-13
.966684D-14
.087968D-14
.306588D-15
.556851D-15
.8947387D-16
.131028D-16
.095665D-16
.834145D-17
.341712D-17
.695158D-18
.643013D-18
.749522D-19

.794039D-88
.T77397D-89
.421480D-89
.197305D-89
.189822D-90
.466177D-90
.130707D-91
.795428D-91
.282881D-92
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logistic
numerical

.000000D-03
.389653D-03
.619886D-03
.316989D-02
.070544D-02
.075843D-02
.586919D-01
.344487D-01
.149402D-01
.710213D-01
.236477D-01
.757406D-01
.759979D-01
.000467D+00
.874327D-01
.007223D+00
.892499D-01
.0098198D+00
.886194D-01
.011545D+00
.872447D-01
.013209D+00
.855188D-01
.015023D+00
.835139D-01
.017057D+00
.812215D-01
.019350D+00
.786105D-01
.021934D+00
.756412D-01
.024840D+00
.722686D-01
.028099D+00
.684443D-01
.031743D+00
.641170D-01
.035799D+00
.592348D-01
.040290D+00
.537474D-01

.237351D-01
.128646D+00
.237351D-01
.128646D+00
.237351D-01
.128646D+00
.237351D-01
.128646D+00
.237351D-01

P b b e b b b b b ek b b b b e e e = D OO WWOWWWWWWWWORNDWE DN OON
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exact

.000000D-03
.852352D-03
.108066D-03
.282622D-02
.257595D-02
.601981D-01
.527998D-01
.090320D~01
.165649D-01
.271184D-01
.732276D-01
.904654D-01
.966427D-01
.988226D-01
.995877D-01
.998557D-01
.999495D-01
.999823D-01
.999938D-01
.999978D-01
.999992D-01
.999997D-01
.999999D-01
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00

.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00




Euler

OCOO~NOUNB WO
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tests for delx =

X

.000000D+00
.050000D+00
.100000D+00
.150000D+00
.200000D+00
.250000D+00
.300000D+00
.350000D+00
.400000D+00
.450000D+00
.050000D+01
.155000D+01
.260000D+01
.365000D+01
.470000D+01
.575000D+01
.680000D+01
.785000D+01
.890000D+01
.995000D+01
-100000D+01
.205000D+01
.310000D+01
.415000D+01
.520000D+01
.625000D+01
.730000D+01
.835000D+01
-940000D+01
.045000D+01
.150000D+01
.255000D+01
.360000D+01
.465000D+01
.570000D+01
.675000D+01
.780000D+01
.885000D+01
.990000D+01
.095000D+01
.200000D+01

.026500D+02
.037000D+02
.047500D+02
.058000D+02
.068500D+02
.079000D+02
.089500D+02
.100000D+02

exponential

numerical

.000000D+00
.000000D-02
.500000D-03
.250000D-04
.250000D-06
.125000D-07
.562500D-08
.812500D-10
.906250D-11
.953125D-12
.765625D-14
.882813D-15
.441406D-16
.220703D-17
.103516D-19
.051758D-20
.5256879D-21
.629395D-23
.814697D-24
.907349D-25
.536743D-27
.768372D-28
.384186D-29
.192093D-30
.960464D-32
.980232D-33
.490116D-34
.450581D-36
.725290D-37
.862645D-38
.313226D-40
.656613D-41
.328306D-42
.164153D-43
.820766D~-45
.910383D-46
.455192D-47
.275958D-49
.637979D-50
.818989D-51
.094947D-53

.965460~252
.982730-253
.991365-254
.956824-256
.978412-257
.489206-258
.244603-259
.223015-261

O) = U = o = O U1h~¢>htoohhusaihb~JLJU1h-¢=h~ths0)«)&)~lh>0)h~01hﬂ¢»h~0)¢>AJ~JNJO)h~U1HwP0acnra

1.05000000D+00

exact

.000000D+00
.499377D-01
.224564D-01
.285213D-02
.499558D-02
.247518D-03
.836305D-03
.425924D-04
.248673D-04
.868957D-05
. 753645D-05
.636043D-06
.372015D-06
.179995D-06
.129248D-07
.444980D-07
.056531D-08
.769471D-08
.192048D~09
.166831D-09
.582560D-10
.653424D-10
.285333D-11
.249288D-11
.137049D-11
.978963D-12
.392389D-12
.872495D-13
.705070D-13
.966684D-14
.087968D-14
.306588D-15
.556851D-15
.947387D-16
.131028D~-16
.095665D-16
.834145D-17
.341712D-17
.695158D-18
.643013D-18
.749522D-19

.777397D-89
.421480D-89
.197305D-89
.189822D-90
.466177D-90
.130707D-91
.795428D-91
.282881D-92

b b b b b e b ek b b b b fed b b e b b ed ek b b b ek b (D S OO NN S W 00N

L O O Y ST a W

logistic
numerical

.000000D-03
.048950D-03
.195939D-03
.583190D-03
.751818D-02
.569005D-02
.162961D-02
.414534D-01
.689699D-01
.754262D-01
.372922D-01
.406692D-01
.992704D-01
.000036D+00
.999982D-01
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00

.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00

bbb b b b b b peb b b b b b b b b b = DD O WO WO WWWWWWWWWONWEDN 0N
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exact

.000000D-03
.8562352D-03
.108066D-03
.282622D-02
.257595D-02
.601981D-01
.527998D-01
.090320D-01
.165649D-01
.271184D-01
.732276D-01
.904654D-01
.966427D-01
.988226D-01
.995877D-01
.998557D-01
.999495D-01
.999823D-01
.999938D-01
.999978D-01
.999992D-01
.999997D-01
.999999D-01
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00

.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
.000000D+00
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Table 3.
Diffusion Equation Program

Fortran Source Code - Arbitrary Time Centering

program diff

implicit double precision (a-h,o0-z)

common /hh1/ T(259),X(259) ,F(259),XC(259) ,XA(259)

common /hh2/ SB(259),SG(259) ,AA(259) ,BB(259),CC(259),DD(259),
1 TT(259)

open (unit=12,file=’diff.out’,form=’formatted’)

C 4 skeokoskodkok %k ok ok ok ok dk 3k ok ok b sk ok ok ok ok ke sk 3k ok ok K ok 3k 3 ok 3k 3k ok Xk k3K 3k 3k ok sk 3k ok ke 3k 3k sk ok 3k ok ok ok 3k 3k 3 sk ok 3k 2k sk 3k e ok dk ok sk ok ok
¢ +++ % * SET INPUT VARIABLES * *
¢ +++ * JB = NUMBER OF REAL CELLS

JB=45

¢ +++ x DX = SPATIAL STEP SIZE
DX=1.d4+00

c +++ % X0 = LEFT BOUNDARY LOCATION
X0=0.d+00

¢ +++ x NT = NUMBER OF CYCLES TO BE RUN
NT=50

¢ +++ x NP = NUMBER OF CYCLES BETWEEN PRINTS
NP=5

¢ +++ % DT = TIME STEP
DT=1.4+01

¢ +++ * DM = MAXIMUM TIME STEP
DM=1.D+20

¢ +++ ¥ IC = 0, CARTESIAN; 1, CYLINDRICAL; 2, SPHERICAL COORDINATES
IC=0

¢ +++ * TIME CENTERING PARAMETER (=0, EXPLICIT)
PHI=0.5d4+00

¢ +++ x x BC FLAGS: 1 = zero slope, 2 = 0 order fixed T, 3 = 1 order fixed T
ML=1
TL=300.d+00
MR=2
TR=1.04+02

¢ +++ x TIME = ELAPSED PROBLEM TIME
TIME=0.d+00

write (12,5000) JB,DX,X0

5000 format (°’ No. of real cells JB =’,i5,’ DX =’,1p,d14.6,’ X0 =’,
1 d14.6)
write (12,5001) NT, DT, DM

5001 format (’> No. of time steps NT =’,i5,’ DT =’,1p,d14.6,
1 ’> DT MAX =’,d14.6)
write (12,5002) IC, PHI, NP, ML, TL, MR, TR

5002 format (°> IC =’,i6,’ PHI =’,1p,d14.6,’ Print freq. NP =’,i6/
1°> ML =?,i6,’ TL =’,d14.6/° MR =’,i6,’> TR =’,d14.6)

C +++

C 4 sekokokokokokokok ok ok ok ok ik ook ok ok o ok ok ok ke ok ok ok ok ok ok sk o skeok ok ok ok ke sk sk ok ke ok sk ok ke ok sk ok sk ook o ok ok skok ok skok ok ek ok
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¢ +++ * * INITIALIZE SOME VARIABLES * *
c +++

J1=JB+1

J2=JB+2

J3=JB+3

L2=J2

MP=0

PI=3.14159265358979d+00

do 6000 J =1, J3

X(J) = real(d)
X(J) = DX * (X(J) - 2.4+00) + X0
IF (J .gt. 1) XC(J-1) = 0.5d+00 * (X(J) + X(J-1))
6000 continue
c +++
c +++ * * SET AVERAGE CELL CENTERS AND INITIAL T * =*
c +++

XA(d) 0.5d+00 * (XC(J) + XC(J-1))
T(J) TR
IF (J .gt. 15) T(J) = TL
6001 continue
XA(D)=X(1)
XA(J3)=X(J3)

do 6001 J = 2, J2

Cc +++ e 3k 3k 3k 3 e ok ok 3k e ok ok ok sk ok 3k sk ok Sk 3 ok 3k 3 ke sk 3 sk e ke k Sk 3k 3k 3k 3k 3 3k b ok sk e ok Sk e ok ok ok ok o 3 o ok 3 e ke ok ko ok ok e ke ke ok sk
¢ +++ % * SET BOUNDARY CONDITIONS ON T * *

IF (ML .eq. 1) T(1)=T(2)

IF (ML .eq. 2) T(1)=2.d+00*TL-T(2)

IF (ML .eq. 3) T(1)=(8.d+00*TL-6.d+00*T(2)+T(3))/3.4+00

IF (MR .eq. 1) T(J2)=T(J1)

IF (MR .eq. 2) T(J2)=2.d+00*TR-T(J1)

IF (MR .eq. 3) T(J2)=(8.4+00%¥TR-6.d+00*T(J1)+T(JB))/3.4+00

N=0

b ook ok ok ke ke ok ok 3k ok ok ok sk ok sk ok ok sk sk 3k ok sk e ok sk ok 3k 3k 3k 3k ok sk sk 3K 3 ok ok ok 9 ek 3k sk sk e e s e o6 sk e ok ok ok 3k ok ok sk ok ke ok ok ok
c +++ * * PRINTING ROUTINE * x*

write (12,5008) N, TIME
5008 format (/’> TIME STEP N =’,i5,’ TIME =’,1p,d14.6//

1 5x,’N’,10%,°T?/)

(2]

do J=1, J2
write (12,5007) J, T(J)
5007 format (1x,i5,1p,d16.8)
enddo
MP=MP+NP

C +H+ rsskkkodkokkkoksdok koK ok dokokok ok ok ok sk ok Aok ook ok ek skok sk sk ok sk ik ok koo ok ok ok ok skok e kok ok
¢ +++ * x TIME STEP LOOP * *

do 6006 N=1, NT

TIME=TIME+DT

¢ +++ * * COMPUTE CELL-FACE DIFFUSIVITIES * *

18




do J=1, J3
F(J)=1.4+00
enddo

do 6007 J=2, J1
D1=XCc(J)-Xc(J-1)
D2=XC(J+1)-XC(J)
A1=1.d4+00
A2=1.4+00 :
IF (IC .eq. 0) GO TO 900
do MQ=1, IC
A1=A1%XA(J)
A2=A2%XA(J+1)

enddo

900 D3=(A2%XA(J+1)-A1*XA(J))/real(IC+1)
AA(J)=-F(J)*PHI*DT*A1/(D3%D1)
CC(J)=-F(J+1) *PHI*DT*A2/(D3*D2)
BB(J)=1.d+00-AA(J)~-CC(J)
DD(J)=F(J)*(T(J)-T(J-1))*A1/D1
DD(J)=F(J+1)*(T(J+1)-T(J) ) *A2/D2-DD(J)
DD(J)=T(J)+(1.d+00 ~ PHI)*DTxDD(J)/D3

¢ +++ * NOW SET BOUNDARY CONDITIONS

IF (J .gt. 2) GO TO 1060
IF (ML .eq. 1) BB(J)=BB(J)+AA(J)
IF (ML .eq. 2) BB(J)=BB(J)-AA(J)
IF (ML .eq. 2) DD(J)=DD(J)-2.d+00*TL*AA(J)
IF (ML .eq. 3) BB(J)=BB(J)-2.d+00 *AA(J)
IF (ML .eq. 3) CC(J)=CC(J)+AA(J)/3.4+00
IF (ML .eq. 3) DD(J)=DD(J)-8.4+00*AA(J)*TL/3.d+00
AA(J)=0.4+00

1060 IF (J .1t. J1) GO TO 1140
IF (MR .eq. 1) BB(J)=BB(J)+CC(J)
IF (MR .eq. 2) BB(J)=BB(J)-CC(J)
IF (MR .eq. 2) DD(J)=DD(J)-2.d+00*TR*CC(J)
IF (MR .eq. 3) BB(J)=BB(J)-2.4+00*CC(J)
IF (MR .eq. 3) AA(J)=AA(J)+CC(J)/3.4+00
IF (MR .eq. 3) DD(J)=DD(J)-8.d+00*CC(J)*TR/3.d+00
CcC(J)=0.4+00

1140 continue
6007 continue

c +++ * % SOLVE THE LINEAR SYSTEM * *

C +++ *******************************************************************
c +++ * * TRIDIAGONAL SOLVER I = 2 TO L1 * * % % * % * % % % * *
c +++ * % USES GAUSSIAN ELIMINATION WITHOUT PIVOTING
c +++ * % AA(I)*TT(I-1)+BB(I)*TT(I)+CC(I)*TT(I+1)=DD(I)
c +++ * x FICTITIOUS CELLS 1 AND L2 ARE NOT SOLVED
c +++ % * AA(2) AND cC(L1i) ARE NOT USED
c +++ * * WE ASSUME L2 IS SET BY THE CALLING PROGRAM
L1=1L2-1
LO=L2-2
SW=BB (2)
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SG(2)=DD(2) /SW

do J=3, L1
SB(J-1)=CC(J-1) /SW
SW=BB(J)-AA(J)*SB(J-1)
SG(J)=(DD(J)-AA(J)*SG(J-1))/SW

enddo

TT(L1)=SG(L1)

do J=2, LO
L4=L2-J
TT(L4)=SG(L4)-SB(L4)*TT(L4+1)

enddo

¢ +++ end of linear system solver

do J=2, J1
T(J)=TT(J)
enddo

C HHE RRRRFAKIF AR AAAIAKFAAA R AR A F K AR A A KA A A A KA A AR R AR KKK A Kk
¢ +++ * * SET BOUNDARY CONDITIONS ON T * =*

IF (ML .eq. 1) T(1)=T(2)

IF (ML .eq. 2) T(1)=2.d+00*TL-T(2)

IF (ML .eq. 3) T(1)=(8.d+00*TL-6.d+00%T(2)+T(3))/3.4d+00

IF (MR .eq. 1) T(J2)=T(J1)

IF (MR .eq. 2) T(J2)=2.4+00*TR-T(J1)

IF (MR .eq. 3) T(J2)=(8.d+00%TR-6.d+00*T(J1)+T(JB))/3.d+00

¢ +++ *x * CALL THE PRINT ROUTINE * *
IF (N .eq. MP) THEN

write (12,5008) N, TIME

do J=1, J2

write (12,5007) J, T(J)
enddo
MP=MP+NP

endif

¢ +++ ¥ % DT CONTROL * =
IF (DT .gt. DM) DT=DM
6006 continue

close (unit=12)
stop
end
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Table 4.
Diffusion Equation Solutions

J T(CN,10.0) T(IM,10.0) T(CN,0.5) T(IM,0.5)
No. of real cells JB = 45 DX = 1.000000D+00 X0 = 0.000000D+00
No. of time steps NT = 50 DT = 1.000000D+01 DT MAX = 1.000000D+20
IC = 0 PHI = 5.000000D-01 Print freq. NP = 5
ML = 1 TL = 3.000000D+02
MR = 2 TR = 1.000000D+02
TIME STEP N = 0 TIME = 0.000000D+00

1 1.00000000D+02
2 1.00000000D+02
3 1.00000000D+02
4 1.00000000D+02
5 1.00000000D+02
6 1.00000000D+02
7 1.00000000D+02
8 1.00000000D+02
9 1.00000000D+02
10  1.00000000D+02
11 1.00000000D+02
12 1.00000000D+02
13  1.00000000D+02
14  1.00000000D+02
15  1.00000000D+02
16  3.00000000D+02
17  3.00000000D+02
18  3.00000000D+02
19 3.00000000D+02
20  3.00000000D+02
21 3.00000000D+02
22  3.00000000D+02
23  3.00000000D+02
24  3.00000000D+02
25 3.00000000D+02
26  3.00000000D+02
27  3.00000000D+02
28  3.00000000D+02
29  3.00000000D+02
30  3.00000000D+02
31  3.00000000D+02
32  3.00000000D+02
33 3.00000000D+02
34 3.00000000D+02 .
35 3.00000000D+02
36 3.00000000D+02
37  3.00000000D+02
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38  3.00000000D+02
39  3.00000000D+02
40  3.00000000D+02
41  3.00000000D+02
42  3.00000000D+02
43  3.00000000D+02
44  3.00000000D+02
& 3.00000000D+02
46  3.00000000D+02
47 -1.00000000D+02
TIME STEP N = 5
N T(CN,10.0)
1 1.32320953D+02
2 1.32320953D+02
3 1.33136611D+02
4 1.34770531D+02
5 1.37230200D+02
6 1.40528685D+02
7 1.44675363D+02
8 1.49643455D+02
9 1.55300327D+02
10 1.61302961D+02
11 1.67029336D+02
12 1.71818315D+02
13 1.76306800D+02
14 1.86870001D+02
15 2.27880090D+02
16 1.72316407D+02
17 2.13334383D+02
18 2.23912588D+02
19 2.28422004D+02
20 2.33234917D+02
21 2.38984098D+02
22 2.45001928D+02
23 2.50656858D+02
24 2.55592391D+02
25 2.59657537D+02
26 2.62801506D+02
27 2.65003621D+02
28 2.66241222D+02
29 2.66481906D+02
30 2.65687233D+02
31 2.63819515D+02
32 2.60847050D+02
33 2.56745441D+02
34 2.51494021D+02
35 2.45067719D+02
36 2.37427320D+02
37 2.28516065D+02
38 2.18278572D+02
39 2.06727434D+02

TIME =

NNV ODNODNDNNNDNDNNDNDNDNNDINNDANDNN R s b b bk 2 b b b b b b b

T(IM,10.0)

.30612804D+02
.30612804D+02
.31394133D+02
.32956174D+02
.35296925D+02
.38411510D+02
.42290044D+02
.46914990D+02
.52258198D+02
.58277923D+02
.64916145D+02
.72096636D+02
. 79724229D+02
.87685731D+02
.95862779D+02
.04086684D+02
.12244851D+02
.20187844D+02
.27785763D+02
.34923000D+02
.41500963D+02
.47438811D+02
.52672479D+02
.57152460D+02
.60840780D+02
.63707592D+02
.65727756D+02
.66877674D+02
.67132586D+02
.66464506D+02
.64840894D+02
.62224167D+02
.58572110D+02
.53839256D+02
.47979263D+02
.40948294D+02
.32709370D+02
.23237583D+02
.12525960D+02

NONRONONRNNNONNONNNNONNNNONNONDNN R F R R R e s e e

5.000000D+01

T(CN,0.5)

.32333107D+02
.32333107D+02
.33169235D+02
.34832741D+02
.37306048D+02
.40562611D+02
.44566765D+02
.49273610D+02
.54629003D+02
.60569715D+02
.67023808D+02
.73911275D+02
.81144948D+02
.88631674D+02
.96273717D+02
.039703256D+02
.11619384D+02
.19119067D+02
.26369383D+02
.33273535D+02
.39739022D+02
.45678434D+02
.51009913D+02
.556657310D+02
.59550074D+02
.62622958D+02
.64815623D+02
.66072285D+02
.66341484D+02
.65576109D+02
.63733754D+02
.60777457D+02
.56676851D+02
.51409679D+02
.44963635D+02
.37338378D+02
.28547611D+02
.18621026D+02
.07605957D+02
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T(IM,0.5)

.32225268D+02
.32225268D+02
.33060247D+02
.34721750D+02
.37192753D+02
.40447455D+02
.44451033D+02
.49159424D+02
.54519204D+02
.60467650D+02
.66933043D+02
. 73835256D+02
.81086656D+02
.88593309D+02
.96256445D+02
.03974122D+02
.11642994D+02
.19160089D+02
.26424471D+02
.33338711D+02
.39810057D+02
.45751274D+02
.51081100D+02
.556724364D+02
.59611786D+02
.62679570D+02
.64868868D+02
.66125276D+02
.66398457D+02
.65642033D+02
.63813840D+02
.60876604D+02
.56799075D+02
.51557585D+02
.45137968D+02
.37537720D+02
.28768238D+02
.18856969D+02
.07849257D+02




40 1.94084734D+02 2.00591651D+02 1.95568549D+02 1.95809704D+02
41 1.80993089D+02 1.87481942D+02 1.82594299D+02 1.82822868D+02
42 1.68654406D+02 1.73279441D+02 1.68787847D+02 1.68993168D+02
43 1.58351054D+02 1.58105643D+02 1.54271954D+02 1.54443911D+02
44 1.48771735D+02 1.42121962D+02 1.39185632D+02 1.39315410D+02
45 1.27131819D+02 1.25527400D+02 1.23681491D+02 1.23762253D+02
46 4.46534951D+01 1.08552247D+02 1.07922399D+02 1.07949814D+02
47 1.55346505D+02 9.14477533D+01 9.20776012D+01 9.20501863D+01
TIME STEP N = 10 TIME = 1.000000D+02
N T(CN,10.0) T(IM,10.0) T(CN,0.5) T(IM,0.5)
1 1.63893018D+02 1.60961097D+02 1.63842243D+02 1.63691870D+02
2 1.63893018D+02 1.60961097D+02 1.63842243D+02 1.63691870D+02
3 1.64339489D+02 1.61440635D+02 1.64293502D+02 1.64144663D+02
4 1.65229870D+02 1.62393579D+02 1.65190000D+02 1.65044209D+02
5 1.66559423D+02 1.63807706D+02 1.66519752D+02 1.66378496D+02
6 1.68319447D+02 1.65664783D+02 1.68264937D+02 1.68129652D+02
7 1.70488770D+02 1.67940693D+02 1.70402078D+02 1.70274138D+02
8 1.73015370D+02 1.70605619D+02 1.72902275D+02 1.72782980D+02
9 1.75797444D+02 1.73624283D+02 1.75731509D+02 1.75622068D+02
10 1.78708338D+02 1.76956251D+02 1.78850980D+02 1.78752503D+02
11 1.81766055D+02 1.80556309D+02 1.82217504D+02 1.82130992D+02
12 1.85531553D+02 1.84374908D+02 1.85783951D+02 1.85710289D+02
13 1.91273950D+02 1.88358686D+02 1.89499726D+02 1.89439676D+02
14 1.97739037D+02 1.92451051D+02 1.93311280D+02 1.93265480D+02
15 1.81493509D+02 1.96592819D+02 1.97162657D+02 1.97131619D+02
16 2.16687883D+02 2.00722899D+02 2.00996062D+02 2.00980174D+02
17 2.00347495D+02 2.04779008D+02 2.04752455D+02 2.04751980D+02
18 2.06620925D+02 2.08698390D+02 2.08372158D+02 2.08387239D+02
19 2.12071035D+02 2.12418534D+02 2.11795467D+02 2.11826130D+02
20 2.15437950D+02 2.15877872D+02 2.14963284D+02 2.15009441D+02
21 2.17983396D+02 2.19016430D+02 2.17817736D+02 2.17879185D+02
22 2.20259350D+02 2.21776448D+02 2.20302797D+02 2.20379224D+02
23 2.22273396D+02 2.24102933D+02 2.22364906D+02 2.22455881D+02
24 2.23887180D+02 2.25944171D+02 2.23953563D+02 2.24058538D+02
25 2.24986056D+02 2.27252187D+02 2.25021919D+02 2.25140217D+02
26 2.25504128D+02 2.27983159D+02 2.25527333D+02 2.25658142D+02
27 2.25405415D+02 2.28097804D+02 2.25431910D+02 2.25574273D+02
28 2.24665653D+02 2.27561745D+02 2.24703003D+02 2.24855804D+02
29 2.23264206D+02 2.26345859D+02 2.23313673D+02 2.23475631D+02
30 2.21183212D+02 2.24426633D+02 2.21243112D+02 2.21412771D+02
31 2.18408538D+02 2.21786516D+02 2.18477006D+02 2.18652730D+02
32 2.14936727D+02 2.18414276D+02 2.15007844D+02 2.15187818D+02
33 2.10765513D+02 2.14305362D+02 2.10835158D+02 2.11017394D+02
34 2.056902377D+02 2.09462256D+02 2.05965690D+02 2.06148046D+02
35 2.00356424D+02 2.03894793D+02 2.00413482D+02 2.00593680D+02
36 1.94136626D+02 1.97620451D+02 1.94199878D+02 1.94375538D+02
37 1.87254704D+02 1.90664562D+02 1.87353433D+02 1.87522111D+02
38 1.79742283D+02 1.83060434D+02 1.79909730D+02 1.80068966D+02
39 1.71688090D+02 1.74849355D+02 1.71911096D+02 1.72058467D+02
40 1.63276311D+02 1.66080446D+02 1.63406225D+02 1.63539402D+02
41 1.54737116D+02 1 1.54449697D+02 1.54566506D+02

.56810360D+02
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42 1.46007917D+02 1
43 1.35937005D+02 1
44 1.21953324D+02 1
45 1.06529646D+02 1
46 1.36494318D+02 1
47 6.35056823D+01 9
TIME STEP N = 50 TIME
N T(CN,10.0)
1 1.72755621D+02 1
2 1.727556621D+02 1
3 1.72673827D+02 1
4 1.72510259D+02 1
5 1.72264949D+02 1
6 1.71937966D+02 1
7 1.71529519D+02 1
8 1.71039891D+02 1
9 1.70468619D+02 1
10 1.69814657D+02 1
11 1.69084261D+02 1
12 1.68284966D+02 1
13 1.67321730D+02 1
14 1.66516158D+02 1
15 1.65196056D+02 1
16 1.64376714D+02 1
17 1.62900178D+02 1
18 1.61781914D+02 1
19 1.60350076D+02 1
20 1.58926795D+02 1
21 1.57417728D+02 1
22 1.55831283D+02 1
23 1.54174764D+02 1
24 1.52448347D+02 1
256 1.50652966D+02 1
26 1.48790470D+02 1
27 1.46862810D+02 1
28 1.44871968D+02 1
29 1.42820057D+02 1
30 1.40709354D+02 1
31 1.38542286D+02 1
32 1.36321418D+02 1
33 1.34049455D+02 1
34 1.31729232D+02 1
35 1.29363731D+02 1
36 1.26956092D+02 1
37 1.24509559D+02 1
38 1.22027265D+02 1
39 1.19512371D+02 1
40 1.16969693D+02 1
41 1.14405387D+02 1
42 1.11811175D+02 1
43 1.09176385D+02 1

.47102786D+02 -
.37027780D+02
.26660908D+02
.16082223D+02
.05375089D+02
.46249109D+01

O b = b

= 5.000000D+02

T(IM,10.0)

.72795084D+02
.72795084D+02
.72715496D+02
.72556316D+02
.72317541D+02
.71999167D+02
.71601194D+02
.71123629D+02
.70566494D+02
.69929829D+02
.69213701D+02
.68418212D+02
.67543503D+02
.66589770D+02
.65557268D+02
.64446320D+02
.63257332D+02
.61990799D+02
.60647314D+02
.59227582D+02
.57732425D+02
.56162793D+02
.54519771D+02
.52804591D+02
.51018632D+02
.49163431D+02
.47240689D+02
.45252270D+02
.43200209D+02
.41086711D+02
.38914153D+02
.36685081D+02
.34402212D+02
.32068425D+02
.29686764D+02
.27260423D+02
.24792748D+02
.22287222D+02
.19747457D+02
.17177188D+02
.14580254D+02
.11960591D+02
.09322218D+02
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.45101413D+02
.35425939D+02
.25491770D+02
.15370535D+02
.05136137D+02
.48638634D+01

T(CN,0.5)

.72752317D+02
.72752317D+02
.72670560D+02
. 72507069D+02
.72261895D+02
.71935113D+02
.71526827D+02
.71037176D+02
.70466331D+02
.69814505D+02
.69081957D+02
.68268995D+02
.67375986D+02
.66403359D+02
.65351613D+02
.64221325D+02
.63013152D+02
.61727848D+02
.60366260D+02
.58929342D+02
.57418159D+02
.55833893D+02
.54177850D+02
.52451463D+02
.50656301D+02
.48794068D+02
.46866608D+02
.44875910D+02
.42824105D+02
.40713471D+02
.38546429D+02
.36325543D+02
.34053520D+02
.31733203D+02
.29367569D+02
.26959723D+02
.24512892D+02
.22030417D+02
.19515747D+02
.16972428D+02
. 14404095D+02
.11814460D+02
.09207303D+02

O b b b
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.45199892D+02
.35504396D+02
.25548830D+02
.15405185D+02
.05147757D+02
.48522434D+01

T(IM,0.5)

. 72755292D+02
. 72755292D+02
.72673635D+02
.72510344D+02
. 72265465D+02
.71939070D+02
.71531261D+02
.71042166D+02
.70471953D+02
.69820826D+02
.69089034D+02
.68276876D+02
.67384709D+02
.66412951D+02
.65362088D+02
.64232686D+02
.63025393D+02
.61740947D+02
.60380185D+02
.58944049D+02
.57433593D+02
.55849988D+02
.54194530D+02
.52468643D+02"
.50673886D+02
.48811955D+02
.46884689D+02
.44894071D+02
.42842226D+02
.40731430D+02
.38564101D+02
.36342804D+02
.34070244D+02
.31749267D+02
.29382854D+02
.26974112D+02
.24526276D+02
.22042692D+02
.19526817D+02
.16982207D+02
.14412505D+02
.11821435D+02
.09212787D+02




44
45
46
47

1.06695676D+02
1.03730576D+02
1.01630387D+02
9.83696131D+01

1.06669219D+02
1.04005737D+02
1.01335947D+02
9.86640529D+01

1.06586459D+02
1.03955807D+02
1.01319258D+02
9.86807415D+01

1.06590408D+02
1.03958190D+02
1.01320055D+02
9.86799454D+01
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Table 5.

Growth Factors for the Adams-Bashforth Wave Equation

B

.8125E-04
.5625E-03
.1250E-03
.2500E-03
.2500E-02
.5000E-02
.0000E-02
.0000E-01
.0000E-01
.0000E-01
.0000E-01

.6000E+00

(9.
.98023224E-07,

(2

(9.
(1.

(9.
(4.

(9.
(1.

(9.
(7.

(9.
(3.

(9.
.25077367E-03,

a

(9.
(5.

(9.
(2.

(9.
(8.

(7.
(2.

(6.
(3.

99999702E-01,
99998808E-01,
22189522E-06,

99995112E-01,
88758087E-06,

99980450E-01,
95503235E-05,

99921918E-01,
81118870E-05,

99687433E-01,
12536955E-04 ,

98749256E-01,
94987607E-01,
01239300E-03,

79807079E-01,
01929212E-02,

17540193E-01,
24598074E-02,

43160725E-01,
56839305E-01,

80870414E-01,
19129586E-01,

program roots
complex rootp, rootm, arg, one, half

one =
half
beta

do i

-1

-2
-9

.81250128E-04)
.90624919E-04)

.56250107E-03)
.81249080E-04)

.12500773E-03)
.56249246E-03)

.25006109E-03)
.12493904E-03)

.25004891E-02)
.24951208E-03)

.50039101E-02)
.24960914E-02)

.00313491E-02)
.49686539E-02)

.00253165E-01)
.97468449E-02)

.02104285E-01)
.78957266E-02)

.19748962E-01)
.80251062E-01)

.01125073E+00)
.88749343E-01)

.30576420E+00)
.42360163E-02)

compute argument of the square root

arg = one - cmplx(2.25 * beta * beta, beta)
sqrt(arg)

arg =

26

.000000E+00
.525879E-07

.000000E+00
.103516E-07

.000000E+00
.441407E-06

-999999E-01
. 765627E-06

.000000E+00
.906250E-05

.000000E+00
.562500E-04

.000003E+00
.249981E-04

.000051E+00
.499873E-03

.000868E+00
.991327E-03

.018069E+00
.929007E-02

.574916E+00
.015927E-01

.780133E+00
.107241E-01




¢ +++ compute complex roots
rootp = (cmplx(l., -1.5 * beta) + arg) * half
rootm = (cmplx(1l., -1.5 * beta) - arg) * half
write (*,10) beta, rootp, rootm
10 format (/’> beta =’,1p,e14.6/’ rootp =’,2e16.8/’ rootm =7,
1 2e16.8)

¢ +++ magnitudes
rpstar = rootp * conjg( rootp )
rmstar = rootm * conjg( rootm )
write (*,20) rpstar, rmstar
20 format (’ magnitudes =’,1p,2e14.6)

beta = beta * 2.
enddo

stop
end
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Table 6.
Wave Equation Program

Fortran code for first order wave equation

program advect

implicit double precision (a-h,0-z)

common /hhi/ T(259),X(259),F(259)

common /hh2/ SBE?SQ),SG(QSQ),AA(QSQ),BB(259),CC(259),DD(259),
1 TT(259)

open (unit=12,file=’advect.out’,form="formatted’)

C 4 ookl ok ok ok ok ok ok ok ok kK o Kok ok ok ok ook ok Aok ok ok sk sk ok ok K Kok ok
+++ % * SET INPUT VARIABLES * *
¢ +++ * JB = NUMBER OF REAL CELLS

O

JB=12

¢ +++ * DX = SPATIAL STEP SIZE
DX=1.d4+00

¢ +++ * X0 = LEFT BOUNDARY LOCATION
X0=0.4+00

¢ +++ * NT = NUMBER OF CYCLES TO BE RUN
NT=25

¢ +++ * NP = NUMBER OF CYCLES BETWEEN PRINTS
NP= 1

¢ +++ x DT = TIME STEP
DT=0.14+00

¢ +++ % TIME = ELAPSED PROBLEM TIME
TIME=0.4+00

write (12,5000) JB,DX,X0

5000 format (’ advect output’// ’ No. of real cells JB =’,i5,
1’ DX =’,ip,d14.6,’ X0 =’, d14.6)
write (12,5001) NT, DT

5001 format (> No. of time steps NT =’,i7,’ DT =’,1p,d14.6)
write (12,5002) NP

5002 format (> Print freq. NP =’,i6/ )

+4++

b skl sk sk ok ok ok Kk ek ok sk sk sk sk e sk ok sk ok ok o ook s ok ok sk o ke ke o s o sk sk skok ok ok ok ok ok koK ok ke ke ok

+++ * % INITIALIZE SOME VARIABLES * *

+4++

O00O0

J1=JB+1
J2=JB+2
J3=JB+3
L2=J2
MP=0

do 6000 J = 1, J3
X(J) = real(d)
X(J) = DX * (X(J) - 2.d+00) + XO
6000 continue :
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Cc +++
¢ +++ x ¥ SET AVERAGE CELL CENTERS AND INITIAL T * x*
Cc +++
do 6001 J = 2, J2

T(J) = 0.4+00

IF (mod(J,4) .eq. 3) T(J)=1.4+00

IF (mod(J,4) .eq. 1) T(J)= -1.4+00

TT(I)=T(J)
6001 continue

C H+ kokkokskokoskokdokoksk ko oksk ok ok sk ok ko ok ok o skl ok ok ok ok ok ok ok skok ok sk ok sk ok ok ok ok sk o ok sk koK sk
¢ +++ * * SET BOUNDARY CONDITIONS ON T * =*

T(1) = T@J1) .
T(J2) = T(2)
TT(1) = T(1)

TT(J2)= T(J2)
N=0

C e+ dkodokokokokskok kokokok sk ok okok ok skok dekok ok ko ok ok ok ook ok ok o ok ok ok ko ok ok sk o Kok ek Kk ok ok sk ko
¢ +++ * * PRINTING ROUTINE * x*
write (12,5008) N, TIME
5008 format (/’ TIME STEP N =’,i7,’ TIME =’,1p,d14.6//
1 5x,’N’,10x,°’T’/)

do J=1, J2
write (12,5007) J, T(I)
5007 format (1x,i5,1p,d16.8)
enddo
MP=MP+NP

C b dkokkokok ko ook ok ok ok o ok s ok 3 5k 2k ke ok e ok e 2k o ok ok 3k ok ok sk ok 3k ok ok Sk sk ak ok ok ok ok ok ok ok 3k ok 3 ok ok ok 3k ok ok ok ok ok ok ok ok ok ok kok ok

¢ +++ x % TIME STEP LOOP * *
do 6006 N=1, NT
TIME=TIME+DT

do j =1, J2
AA(3) = TT(J
TT(j) = T(3)
enddo

do 6007 J=2, J1

¢ all velocities = 1.0

¢ donor cell
T(J)=TT(J)-(DT/DX)*(TT(J)-TT(J-1))

¢ Euler centered
T(J)=TT(J)-(DT/(2.4+00*DX) ) *(TT(J+1)-TT(J-1))

¢ Adams-Bashforth
T(I)=TT(J)-(DT/(4.4+00%*DX))*(3.d+00*TT(J+1)-3.4+00*TT (J-1)
1 -AA(J+1)+AA(J-1))

6007 continue

C +++ okkokskokoksdokskokokokskoksksk sk sk sk ook sk skl sk ok ok skesk ok sk sk sk i ok ok sk ok sk ok ok ko ok ke sk ok ok ke ok ok ok sk ok sk sk ok ok
¢ +++ % x SET BOUNDARY CONDITIONS ON T * *
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T(1) = T(J1)
TJ2) = T(2)

* * CALL THE PRINT ROUTINE * *
IF (N .eq. MP) THEN

write (12,5008) N, TIME
do J=1, J2
write (12,5007) J, T(QJ)
enddo
MP=MP+NP
endif
continue
close (unit=12)

stop
end
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Table 7.
Wave Equation Examples

Numerical examples for Euler’s method and Adams-Bashforth

advect output - Euler’s method

12 DX 1.000000D+00 X0 = 0.000000D+00

No. of real cells JB =
50000 DT = 1.000000D-01

No. of time steps NT
Print freq. NP = 2000

TIME STEP N = 0 TIME = 0.000000D+00

N T

1 -1.00000000D+00
2 0.00000000D+00
3 1.00000000D+00
4 0.00000000D+00
5 -1.00000000D+00
6 0.00000000D+00
7 1.00000000D+00
8 0.00000000D+00
9 -1.00000000D+00
10 0.00000000D+00
11 1.00000000D+00
12 0.00000000D+00
13 -1.00000000D+00
14 0.00000000D+00

TIME STEP N = 2000 TIME = 2.000000D+02
T
3.21141545D+03
2.07116638D+04
-3.21141545D+03
.07116638D+04
3.21141545D+03
2.07116638D+04
~3.21141545D+03
-2.07116638D+04
3.21141545D+03
10 2.07116638D+04
11 -3.21141545D+03
12 -2.07116638D+04
13 3.21141545D+03
14 2.07116638D+04

OO~ WN =
I
[\S]

TIME STEP N = 4000 TIME = 4.000000D+02
N T
1 4.18659827D+08
2 -1.33027514D+08
3 -4.18659827D+08
4 1.33027514D+08
5 4.18659827D+08
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6 -1.33027514D+08
7 -4.18659827D+08
8 1.33027514D+08
9 4.18659827D+08
10 -1.33027514D+08
11 -4.18659827D+08
12 1.33027514D+08
13 4.18659827D+08
14 -1.33027514D+08

TIME STEP N = 26000 TIME = 2.600000D+03
T
1.36965341D+56
-6.26452543D+55
-1.36965341D+56
6.26452543D+55
1.36965341D+56
-6.26452543D+55
-1.36965341D+56
6.26452543D+55
.36965341D+56
-6.26452543D+55
-1.36965341D+56
6.26452543D+55
1.36965341D+56
-6.26452543D+55

S e b
BRONROWO NN WN ==
[y

advect output - Adams-Bashforth

12 DX 1.000000D+00 X0 = 0.000000D+00

No. of real cells JB =
100000 DT = 1.000000D-01

No. of time steps NT
Print freq. NP = 2000

]

TIME STEP N = 0 TIME = 0.000000D+00

N T

1 -1.00000000D+00
2 0.00000000D+00
3 1.00000000D+00
4 0.00000000D+00
5 -1.00000000D+00
6 0.00000000D+00
7 1.00000000D+00
8 0.00000000D+00
9 -1.00000000D+00
10 0.00000000D+00
11 1.00000000D+00
12 0.00000000D+00
13 -1.00000000D+00
14 0.00000000D+00

TIME STEP N = 2000 TIME = 2.000000D+02
N T
1 -1.03124710D+00




2 2.34795194D-01
3 1.03124710D+00C
4 -2.34795194D-01
5 -1.03124710D+00
6 2.34795194D-01
7 1.03124710D+00
8 -2.34795194D-01
9 -1.03124710D+00
10 2.34795194D-01
11 1.03124710D+00
12 -2.34795194D~-01
13 -1.03124710D+00
14 2.34795194D-01

TIME STEP N = 4000 TIME = 4.000000D+02
T
~1.00353378D+00
4.81324783D-01
1.00353378D+00
-4.81324783D-01
.00353378D+00
4.81324783D-01
1.00353378D+00
-4.81324783D-01
-1.00353378D+00
10 4.81324783D-01
11 1.00353378D+00
12 -4.81324783D-01
13 -1.00353378D+00
14 4.81324783D-01

OOO~NONPHWN - =
t
[ees

TIME STEP N = 26000 TIME = 2.600000D+03
T
1.89599314D+00
4.58908413D-01
-1.89599314D+00
-4.58908413D-01
1.89599314D+00
4.58908413D-01
-1.89599314D+00
-4.58908413D-01
. 1.89599314D+00
10 4.58908413D-01
11 -1.89599314D+00
12 -4.58908413D-01
13 1.89599314D+00
14 4.58908413D-01

OO~ WN -

TIME STEP N = 50000 TIME = 5.000000D+03

N T

1 -2.75465441D+00
2 -2.31462859D+00
3 2.75465441D+00
4 2.31462859D+00
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woo~NoOm

10
11
12
13
14

.75465441D+00
.31462859D+00
.75465441D+00
.31462859D+00
.75465441D+00
.31462859D+00
.75465441D+00
.31462859D+00
.75465441D+00
.31462859D+00

TIME STEP N = 100000

[are
QWO WM~ 2

[y
ey

s
W N

T

.21296301D+00
.26892226D+01
.21296301D+00
.26892226D+01
.21296301D+00
.26892226D+01
.21296301D+00
.26892226D+01
.21296301D+00
.26892226D+01
.21296301D+00
.26892226D+01
.21296301D+00
.26892226D+01

TIME =

1.000000D+04




