
ORNL/CP-101263

CAN CAVITATION BE ANTICIPATED?*

Stephen W. Kercel, Glenn O. Allgood, William B. Dress, James O. Hylton
Oak Ridge National Laboratory

P.O. BOX2008
Oak Ridge, Tennessee 37831-6011

(423) 574-5278

To be presented at the
American Nuclear Society Eighth International Topical Meeting

on Robotics and Remote Systems
Pittsburgh, Pennsylvania

April 25-29, 1999

“Ike submittedrmmtsaipthas beenmthoredby a contractorof theU.S.
GmmmentundercontractNo. DE.AC054MDR22464.Accordingly,the
US.C2JVemmentretainsa nonexclusive,myd&4ke ticase topubkh or
ti~@-Wd f- ofthis conhibudcm,orallowothersto do so,
forU.S.COvemmmtpwp05es.”

*This research was performed at OAK RIDGE NATIONAL LABORATORY, managed by
LOCKHEED MARTIN ENERGY RESEARCH CORP. for the U.S. DEPARTMENT OF ENERGY under
contract DE-AC05-960R22464.



DISCLAIMER

This report was prepared as an account of work sponsored
byanagency of the United States Government. Neither the
United States Government nor any agency thereof, nor any
of their employees, make any warranty, express or implied,
or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or
any agency thereof.



DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.



CAN CAVITATION BE ANTICIPATED?

Stephen W. Kercel*, Glenn O. Allgood, William B. Dress, James O. Hylton

Oak Ridge National Laboratory,+ P.O. Box 2008, MS-6011, Oak Ridge, TN 37831-6011

ABSTRACT

The major problem with cavitation in pumps and hydraulic systems is that there is no effective
(conventional) method for detecting or predicting its inception. The traditional method of recognizing
cavitation in a pump is to declare the event occurring when the total head drops by some arbitrary value
(typically 3%) in response to a pressure reduction at the pump inlet. However, the device is already
seriously cavitating when this happens. What is actually needed is a practical method to detect
impending rather than incipient cavitation. Whereas the detection of incipient cavitation requires the
detection of features just after cavitation starts, the anticipation of cavitation requires the detection and
identification of precursor features just before it begins.

Two recent advances that make this detection possible. The first is acoustic sensors with a bandwidth of
1 MHz and a dynamic range of 80 dB that preserve the fine details of the features when subjected to
coarse vibrations. The second is the application of Bayesian parameter estimation which makes it
possible to separate weak signals, such as those present in cavitation precursors, from strong signals,
such as pump vibration. Bayesian parameter estimation derives a model based on cavitation
hydrodynamics and produces a figure of merit of how well it fits the acquired data. Applying this model
to an anticipatory engine should lead to a reliable method of anticipating cavitation before it occurs.

This paper reports the findings of precursor features using high-performance sensors and Bayesian
analysis of weak acoustic emissions in the 100-1000kHz band from an experimental flow loop.

1. INTRODUCTION

The ultimate objective of this research is to provide a basis for condition-based maintenance of pumps
through the detection of impending catastrophic failures. Catastrophic is meant in the mathematical
sense. A system experiences a catastrophe when it abruptly changes, or bifi.u-cates, to a fimdamentally
different state. Some catastrophes are irreversible, such as bearing failure. An irreversible catastrophe
damages the system, and can only be reversed by repairing the damage. The most cost-effective way to
deal with a catastrophic failure is to perform the repairjus[ bejiore thefailure occurs.

Is such a fantastic idea practical? The discipline of anticipatory systems suggests that it is. An
anticipatory system is based on inductive learning models of a system and its environment. To
demonstrate that the models for an anticipatory system can be learned from sensory data, it is convenient
to try to anticipate a reversible catastrophe, such as cavitation. A reversible catastrophe can be remedied
and repeated simply by changing the operating point of the system.
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This paper reports our initial examination of a reversible catastrophe. The same catastrophe was
repeated on the same system often enough that a statistically significant quantity of data was collected.
From these data, we have made a preliminary identification of the signature of an incipient catastrophe.
In principle a method that detects incipient reversible catastrophes should work for irreversible
catastrophes as well, and the principle can be demonstrated without destroying hardware. The technique
is to identi~ the non-linear mathematical model that underlies the process, locate its bifurcation point,
and observe the proximity of the present operating point to the bifiucation point.

Bayesian parameter estimation was used to identi~ the model describing these data. It should be noted
that through Bayesian analysis of experimental data it is often easier to obtain a non-linear differential
equation describing a process than the function that solves the differential equation. The differential
equation is much more than a “curve-fitted” estimate of a finction. The processes in which we are
interested are non-linear, and often do not have a solution in closed mathematical form. For example,
consider the Lorenz equations. The solution is a function of applied energy, viscosity and several other
things. At low energy the behavior is highly periodic. At higher energies it is chaotic. There is no
closed form function that describes this behavior. However, the entire description is subsumed in the
system of differential equations. The bifurcation point can be deduced from several of the parameters of
the equations, and the present operating point can be determined from observed data. All this can be
done with no description of the solution except the observation that it is whatever fiction happens to
solve the system of equations.

In the present work, which is preliminary in nature, we have obtained a fiction that describes the
acoustic emission (AE) signature of the cavitation bubble. In future research on the same data sets, and
on similar data, we intend to obtain a better model by directly fitting the non-linear differential equation.
This should produce a highly adaptive and inductive system for real-world data.

This type of analysis is completely unknown in the conventional practice of predictive or condition-
based maintenance (CBM). The most advanced methods currently used in CBM are reported by
Williams, et a). 1 They note that neural networks are completely unsuitable for CBM. In their words:
“The field of neural nets is growing rapidly and is likely to yield useful results in the future but there is
an element of ‘suck it and see’ about it.”

These same authors note that vibration measurement gives very rich diagnostic information at low cost,
and is most effectively done with piezoelectric accelerometers and model-based analysis. It is also
noteworthy that in their discussion of modeling, they limit themselves to linear modeling. Although
non-linear models are more difficult to identifi, they contain the information needed to anticipate
catastrophes.

Conventional pum diagnostic analysis is based on simple curve fitting, Fourier analysis, and trending
Yof vibration data.2> ‘4 These methods are inadequate for several reasons. First, they discard most of the

information generated by the sensor. Second, they make important decisions based on extrapolation,
when it is well known that catastrophic pump failures are not predicted by extrapolation. Third, AE
signatures of defective pumps are highly non-stationary, and Fourier analysis averages out the
interesting features.

Greene and Casada note that conventional testing procedures themselves can cause pump failure.3 This
fhrther indicates the need for anticipatory measurements. These must be based on non-stationary
models.
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2. CAVITATION

Cavitation is the formation of vapor bubbles in a liquid whose locaI pressure falls below the vaporization
point for the ambient temperature of the liquid. It is complementary to the idea of boiling, in which the
local temperature rises above the vaporization point for the ambient pressure of the liquid. Cavitation is
a problem for several reasons. As with boiling, it is turbulent and disrupts attempts to control flows.
Also, when the vapor bubbles recondense to liquid, the bubbles collapse violently, creating darnaging
shock waves in the liquid.

Mathematical theory suggests that the AE signature should be most readily detectable in the 100-200
kHZ band.5’G Fluid viscosity will cause the signature to be damped. Decreasing natural frequency of the
cavitation bubble cloud with increasing void-fraction will cause the signature to chirp downward in
frequency. As seen in Section 5, this is exactly what the authors have observed experimentally.

3. ANTICIPATORY SYSTEMS

Of what use are these signatures? The objective of this research is to develop a system that will
anticipate cavitation. The anticipation is based on the recognition of precursor features in non-cavitating
fluid. This strategy is similar to the appeal to the “Doggie Existence Theorem,” in mine detection.7 The
argument being that if dogs can detect mines, then the problem is solvable. A slight generalization of the
“Doggie Existence Theorem” is a common justification for the development of electronic systems that
seek to emulate biological cognition. Assuming that biological percepts can be encoded, an electronic
system should be able to emulate the process by which a biological system extracts features from
sensory cues to identify the presence of a suspected effect.

Does the idea of computational emulation of a biological process actually provide a practical basis for a
novel approach to extracting meaning fi-om noisy data? Recent research by Landauer and Bellman
suggests that, in principle it does.8 Biological systems process signs and symbols to gain awareness of
their environment and their processing skill improves with experience. They commonly use the data
inferred from these symbols to perform classification and grouping, and lhey do nol do so by identzfiing

boundaries behveen classes. The way that biological systems perform classification suggests that there
exists a semiotic unifying principle of classification that is applicable to computational systems.9

Landauer and Bellman define semiotics as “the study of the appearance (visual or otherwise), meaning,
and use of symbols and symbol systems.” From their examination of classification by biological
systems, they conclude that it would require a radical shift in how symbols are represented in computers
to emulate the biological classification process in hardware. However, they argue that semiotic theory
should provide the theoretical basis for just such a radical shift. Landauer and Bellman do not claim to
have discovered the Ur@ing semiotic principle of pattern-recognition, but they suggest that it must be
inductive in character. 10

Indeed, the development of a unified inductive-learning model is the key to artificial intelligence. 11’12
Induction is defined as a mode of reasoning that increases the information content of a given body of
data. The application to pattern-recognition in general is obvious. An inductive pattern recognize would
learn the common characterizing attributes of all (possibly infinitely many) members of a class from
observation of a finite (preferably small) set of samples from the class and a finite set of samples not
from the class. The problem arises due to the fact that the commonly used “learning” paradigms (neural
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nets, nearest neighbor algorithms, etc.) are based on identi~ing boundaries between classes, and are
incapable of inductive learning.

How then should induction be performed? The leading thinkers in machine intelligence believe it should
somehow emulate the process used in biological systems. That process appears to be model-based.
Rosen provides an explanation for anticipatory behavior of biological systems in terms of interacting
models.

Rosen shows that traditional reductionist modeling does not provide simple explanations for complex
behavior. What seems to be complex behavior in such models is in fact an artifact of extrapolating the
model outside its effective range. Genuine complex behavior must be described by anticipatory
modeling. In Rosen’s words: “In particular, complex systems may contain sub-systems which act as
predictive models of themselves and/or their environments, whose predictions regarding fhture
behaviors can be utilized for modulation of present change of state. Systems of this type act in a truly
anticipatory fashion, and possess many novel properties whose properties have never been explored.” In
other words, genuine complexity is characterized by anticipation. 13

Rosen defines a formal anticipatory system (AS) (a mathematical formulation that exhibits anticipatory
behavior) as having five attributes. An AS, S2, must contain the model, M, of another system. S1. The
AS, S2, must contain a set of observable quantities that can be linked mathematically to S1 and an
orthogonal set that cannot. The predictions of the model, M, can cause an observable change in S2.
There must be some observable difference in the interaction between SI and S2 when the model is
present and when it is not. Finally, M must be predictive; based on present knowledge, M must change
state faster than S 1, such that M’s changed state constitutes a prediction about S 1. The point of this
discussion is that intelligent behavior is model-based and in the absence of models, there is no intelligent
behavior. More to the point, these models must bear some resemblance to physical reality if the behavior
of the intelligent system is to have utility in the real world. 14

What is the best way to obtain the models required for an AS? The simple answer is to observe reality to
a finite extent and then to generalize from the observations. To do so is inherently to add information to
the data, or to perform an induction. It requires the generation of a likely principle based on incomplete
information, and the principle may later be improved in the light of increasing knowledge. Where
several possible models might achieve a desired goal, the best choice is driven by the relative economy
of different models in reaching the goal.

4. BAYESIAN PARAMETER ESTIMATION

How migh:;his be done in practice with noisy data? The most powerful method is Bayesian parameter
estimation. Bayesian drops irrelevant parameters without loss of precision in describing relevant
parameters. It filly exploits prior knowledge. Most important, the computation of the most probable
values of a parameter set incidentally includes the measure of the probability. That is, the calculation
produces an estimate of its own goodness. By comparing the goodness of alternative models, the best
available description of the underlying reality is obtained. This is the optimal method of obtaining a
model from experimental dat~ or of predicting the occurrence of future events given knowledge from
the past, and of improving the prediction of the future as knowledge of the past improves. 16Bayesian
parameter estimation is a straightforward method of induction.
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Bayesian parameter estimation describes our best guess of the description of the signal as the weighted

sum of several model functions. Its amplitude, or linear parameter, gives the relative contribution of

each model fimction to the overall model. In addition, within each model function, there may be one or
more nonlinear parameters. In this technique, the distinguishing feature of a physical effect is the list of
model fimctions and their parameters. This is a somewhat more general concept of the “feature vector”
of conventional pattern recognition.

There are as many amplitude parameters as model fi.mctions, but the nonlinear parameters in each model
ii.mction must be searched for. All the nonlinear parameters are included in the argument of the
probability fimction; the amplitude parameters are implicit in the number of model functions in the
model (the model’s dimensions). The time or sampling points are assumed to consist of a sequence of
regularly spaced integers from 1 to the length of the data set. If we wish to scale the sampling points,
simply include the scale factor as a (known) nonlinear parameter. Thus, the model for a single
oscillatory term might be

{1, cos(cot), sin(cot)} or {1, cos(27cc0tK), sin(2m.OtK)} (1)

where K is a scaling factor that converts the integer samples represented by t to microseconds, for
example, letting m represent the frequency in MHz. In the first expression, co is the frequency in
radians. Consider a model of linear chirp:

{1, COS(27T01tK+ ~K2i?), Sill(27UDtK+ CtK2t2)}. (2)

Here, there are three explicit nonlinear parameters (u, K, and m) and three implicit amplitude parameters.

One of the nonlinear parameters is known, namely K, the time-scale parameter. The two unknown
parameters are a and co, leading to a two-dimensional search or optimization problem in the ~,cz-plane.
Generally, if there are m unknown nonlinear parameters, the problem becomes a search in an m-
dimensional space for the peak of the likelihood fiction. Should this prove too much of a
computational burden, individual nonlinear parameters may be removed by integration in the usual
manner-however, this may prove more difficult than a high-dimensional search.

A log likelihood is the log of the Student-t distribution. This assumes an integration over all the linear
model parameters. The Student-t is computed from the projection of the data onto the orthogonalized
model—which should be the same number as the projection of the data onto the model and the inner
product of the data vector with itself as St = [1 – (d.rn/d.d)](m-n)’2,where d.m is the projection of the data
onto the model, and d.d is the projection of the data onto itself.

5. EXPERIMENTAL RESULTS

The observable measured in this experiment are the broadband AE signatures of a venturi chamber in a
flow loop. The AE data are known to contain features of incipient cavitation and are suspected of
containing features of impending cavitation. 17 Previous experimenters have reported unmistakable
features of incipient cavitation, but concluded that much richer information was being lost due to the
limitations of the then-available hardware.
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To search for features of impending and incipient cavitation in AE data, the experiment reported in this
paper began where the work of Neill et al. left off. The authors used a flow loop at Oak Ridge National
Laboratory (ORNL) that is routinely used for calibrating various flow devices. The source of AE
signatures was a venturi chamber inserted into the flow loop. The venturi chamber was designed
specifically for this experiment and is similar to the one described by Neill et al.

The authors used a Vallen Systeme AMSY4-MC6 AE monitor (Vallen ID number 40900) to collect the
data. A complete set of AE signatures at various flow rates was collected with broadband piezo-electric
AE sensors (Vallen SE-1025-H, usable frequency response from 10 kHz through greater than 400 kHz).
Another complete set of AE signatures at various flow rates was collected with nazrowband piezo-
electric AE sensors (Vallen SE-9125-M, usable frequency response from 20 kHz through 200 kHz). The
sampling rate was 10 million samples per second. The dynamic range was approximately 80 dB. This
paper includes highlights of the experimental data.

A typical example of the time-domain signature of a cavitation event seen in the AE data is shown in
Figure 1. This type of signature occurs very frequently at high flow rates (thousands of instances per
second at flow rates above 20 gallons per minute (gpm)). This is a particularly clean instance from the
unrefined raw data of the many cavitation events observed at 30 gpm and is used to derive a model of
the cavitation event. The amplitude is normalized to 1 at the peak value of the signature. The time-axis is
in units of ~sec.

1

0.5

0 :?’-’-”--’--”-’--’”’

-0.5

, \J%:,
-1

0 50 100 150 200

Figure 1. AE signature at 30 gpm.

A linear-chirped damped sinusoid is easily fitted to these data. The model is {e-wcos(cotK + cuc2t2), e-v

sin(cWc + CtK21?)). Assume K=l. Bayesian parameter estimation computes that the most probable
nonlinear parameter values are co = 0.0877091, et = -0.000923205, and y = 0.00553404. As shown in
Figure 2, this provides a very good first order fit to the data. The damped chirp model is used in the
subsequent analyses in this paper. The utility of a more sophisticated model (nonIinear chirps and other
decay envelopes) to describe these data will be investigated in fbture research.

6 Log No. Kercel-1



1

:J~l

0.5 :/ ‘\

o f ‘k

I

-0.5

-1
# 50 100 150 200

Figure 2. Fitted damped chirp model and observed data.

Figure 3 shows a typical frame of data captured at 30 gpm with the narrowband sensor. From the audible
crackling from the venturi chamber, we know that severe cavitation was occurring. Figure 3 shows a
little over 2000 psec of data with maximum amplitude of approximately 20,000 pV. mote: In Figure 3,
5,7, and 9 the vertical-axis is the raw AE sensor output in pV.]

20000
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-5000
-10000
-15000 4+

o 500 1000 1500 2000

Figure 3. Several cavitation events at 30 gpm.

Likelihood is computed for each set of 240 data points in the signature data as the model (used as a
matched filter) is swept forward one sample at a time. The nonlinear parameters and then the linear
parameters are calculated for the model and the goodness of the fit is determined by computing the
Log(likelihood) in dB. As shown in Figure 4, the signature of Figure 3 includes four events that are very
likely damped chirp events. Similar data are shown in Figures 5 and 6 at a 20 gpm flow rate.

Li.k elihond [ d13]

-
# 25Il 500 750 1000 1250 1500 1750

Figure 4. Likelihood of damped chirp events in the signature in Figure 3.
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Figure 5. Severalcavitation events at20gpm.
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Figure 6. Likelihood ofdamped chirp events inthesignature in Figure5.

Atflowratesbelow 18 gpm, darnpedchirp features areveryrare occurrences. As Figures 7and8 show,
atypical data set collected at 17 gpm impractically indistinguishable from the electronic noise of the
experimental setup. ~ote:The noise floor of the electronics is 1 pVrms.]
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Figure 7. Typical data set at 17 gpm.
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Figure 8. Likelihood of damped chirp events in the signature in Figure 7.

Compare Figures 7 and 8 with Figures 9 and 10. Figure 9 is a typical time domain signature with the
sensors mounted on the venturi section, but with zero flow through the flow loop. This is the AE
signature of the noise from the environment plus the experimental apparatus itself. As seen in Figure 10,
if the log likelihood measure is below 750, it is very unlikely that a damped chirp feature is present in
the data.
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Figure 9. Typical data set at zero flow.
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Figure 10. Likelihood of damped chirp events in the signature in Figure 9.

Although damped chirps are rare at 17 gpm, they do occur occasionally. Figure 11 (time domain shown
higher, likelihood shown lower) shows the only events captured at 17 gpm with the broadband sensors
that do not look just like noise. bursts are apparent in the time domain data, a stronger burst near the
beginning, and a weaker one just after the strong one. Both are only a little stronger than the background
noise.

ZZBSPI 7(2?)

Figure 11. A possible damped chirp at 17 gpm.

Figure 12 shows more details of the log likelihood plot from Figure 11. It is noteworthy that the weaker
burst between times 700 and 900 is more likely to-be a damped chirp than the stronger burst between
times 200 and 400. If the “threshold of cavitation” is between 17 and 18 gpm, it is possible that the very
weak damped chirp (amplitude on the order of 10 pV) in the 17 gpm data is a precursor to the very
strong damped chirp (amplitude on the order of 10 mV) signature in the data at 18 gpm and above. This
needs to be investigated in more detail in subsequent research.
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Figure 12. Log likelihood of damped chirp at 17 gpm.

Comparing the 17 gpm data with the zero flow data, it appears that a crude way to distinguish between
the presence and absence of damped chirps is to use the log likelihood of 750 as a threshold. The
damped chirp appears to be a cavitation signature, although this remains to be confirmed by further
investigation. Weak damped chirps (amplitudes of approximately 10 pV with this experimental setup)
with a high log likelihood (greater than 750) appear to be a useful cavitation precursor.

In future work, a less crude (and more reliable) method of deciding whether or not the cavitation
signature is present would be a Rosen anticipation engine. The interacting models in the Rosen
anticipation engine would be derived from experimental data similar to these and the theory already
described. Such a system would inductively learn the signature of cavitation, with the effectiveness of
the learning improving over time as the anticipation engine gains experience.

A bit of interpretation of the data yields some usefil guidance at this point. The dominant frequencies of

the damped chirps are in the digital frequency range of 0.08 <= co <= 0.1 radians. The sampling rate is
107 samples per second, meaning that the digital frequency of n corresponds to 5 MHz. Thus, the
underlying dominant frequency of the physical chirps is in the range of 127-159 kHz. This is well within
the flat response range of the broadband AE sensors. It is also in the resonance peak of the narrowband
sensors whose sensitivity in the resonant band tends to be 5-15 dB greater than the sensitivity of the
broadband sensors. This suggests that at flow rates below 17 gpm, we should see occasional weak high-
likelihood damped chirps with the narrowband sensors. We did.

For example, consider the data set shown in Figure 13, observed at 14 gpm with the narrowband sensors.
Note that the two bursts most likely to be damped chirps are barely stronger than the noise and that the
matched filter does not show a strong response to the much stronger signal that is unlikely to be a
damped chirp.
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Figure 13. Likely damped chirps at 14 gpm in narrowband data.

Figure 14 shows more details of the log likelihood plot. It is noteworthy that three very weak damped
chirps (amplitude below 10 pV) in the 14 gpm data are very likely to be damped chirps. It is also
noteworthy that the strong burst at the beginning of the time domain signal is unlikely to be a damped
chirp. Among other things, this illustrates that Bayesian parameter estimation does not confuse strong
undesired signals with the damped chirp. Similar results are seen at 13 gpm, but the events are rarer and
weaker than at higher flow rates.

1517d
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1000
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50 u

250

(J

Figure 14. Log likelihood of damped chirps at 14 gpm.

6. CONCLUSIONS ANI) FURTHER RESEARCH

The foregoing analysis is very preliminary and needs to be validated both by further analysis of the
extensive data collected during the initial phase of this research and by the collection of additional data.
However, several preliminary conclusions appear to be reasonable. First, that damped chirp AE
signature seems to be a distinguishing feature of cavitation. Second, above the “threshold of cavitation”
strong damped chirps are common occurrences. Third, below the “threshold of cavitation” weak damped
chirps are rare (but not non-existent) occurrences. Fourth, the amplitude of the damped chirps drops
abruptly at the “threshold of cavitation,” consistent with the concept that the inception of cavitation is a
catastrophic bifurcation. Fifth, damped chirps are easy to detect and hard to confuse with other
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signatures when Bayesian parameter estimation is used. Sixth, at flow rates well below the threshold of
cavitation, occasional damped chirps are observed with weak amplitudes (virtually indistinguishable
from noise by the eye), but high log likelihood measure.

These conclusions have utility in two aspects of cavitation detection. First, it appears that the sudden
appearance of strong damped chirps in response to a small increase in flow rate is a strong and reliable
indicator of the inception of cavitation. Second, weak damped chirps at low flow rates appear to be
cavitation precursors. This suggests that the Bayesian-derived damped chirp may be well suited to be a
model in the anticipation engine in a formal Rosen AS. These data and their Bayesian analysis illustrate
the principle that Rosen’s formalism can be used on real-world data to anticipate catastrophic
occurrences.
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