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1 Introduction 

The concurrent development of molecular cloning techniques, DNA sequencing methods, 
rapid sequence comparison algorithms, and computer workstations has revolutionized the 
role of biological sequence comparison in molecular biology. As a result, the role of protein 
sequence data in molecular biology and biochemistry has dramatically changed. Twenty-five 
years ago, protein sequence determination was usually one of the last steps in the characteri- 
zation of a protein. Now the process is reversed, so that it is common to clone and sequence a 
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gene of biological interest-eg., one that is induced by serum stimulation, or a developmental 
change, or a chromosomal rearrangement associated with a disease. This is the fundamen- 
tal premise of the human genome project-that one can first sequence all the genes in an 

Today, the most powerful method for inferring the biological function of a gene (or the 
protein that it encodes) is by sequence similarity searching on protein and DNA sequence 
databases. With the development of rapid methods for sequence comparison, both with 
heuristic algorithms and powerful parallel computers, discoveries based solely on sequence 
homology have become routine. One of the more dramatic discoveries was the identification 
of a new tumor suppressor gene in humans that is related to yeast and E. coli DNA repair 
enzymes. This discovery, the result of a similarity search, both told the investigators that 
they had identified the appropriate gene and demonstrated clearly the nature of the oncogenic 
mutation. As entire genomes from bacteria, yeast, and simple eukaryotes become available, 
protein sequence comparison will become an even more powerful tool for understanding 
biological function. 

Protein sequence comparison is our most powerful tool for characterizing protein se- 
quences because of the enormous amount of information that is preserved throughout the 
evolutionary process. For many protein sequences, an evolutionary history can be traced 
back 1-2 billion years. Proteins that share a common ancestor are called homologous. Se- 
quence comparison is most informative when it detects homologous proteins. Homologous 
proteins always share a common three-dimensional folding structure and they often share 
common active sites or binding domains. Frequently homologous proteins share common 
functions, but sometimes they do not. Our ability to characterize the biological properties 
of a protein based on sequence data alone stems almost exclusively from properties con- 
served through evolutionary time. Predictions of common properties for non-homologous 
proteins-similarities that have arisen by convergence- are much less reliable. 

This tutorial examines how the information conserved during the evolution of a protein 
molecule can be used to infer reliably homology, and thus a shared protein fold and possibly 
a shared active site or function. We will start by reviewing a geological/evolutionary- time 
scale. Many protein sequences can be used to infer reliably events that happened more than 
a billion years ago. Remarkably, some protein sequences change so slowly. that they could 
be used to “date” events that took place more than 5 billion years ago, had the proteins 
existed. Next we will look at the evolution of several protein families. During the tutorial, 
these families will be used to demonstrate that homologous protein ancestry can be inferred 
with confidence. We will also examine different modes of protein evolution and consider some 
hypotheses that have been presented to explain the very earliest events in protein evolution. 

. organism and then infer their function by sequence analysis. 

The next part of the tutorial will examine the technical aspects of protein sequence 
comparison. Both optimal and heuristic algorithms and their associated parameters that are 
used to characterize protein sequence similarities are discussed. Perhaps more importantly, 
we will survey the statistics of local similarity scores, and how these statistics can both be 
used to improved the selectivity of a search and to evaluate the significance of a match. 

We will then examine distantly related members of three protein families, the serine pro- 
teases, the glutathione transferases, and the G-protein-coupled receptors (GCRs). The serine 
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proteases are used to emphasize that even when a highly conserved motif is found through- 
out a family, similarity extends over a much longer region. The glutathione transferases 
and GCRs are very diverse families whose members frequently do not share significant pair- 
wise similarity. The relative strengths of strategies to characterize such relationships will be 
examined. 

Finally, we will discuss how sequence similarity can be used to examine internal re- 
peated or mosaic structures in proteins. Such repeated structures can arise from either 
'divergence-calmodulin EF-hand repeats and EGF-domains-or convergence-tropomyosin 
and transcription factor coiled-coil. 

This tutorial is directed towards examining protein evolution. Most of the algorithms 
and methods that are applied to protein evolution can be used with DNA sequences as 
well. However, in general, DNA sequence comparisons are far.far less informative than 
protein sequence comparisons (see Fig. 8). DNA sequences that do not encode proteins or 
structural RNAs (e.g. ribosomal RNAs) diverge very rapidly, so that it is usually difficult 
to detect reliably non-coding DNA sequence homologies for sequences that diverged more 
than 200 million years ago. In contrast, even the most rapidly changing protein sequences 
can detect sequences that are 200 million years old; typically protein sequence comparisons 
detect sequences that diverged 1 billion years ago. Thus, the most important lesson from 
this tutorial is, when searching sequence databases for homologous sequences, to use protein 
sequences whenever possible. 

1.1 Evolutionary time scales 

When we search for homologous proteins, we are trying to identify proteins that shared a 
common ancestor in the past. Fig. 1 shows a general evolutionary tree that reaches back 
to the beginning of the earth's history. The goal of protein sequence comparison is to take 
a protein sequence, for example from a human chromosome, and search a protein database 
to find homologous sequences, often from very divergent organisms. Thus, if tlie similarity 
search produces significant matches with a protein found in yeast, then an ancestral protein 
must'have existed in an organism at least.1 billion years ago and that the descendants of 
that organism preserved the sequence in modern day humans and yeast. Likewise, if a yeast 
protein is homologous to one found in E. coli, that sequence must have existed in 2 billion 
years ago in the primordial organism that gave rise to bacteria and fungi. 

When we examine protein or DNA sequences, we are almost always studying modern 
(present day) sequences. Thus, it does not make any sense to say that a yeast or bacterial 
sequence is more primitive than a mammalian sequence; all sequences are contemporary. As 
we will see later, however, there are examples of sequences that are found only in vertebrates, 
or only in animals or plants but not both. Such sequences are less ancient than those found 
both in mammals and bacteria. 

. 

For organisms that diverged within the past 600 Mya, inferences about divergence times 
for modern organisms are taken from geological 'data; more ancient divergence times are 
inferred from extrapolations of evolutionary "clocks." Evolutionary clocks are based both on 
slowly changing protein sequences and on ribosomal RNA sequences; such divergence time 
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Figure 1: The tree of life 

Present 

Dinosaurs 

Precambrian 

Present 
Atmosphere 

Reducing 
Atmosphere 

-3 billion 
years 

-4.5 blllion 
years 

HIGHER ORGANISMS 
TIME h 

R/Si s+wHL./ 19: 
BACTERIA AND 

BLUE-GREEN ALGAE 

/ 

From Dayhoff et al., 1978. 

5 

Profo-OrganrSm 
Gems 
Coded Pro?eins 



Figure 2: Geologic time scales 
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estimates require a rate of change that is constant on average. The oldest fossils are of 
prokaryotes in'rocks about 2.5 billion years old; this geological age is consistent with that 
inferred from evolutionary divergence rates. 

Table 1: Some Important dates in history 

Origin of the universe. -10" f2 
Formation of the solar system -4.6 f0.4 
First self-replicating system -3.5 f0.5 
Prokaryotic-eukaryotic divergence -1.8 f0.3 

Invertebrate-vertebrate divergence -0.5 
Mammalian radiation beginning -0.1 

Plant-animal divergence -1.0 

"Billions of years. From Doolittle et al., 1986. 

Table 2: Evolutionary Horizons 

PAMs"/100 residues Theoretical 
Protein / lo8 years , Lookback timeb Horizon ~ 

Pseudogenes 400 45c Primates , Rodents 
Fibrinopeptides 90 200 Mammalian Radiation 
Lactalbumins 27 670 Vertebrates 
Ribonucleases 21 850 Animals 
Hemoglobins 12 1 .5d Plant s/ A&mals 
Acid' Pro teases 8 2.3 Prokayrotic/Eukarotic 
Triosphosphate isomerase 3 6 Archaen 
Glutamate dehydrogenase 1 18 

"PAMs, point accepted mutations. bUseful lookback time, 360 PAMs, 15% identity. 
cMillions of years. dBillions of years. Adapted from Doolittle et al., 1986 

Table 1 summarizes some important milestones in evolutionary time, and, when consid- 
ered with Table 2, gives a better perspective on the the evolutionary horizons provided by 
different protein families. The theoretical lookback times in Table 2 are based on the as- 
sumption that one can identify proteins that share about 20% sequence identity throughout 
their entire length. It will be clear from later examples that if two protein sequences share 
25% identity across their lengths, they are homologous, and that in some cases, convincing 
evidence of common ancestry can be deduced from similarities as low as 20%. These look- 
back times can be confirmed in practice; for example, with sensitive sequence comparison 

- 
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algorithms, significant similarity between *plant and animal globins can be found. 

1.2 Modes of Evolution 

1.2.1 Conventional divergence from a common ancestor 

Homologous sequences can be divided into two groups: (1) orthologous sequences - sequences 
that differ because they are found in different species; and (2) pamlogous sequences - se- 
quences that differ because of a gene duplication event. Fig. 3 shows an evolutionary tree for 
orthologous cytochrome ‘c’ sequences. The branching pattern, which reflects the differences 
between cytochrome ‘c’ sequences, matches the evolutionary relationships of the species that 
express the the proteins. 

Figure 3: Orthologous sequences - The cytochrome.‘c’ family 

&9hfl,P?7f 

PROTISTS 

.I 

Cytochrome ‘c’s comprise a family of orthologous proteins that are found in all organisms. 
This branch of the tree shows the number of differences between different eukaryotes. Thus, 
human and chicken cytochrome ‘c’, which diverged about 400 Mya, differ at 13 of 110 posi- 
tions. The sequences on this tree are orthologous - two cytochrome ‘c’s are different because‘ 
they are in different species. 

In general, the organismal tree and the sequence tree will not match if the sequences are 
paralogous. Members of the globin oxygen binding protein family are both orthologous - 
they differ because of speciation - and paralogous- they differ because of gene duplications. 
Thus, human a-globin, mouse a-globin, and chicken a-globin are all orthologs, they differ 
because of the speciation events that gave rise to humans, rodents, and birds. Mouse /3 
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Figure 4: Orthology and paralogy - The globin family 

m m n  

globin and human a globin are paralogous; they differ because of a gene duplication that 
created the a and p subunits some 600 Mya. An evolutionary tree based on human a, 
chicken a, and mouse /3 would imply that humans are more closely related to chickens than 
to mice. While such a mistake is unlikely in a well-studied family like the globins, it can be 
quite common in large, diverse, and poorly characterized families like the G-protein-coupled 
receptors (Fig. 22). 

' 

1.2.2 Sequence similarity and homology, the .H+ ATPase 

Our first example of the significant sequence similarity shared by homologous proteins will use 
one of the chains of the H+-ATPase, or proton-pump, used to convert energy to ATP in the 
mitochrondria and chloroplasts of aerobic organisms. Table 3 reports similarity scores and 
their statistical significance from a search of the PIR. annotated protein sequence database 
(PIR1, release 44, March, 1995) using the human H+-ATPase as a query sequence. There 
is excellent agreement between the expected and actual distributions of similarity scores. In 
this search, all of the library sequences related (homologous) to the query sequence obtained 
scores higher than any of the unrelated sequences. However, a number of unrelated sequences 
obtained very high scores; 10 of the 32 sequences with z-scores > 120 (7 standard deviations 
above the mean l)  are not members of the H+-ATPase family. 

'The z-scores plotted have a mean of 50 and a standard deviation of 10. 
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. Figure 5: Searching with human ATP-ase, similarity scores 
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Fig. 5 shows the distribution of similarity scores between human H+-ATPase (PIR. entry 
PWHU6) and each protein sequence in the PIRl (rel. 44) database. The ‘=’ symbols in the 
histogram show the distribution of normalized similarity scores calculated during the search, 
thus, 393 sequences in the PIRl library had scores of 60 or 61. The ‘*’ symbols report the 
expected number of sequences with the indicated range of scores for a search of a database 
of this size, based on random chance. The basis for the statistical estimates will be discussed 
in section 3. 

While Table 3 shows that all of the members of this family have siginificant similarity 
with the human enzyme, Fig. 6 gives a more realistic perspective of the family’s evolutionary 
history by considering every possible pairwise alignment. When the E. colienzyme is used to 
search the database for related H+-ATPases, the ranking of the different sequences changes, 
but sequences distant from the E. coli sequence have more significant similarities than those 
distant from the human sequence. 

The similarity scores in Figs. 5-7 where calculated using the Smith-Waterman algorithm,’ 
a method that guarantees to calculate the best (optimal) score between any two protein 
or DNA sequences, given a scoring matrix and gap penalties. Fig. 8 shows the PAM250 
matrix, which was developed almost 20 years ago by Dayhoff and her colleagues (Dayhoff 
et al., 1978). The PAM250 matrix, or modern versions such as the BLOSUM50 matrix used 
here, incorporates information about the likelihood that one amino-acid will be mutated into 
another over evolutionary time. Thus, changes that are very unlikely to occur in evolution, 
for example the substitution of the very small glycine residue for the very large tryptophan 
residue, are given large negative scores (-7 in Fig. S), while conservative changes, such as-the 
substitution of lysine by arginine (both have basic side chains), are given positive scores (+3). 
The scores for identical matches also vary in the PAM250 matrix, depending on whether the 
amino-acids are common (e.g. serine and methionine), and thus likely to be aligned by 
chance, or rare (e.g. cysteine and tryptophan). There is a well-developed statistical theory 
for substitution matrices (Altschul, 1991), which will be discussed in section 2.3. 

For many protein families with a variety of divergence rates, the rate of change over evo- 
lutionary time is relatively constant (Fig. 9). These rates can be used to date the divergence 
events (e.g. plants and animals) that occurred more than 600 Mya and thus do not have a 
fossil record. However, different protein families diverge at different rates, so that, in gen- 
’eral, the number of differences between a pair of sequences cannot be used to estimate the 
time the two sequences diverged. This is particularly true for paralogous sequences; once 
a sequence has duplicated, it may change very rapidly before selective pressure on its new 
function slows its rate of change. Thus, in Table 9 there are several members of growth 
hormone superfamily-growth hormone, sommatotropin, and prolactix-with different di- 
vergence rates. 

1.2.3 Mosaic proteins 

“Conventional” protein families, e.g. the globins, cytochrome ‘c’s, H+-ATPases, in which 
protein sequences have diverged from a common ancestor in a direct fashion, typically with 
only modest changes in the length of the sequence, have been known for more than 30 years. 
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Table 3: Searching with human ATP-ase, high-scoring sequences 

The best scores are: s-w z-score E(12805) % len 

PWHU6 
PWBO6 
PWMS6 
PWXL6 
PWFFGY 
PWFF6 
PWBY3 
PWASGN 
PWKQ6 
PWWT6 
PWNTGM 
PWZMGM 
LWEC6 
LWRZ6 
PWPMA6 
PWYBAA 
PWSPA6 
PWYCA6 
LWNT6 
LWLV6 
PWEGAC 

Ht t r ans .  ATP synth.-human mito. 
H t t r ans .  ATP synth.-bovine mito. 
H t t r ans .  ATP synth.-mouse mito. 
Httrans.  ATP synth.-frog mito. 
Httrans.  ATP synth.-fruit fly mito. 
H t t r ans .  ATP synth.-fruit fly mito. 
H t t r ans .  ATP synth.-yeast mito. 
H t t r ans .  ATP synth.-aspergillus mito. 
Httrans.  ATP synth.-Cochliobolus mito. 
H+-trans. ATP synth.-wheat mito. 
H t t r ans .  ATP synth.-tobacco mito. 
H+-trans. .ATP synth.-corn mito. 
H+-trans. ATP synth.-E. coli 
H t t r ans .  ATP synth.-rice chloro. 
Httrans:  ATP synth.-pea chloro. 
H t t r ans .  ATP synth.-Synechocystis 
H t t r ans .  ATP synth.spinach chloro. 
H+-trans. ATP synth.-cyanobacteria 
H+ trans. ATP syn t h .-tobacco chloro . 
H+-trans. ATP synth.-Marchiantia chloro. 
H t t r ans .  ATP synth.-Euglena chloro. 

1400 
1157 
1118 
745 
473 
471 . 
438 
365 
353 
309 
309 ' 

283 
178 
144 
143 
142 
138 
127 
126 
126 
123 

1767.8 
1460.9 
1411.6 
940.6 
597.1 
594.6 
551.7 
459.6 
444.4 
385.4 
385.2 
355.0 
223.0 

.180.8 
179.5 
177.3 
173.2 
158.9 
158.1 
158.0 
154.1 

0 
0 
0 
0 

lo-= 

10-18 

10-27 

10-25 
10-19 

10-15 
10-15 
10-15 
10-6 
0.00037 
0 -0 0 044 
0.00058 
0.00098 
0.0062 
0.0069 
0.0069 
0.011 

100.0 226 
77.9 226 
75.7 226 
53.3 226 
37.8 222 
37.5 224 . 
36.2 232 
30.4 230 
31.3 214 
28.9 235 
28.3 . 233 
31.1 291 
23.3 236 
24.2 231 
25.0 232 
26.5 170 

. 24.2 231 
26.3 167 
22.1 231 . 
24.0 167 
25.7 214 

S17420 
S17418 
QXBO2M 
S17415 
DNHUN2 
QRECAA 
CBHU 
S17419 
S17407 
QQBEN5 

ubiquinol-cytochrome-c reductase 113 
ubiquinol-cytochromec reductase 108 
NADH dehydrogenase (ubiquinone) 107 
ubiquinol-cytochrome-c reductase 105 
NADH dehydrogenase (ubiquinone) 103 
amino acid trans. protein-E. Coli 104 
ubiquinol-cytochrome-c reductase 102 
ubiquinol-cytochromec reductase 101 
ubiquinol-cytochromec reductase 99 
integral membrane proteinsaimiriine herp 98 

138.0 
131.7 
131.2 
127.9 
126.1 
125.1 
124.1 
122.9 
120.3 
119.4 

0.09 
0.20 
0.22 
0.33 
0.41 
0.47 
0.53 
0.63 
0.87 
0.99 

23.4 158 
. 24.5 208 

27.7 137 
20.1 149 
23.4 111 
26.8 205 
23.4 158 
23.6 140 
20.8 202 

. 26.1 211 

The horizontal line indicates the separation been the lowest scoring related sequences and 
the highest scoring unrelated sequence. 
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Figure 6: Phylogeny of H+-ATPases 

- Human mito. 
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Cyanobacteria 
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I E. coli 10-6/0 

An evolutionary tree of H+-ATPases (subunit 6). Sequ,ences were aligned using the GCG 
PILEUP program, distances calculated using the GCG DISTANCES program, and the tree 
constructed using the Neighbor-Joining algorithsm (GCG GROWTREE). Expectation values 
from a search with the human H+-ATPase (PWHUG, Table 3) and a search with the E. coli 
sequence are shown. 
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Figure 7: Searching with human ATPase, high-scoring sequences 

LUEC6 H+-transporting ATP synthase (EC 3.6.1.34) protein - E. c o l i  (271 aa) 

Smith-Uateman score: 178; 
z-score: 223.0 Expect: 1.66513-06 

23.3% identity i n  236 aa overlap 
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20 30 40 50 60 70 80 90 100 

80 90 100 110 120 130 140 150 
PYHU6 IIFIATTEUG-LLPHSFT-P~~L---SHBLAnAIPLYAG~IHG~SKI-~ALAHFLP~GTPTPLIPHLVII~ISLLI~PHALAV 

PYEGAC FLFIFVSBUSGALIPYKII~PEGELGAPTHDI~AGLAILTSLAY~AGLE~GLT~~V~PTPIL~IEI~D~--KPLS~F 
. . .  ... . .  . .  . . . . . .  . .  1 . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ................. 

110 120 130 140 150 160 170 180 190 

160 170 180 190 200 210 220 
PUHU6 RLTAHITAGHLLnHLIGSATLAnSTIHLPS~IIFTILIUTILEIAVALI~A~LVSLYLHDPT 

PUEGAC RLFGHILADELWAVLVSL------- VP--LIVPVPLIFLGLF--TSGIQALIFATLSGSYIGEAHEGHH 
. . . . . .  . . . . . .  . . . . . .  ............. ........................ 

200 210 220 230 240 250 

Alignments of human H+-ATPase with the E. coli homologue and a plant chloroplast ho- 
mologue. Despite the considerable evolutionary distance (both sequences diverged at least 2 
Bya), the pairs of sequence share more than 20% identity across almost their entire lengths. 
' : ' symbols denote identities; ' . ' denote conservative substitutions. Searches were performed 
with the BLOSUM50 matrix and gap penalties of -12/-2. 
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Figure 8: The PAM250 matrix 

cys 
Ser 
Thr 
Pro 
Ala 

Asn 
Gly 

Asp 
Glu 
Gln 
His 
Arg 
Lys 
Met 
ne 
Leu 
Val 
Phe 
Tyr 
np 

12 
0 
-2 
-1 
-2 
-3 
-4 
-5 
-5 
-5 
-3 
-4 
-5 
-5 
-2 
-6 
-2 
-4 
0 

-8 
C 

1 0 - 1  0 0 
0 0 - 1  0 
0 0 -1 0 0 
- 1 - 1  0 0 - 1  
-1 -1 0 -1 -2 
0 -1 0 -2 -3 
0 0 - 1 - 1 - 2  
-2 -1 -2 -1 -3 
-1 0 -2 -1 -3 
-3 -2 -3 -2 -4 
-1 0 -1 0 -1 I -2 -2 -2 -2 
-3 -3 -5 -4 -5 I -4 -6 -5 -5 

2 
1 2  4 

1 3  4 
1 2  2 4 
2 1 1 3 
0 -1 -1 1 
1 0  0 1 
-2 -3 -2 -1 
-2 -2 -2 -2 
-3 -4 -3 -2 

- 2 0 0 6  
-2 -2 -2 
-2 -3 -3 
-2 -2 -2 
-2 -4 -5 
0 -4 -4 
-3 2 -3 

6 
2 6  

2 5 
4 2 6 
2 4 2 4 
0 1 2 -1 9 
-2 -1 -1 -2 7 10 
-4 -5 -2 -6 0 0 17 

H R K M I L V F Y W ]  

-3 -3 -5 -3 -5 
-2 -5 -6 -6 -7 
S T P A G N D E Q  

In the past 10 years, a more complex type of protein evolution has been observed-proteins 
that contain multiple domains from other proteins. These proteins have been. called “mo- 
saic” proteins; the domains are frequently inserted through a process cded  “exon shuiling.” 
Table 7 lists a number of human proteins that are comprised of mosaic domains, but such 
proteins are not limited to mammals. Similar mosaic structures are common in DNA binding 
proteins, both in bacteria and eukaryotes. Fig. 11 shows the structures of some of the mosaic 
proteins in Table 7. 

-2 -4 -4 -4 
-4 -7 -7 -5 

1.3 Introns Early/Late 

The occurrence of mosaic proteins and the discovery of the “exon/intron” structure of genes 
in the late 1970’s lead several investigators to suggest that the exon structure of genes re- 
flected the construction of proteins from modular domains (Gilbert & Glynias, 1993). While 
acceptance of this proposal is quite widespread, it is based on very little data. There is no 
question that many modern mosaic proteins are constructed by a process of “exon-shuffling” 
whereby exons from other genes have been combined to build new structures. In addition, for 
some proteins exons are associated with well defined structural elements. The association of 
exons with structural elements may reflect and ancient construction of proteins from primor- 
dial exons. Alternatively, introns are also capable of invading genes; thus, the association of 
exons with structures may reflect modern invasions that are less disruptive when they occur 
between structural elements. 

A recent test of the “introns” early hypothesis suggests there is little evidence to support 
the association of introns with structural boundaries (Stoltzfus et al., 1994; Fig.‘ 12). shows 
one of the figures from this paper, which is used to demonstrate a lack of correspondence 
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Figure 9: Rates of change in protein families 

/ 

the globins 

/ 

plonts and 

Millions of yeorr since divergence 

between several structural and the intron/exon boundaries. 

1.4 DNA vs Protein comparison 

While all of the comparison methods described below work on either protein or DNA se- 
quences, one's ability to identify distantly related sequences is reduced dramatically when 
DNA sequences are used. Table 8 compares the statistical significance of the best similarity 
scores obtained in a.search of the GenBank DNA sequence database using a mouse glu- 
tathione transferase cDNA clone with the significance of the same alignment in a search of 
the GenPept protein sequence database (GenPept is derived from GenBank by translating 
DNA sequences into the encoded protein sequences). Many DNA sequences encoding clearly 
related proteins, e.g. UBGSTB have similarity scores that are expected to  occur several 
times by chance in a DNA database search. DNA sequences are far less informative, both' 
because they lack the inherent biochemical information that is retained in the PAM250 sub- 
stitution matrix, and because many changes in DNA sequences (third-base changes) do not 
change the encoded protein. 

Differences in the performance of sequence comparison algorithms are insignificant com- 
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Table 4: Rates of change in protein families 

Protein Ratea Protein Rate 

Fibrinopeptides 
Growth hormone 
Ig kappa chain C region 
Kappa casein 
Ig gamma chain C region 
Lutropin beta chain 
Ig lambda chain C region 
Complement C3a 
Lactalbumin 
Epidermal growth factor 
Somatotropin 
Pancreatic ribonuclease 
Lipotropin beta 

. Haptoglobin alpha chain 
Serum albumin 
Phospholipase A2 
Protease inhibitor PSTl type 
Prolactin 
Pancreatic hormone 
Carbonic anhydrase C 
Lutropin alpha chain 
Hemoglobin alpha chain 
Hemoglobin beta chain 
Lipid-binding protein A-I1 
Gastrin 
Animal lysozyme 
M ydglo bin 
Amyloid A 
Nerve growth factor 
Acid proteases 
Myelin basic protein 

90 
37 
37 
33 
31 
30 
27 
27 
27 
26 
25 
21 
21 
20 
19 
19 
18 
17 
17 
16 
16 
12 
12 

.10 
9.8 
9.8 
8.9 
8.7 
8.5 
8.4 

Thyrotropin beta chain 
Parathyrin 
Pardbumin 
BPTI Protease inhibitors 
Trypsin 
Melanotropin beta . 
Alpha crystallin A chain 
Endorphin 
Cytochrome b5 
Insulin 
Calcit onin 
Neurophysin 2 
Plastocyanin 
Lactate dehydrogenase 
Adenylate cyclase 
Triosephosphate isomerase 
Vasoactive intestinal peptide 
Corticotropin 
Glyceraldehyde 3-P DH 
Cytochrome C 
Plant ferredoxin 
Collagen 
Troponin C, skeletal muscle 
Alpha crystallin B-chain 
Glucagon 
Glutamate DH 
.Histone H2B 
Histone H2A 
Histone H3 
Ubiquitin 

7.4 Histone H4 

7.4 
7.3 
7.0 
6.2 
5.9 
5.6 
5.0 
4.8 
4.5 
4.4 
4.3 
3.6 
3.5 
3.4 
3.2 
2.8 
2.6 
2.5 
2.2 
2.2 
1.9 
1.7 
1.5 

. 1.5 
. 1.2 

0.9 
0.9. 
0.5 

0.14 
0.1 
0.1 

~~ 

apercent/lOO My 
From (Nei, 1987; Dayhoff et al., 1978) 

pared to the loss of information that occurs when one compares DNA sequences. If the 
biological sequence of interest encodes a protein, protein sequence comparison is always the 
method of choice. 
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Figure 10: The limits of sequence similarity 

0 50 100 150 200 250 300 350 
Evolutionary Distance (PAMs) 

Table 5: Classification of Protein Families 

I.. Ancient Proteins 

A. First editions. Direct-line descendacy to human and contemporary prokaryotes. Mostly 
mainstream metabolism enzymes. Example: triosphosphate isomerase (46%) identical. 

B. Second edition. Homologous sequences in human and prokaryotic proteins, but apparently 
different functions. Example: human glutathione reductase and pseudomanas mercury 
reductase (27% identical). 

11. Middle-age proteins. Proteins found in most eurkaryotes but prokaryotic counterparts are 

111. Modern proteins 
unknown. Example: actin. 

A. Recent vintage. Proteins found in animals or plants but not both. Not found in prokary- 

B. Very recent inventions. Proteins found in vertebrates-but pot elsewhere. Example: plasma 
otes. Example: collagen. , 

albumin. 
C. Recent mosaics. Modern proteins clearly the result of exon shuffling. Example: LDL 

receptor. 

From Doolittle et al., 1986. 

18' 



Table 6: Ancient human proteins 

A. First edition t h e  

Human protein Prokaryotic homologue % identity 
Triosephosphate isomerase E. coli 46 - 
Phosphoglyceraldehylde dehydrogenase B. stearothermophilus 52 
Alkaline phosphatase E. coli 31 

E. coli 30 
26 

Dihydrofolate reductase 
P .  leiognathi ’ Superoxide dismutase (Cu-Zn) 

B. Second edition type 

Glutathione reductase Mercuric reductase, Pseudomonas 27 
Glutamate dehydrogenase (NAD) Glutamate dehydrogenase, E. coli 26 
Ornithine transcarbamylase Aspartate ranscarbamylase, E. coli 26 
Hypoxanthine-guanine Glut amine phosphorib osyl-PPi 19 

phosphoribosyl transferase transferase, E. coli 

From Doolittle et al,, 1986 . 

Table 7: Mosaic proteins 

A. EGF-type 
Epidermal growth factor precursor 
Tumor growth factors 
LDL receptor 
Factor IX 
Protein C 
Tissue plasminogen activator 
Urokinase 
Complement C9 
Notch protein (Drosophila) 
lin-12 (C. elegans) 

B. C9-type . 
Complement C9 
LDL receptor 
Notch (Drosophila) 
lin-12 (C. elegans) . 

C. Fibronectin finger 
Fibronectin 
Tissue plasminogen activator 

D. Protease “Kringle” 
Plasminogen 
Tissue plasminogen activator 
Urokinase 
Prothrombin 

From Doolittle et al., 1986. 
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Figure 11: Structures of mosaic proteins 

From Doolittle et al., 1986. 
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Figure 12: TntronlExon Boundaries and Structural Features 

- 25 

A 

- 2 0  4, - 2 .  - 
6 

L15 
0 

- 10 

- 5  - 

Recldue number 
Fig. 4. Intron positions of TPI genes in relation to structural features of the 247-residue chicken 
muscle enzyme (28). (A) The centrality plot (average centrality, 16.2 A) reveals the regularity of the 
@-barrel domain; the eight troughs represent the eight p strands that pass near the center, whereas 
the zigzagging segments between the troughs show the course of the peptide backbone as it winds 
through the peripheral a helices [see also domain A of PK (Fig. 3)]. (B) Elements of secondary 
structure. (C) Modules proposed by Gd and Nosaka (75). The 14 known intron positioFs (D) are 
represented in four genomic sequences (27) as follows: chicken, 37-1,78-2,107-0.151-1.18~. 
209-1; maize, 14-0.37-1, 78-2, 107-0, 151-1. 183-0.209-1. 237-0: Aspergillus, 13-2, 107-0. 
132-0, 167-2, 239-1; mosquito. 64-0. Other conventions are as indicated for Fig. 1. 

From Stoltzfus et al., 1994. 
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Table 8: DNA vs Protein Sequence Comparison 

score E(DNA) E(prot) 

MUSGLUTA 
MUSGSTA 
HUMGSTAA 
MAMGLUTRA 
RATGSTYD 
HSGSTM4 
RATGSTY 
HSGSTMlB 
HSGSTMU3 
HSGST145 
BTGST 
HSGSTPIl 
MUSGTF 
CRUGSTP 
CRUGSTPIE 
HAMGSTPIE 
RRGTS8 
HUMICAL2 
HUMTROPIOI 
RNGSTYC2F 
MMGLUT 
MUSTHYGP 
HUMLGTHl 
ATCON43OSl 
H UMA 1 A R 2  
HUMVLDLR 
RABGSTB 
H UMHSFl 
RATRIIA 
RNGSTYClF 
RATGSTY C 
MUSCX43GA 
H UMTA N1  
OCDHPR 
A 01444 
HUMGSTB 
HUMGSTH 
HUMGST2 
s49975 

Mouse glutathione S-transferase class mu 
Mouse, glutathione transferase GT9.3 mu 
Homo sapiens glutathione transferase 
M.auratus mu class GST 
Rat glutathione S-transferase Yb subunit 
H.sapiens GSTM4 gene for GST 
Rattus norvegicus GST 
Hsapiens GSTMlb gene for GST 
Human GSTmu3 gene for a GST 
Human GST-1 gene for GST 
Bovine GST mRNA for GST 
Human mRNA for anionic GST 
Mus musculus GST mu 
Chinese hamster GST 
Cricetulus griseus GST pi 
Mesocricetus auratus GST pi 
R.rattus mRNA for GST 
Human glandular kallikrein gene 
Human troponin I, slow-twitch isoform 
R.norvegicus GST Yc2 ' 

M.musculus mRNA for GST 
Mouse Thy-1.2 glycoprotein 
Human liver glutathione S-transferase 
Rattus norvegicus connexin 
Human a-1-antit ypsin-related protein 
Human VLDL protein receptor 
Oryctolagus cuniculus glutathione S-tr, 
Human heat shock factor 1 (TCF5) 
Rat type I reg. subunit of CAMP 
R.norvegicus GST Ycl 
Rat liver glutathione S-transferase Yc 
Mouse Cx43 gene, exon 1. 
Human TAN-1 m R N A  (homologue of Drosoph 
Rabbit m R N A  f o r  dihydropyn'dine (DHP) 

5625 
3953 
1257 
399 
399 
390 
372 
358 
322 
308 
249 
237 
196 
196 
196 
191 
182 
170 
170 
170 
168 
163 
157 
155 
154 
152 
153 
151 
151 
148 
148 
147 
142 
1-42 

Human D N A  f o r  4.6 kb retinoblastoma . 142 
Human glutathione S-transferase 144 
Human glutathione S-transferase 144 
Human glutathione S-transferase 2 144 
Human glutathione transferase Al-1 144 

0 0 -  
0 0 
0 0 

lo-" 0 
lo-" 0 
10-l0 0 
10-9 o 
10-9 o 
10-7 

0.0002 10-16 
0.0008 
0.06 
0.06 10-l6 
0.06 10-l6 
0.1 10-16 
0.2 
0.6 
0.8 
0.8 
1,l 
1.3 
3.4 
3.6 
3.6 
4- 5 
5.1 
5.5 . 
5.9 . 
8.5 
8.6 
11 
12 
12 
12 
14 
14 
14 
14 

10-7 
10-7 

10-5 

10-9 

10-6 
10-6 

10-6 
10-6 
10-6 

'Expectation values for searches against DNA (score, E(DNA)) and protein databases. A mouse glu- 
tathione transferase cDNA sequence (MUSGLUTA) was used to search either the primate (GBPRI), 
rodent (GBROD), and mammalian (GBMAM) divisions of the GenBank DNA sequence database for 
the DNA sequence comparisons. Protein expectations (E(prot)) were calculated from a search the 
translated cDNA sequence against the GenPept sequence database, which includes all of translated 
GenBank. Unrelated sequences are italicized; E(prot) for unrelated sequences are >> 100. 
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2 Alignment methods 

.A variety of comparison algorithms and scoring parameters can be used to evaluate protein 
or DNA sequence similarity. In general, the choice the of "best" algorithm depends on 
the problem to be solved. Thus, algorithms that calculate a local comparison score-i.e., 
they find the strongest similarity between the two sequences, ignoring differences outside 
of the most similar region-are usually most appropriate for searching protein and DNA 
databases: while 'global comparison algorithms are more, appropriate when homology has 
been established, as when building evolutionary trees. Pattern-based, rather than similarity- 
based, comparison methods may be preferred when searching for functionally conserved non- 
homologous domains. 

In searching protein sequence databases to identify distantly related homologous proteins, 
it is important to remember that avoiding high similarity scores with unrelated sequences 
can be more important as calculating high scores for related sequences. There are more 
than 40,000 protein sequences in comprehensive protein databases, while the typical family 
of proteins has fewer than 100 members. Thus, comparison algorithms, scoring matrices and 
gap penalties that produce the best alignments may not be the most effective for searching 
protein sequence databases (Pearson, 1995). 

2.1 Algorithms 

Two general classes of comparison algorithms are used to calculate similarity scores to infer 
sequence homology: rigorous algorithms that are guaranteed to calculate an optimal simi- 
larity score, e.g. the NeedlemanWunsch (Needleman & Wunsch, 1970) and Smithwaterman 
(Smith & Waterman, 1981) algorithms, and rapid heuristic algorithms that do not guarantee 
to calculate an optimal score for every sequence in a library, e.g. FASTA (Pearson & Lipman, ' 

1988) and BLAST(Altschul et al., 1990). Table 2.1 summarizes widely used algorithms for 
biological .sequence comparison. 

Two optimal algorithms for calculating similarity scores have been described, the Needle- 
manWunsch algorithm (Needleman & Wunsch, 1970), which calculates a "global" similar- 
ity score between two sequences, and the Smith-Waterman algorithm (Smith & Waterman, 
198l), which calculates a "local" similarity score. Global scores require the alignment to 
begin at the beginning of each sequence &d extend to the end of each sequence. Global 
alignments cannot be used to detect the relationship between DNA binding domains in 
homeobox proteins or the cdcium binding domains shared between calmoddin and calpain. 
Likewise, global alignment algorithms often do not detect the relationships between mosaic 
proteins. Global similarity scores can be calculated with or without penalties for gaps at the 
ends of the sequences. 

Local alignment algorithms identify the most similar region shared between two sequences. 
Thus, homologous calcium binding domains embedded in non-homologous proteins can be 
detected with local alignment methods. In addition, a local alignment algorithm can be used 

. 
' 

2For genomic DNA sequences, there is no logical alternative. 
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Table 9: Algorithms for comparing protein and DNA sequences . 

algorithm value scoring gap time 
calculated matrix penalty required 

Needleman- global similarity 
Wunsch 

Sellers (global) distance 

Smith- local similarity 
Waterman 

FASTA approx. local 
similarity 

BLASTP maximum 
segment score 

arbitrary penal ty/gap O( n2) 
Q 

unity penalty/residue O(n2) 
rk 

$j  < 0.0 affine Ob2)  
q + r k  

q + r k  
$j  < 0.0 limited gap size O(n2)/K 

3ij < 0.0 multiple o ( ~ ~ ) / K  
segments 

Needleman and 
Wunsch, 1970 

Sellers, 1974 

Smith and Waterman, 1981 
Gotoh, 1982 

Lipman and Pearson, 1985 
Pearson and Lipman, 1988 

Altshul et al., 1990 

to find the exons in a genomic DNA sequence by aligning it with its encoded mRNA. Local 
alignment algorithms are required to identify homologies in mosaic proteins, and they can 
be used to  detect internal domain duplications as well. Table 10 compares the scores of 
global, global without end-gap-penalties, and local similarity scores for a variety of related 
and unrelated proteins. 

Rigorous sequence comparison algorithms, like the Smith-Waterman algorithm, require 
time proportional to O ( m N ) ,  where m is the length of the query sequence and N is the 
number of amino acids in the protein sequence library. Modern high-performance unix work- 
stations can compare a 300 residue protein sequence (human opsin) to the 40,000 entry, 
15,000,000 amino acid Swiss-Prot 31 database in less than 10 minutes. 

Although very rapid3 algorithms are a&able for calculating optimal global similarity 
scores between two sequences, particularly with unit cost scores, such algorithms are rarely 
appropriate for biological sequence comparison. Unit cost algorithms must discard the sub- 
stantial biochemical information encoded in the PAM250 matrix. Most rapid optimal algo- 
rithms calculate only global similarities; such comparisons are not useful for DNA sequence 
comparison because tlie "ends" required for a global sequence comparison are usudy  arbi- 
trary. 

2 0 ( N d ) ,  where N is the length of a sequence and d is the number of differences between the two sequences. 

24 



Table 10: Global and local sequence similarity scores 

Similarity Score 
PIR Entry Global Local 

End NoEnd 
Penalty Penalty 

Distance 

MCHU vs MCHU Calmodulin-Human 671 
TPHUCS Troponin G, skeletal muscle 395 
PVPK2 Parvalbumin beta-Pike -57 
CIHUH Calpain heavy chain-Human . -2085 
AQJFNV Aequorin precursor-Jelly fish -65 
KLSWM Calcium binding protein-Scallop -89 

671 671 0 
430 438 161 
103 115 313 
89 100 2463 
48. 76' 391 
45- 52 323 

QRHULD vs EGMSMG Epidermal growth factor precursor -591 475 655 2549 
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Figure 13: Global and local alignment paths 

A. Global B. Local 

A B D D E F G H I  
A \ \ \ \ . \ \ \ \ \  

1 ,-1 -1 -1 -1 -1 -1 -1 -1 

-1 2 - 0 ,-2 -2 -2 -2 -2 -2 

-1 0 3 - 1 ,-1 ,-3 -3 -3 -3 

-1 -2 1 2 2 - 0 ,-2 ,-4 74 

-1 -2 -1 0 1 1 i ,-1 --3 

-1 -2 -3 -2 -1 0 0 0 ,-2 

-1 -2 -3 -4 -3 -2 .-I 1 ,-I 

-1 -2 -3 -4 -5 -4 -3 -1 2 

B \ ! \  \ \ \ \ \ \  

D \  ! \  \ \ \ \ \  

E \ \ !  ! \  \ \ \  

G \  \ ! \ ! \  \ \ 

K \ \ \ ! \ ! \ ! \  \ \ \ 

H \ \ \ \ ! \ ! \ ! \  \ \ 

I \ \ \ \ \ ! \ ! \ !  ! \  

Optimal global alignments (score 2): 

A B D D E G K H I  (top) 
A B D - E G K H I 

or A B - . D E G K H I  
(side) 

B 

D 

A B D D E F G H I  
A \  

1 0 0 0 0 0 0 0 0  

0 2 - 0  0 0 0 0 0 0 

0 0 3 - 1  0 0 0 0 0 

0 0 1 2  2 - 0  0 0 0 
\ ! \  \ \ 

0 0 0 0 1 1 1 0 0  

0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 - 1  0 

0 0 0 0 0 0 0 0 2  

\ 

! \  \ 

! \  \ 

\ \ \  

\ 

\ 

Optimal local alignment (score 3): 

A B D (top) 
A B D (side) 

2.2 Dynamic Programming Algorithms 

The algorithms used to calculate the maximum similarity scores between two sequences are 
most easily visualized with an alignment matrix or path graph. Figs. 13-14 demonstrate the 
correspondence between an alignment path graph and an actual alignment. The goal along 
the path is to maximize the similarity score for the alignment that ends +t each potential 
vertex. For the figures, similarity scores are increased by +1 for diagonal edges if the the two 
residues along the path are identical; the the are different, the diagonal edge cost is -1. The 
cost along either a vertical or horizontal edge, which corresponds to aninsertion in the top 
sequence (vertical edge) or an insertion in the left-side sequence (horizontal edge) is -2. To 
produce a global alignment from a path graph, simply begin at the bottom-right corner of 
the graph and follow the “active” paths, noted by \, - or ! to the upper-left corner, aligning 
the two residues along the diagonal path, or aligning a residue with a gap if a horizontal or 
vertical path is taken. 

For the global alignment in Fig. 13A, there are two alignments that produce the optimal 
score. Optimal comparison algorithms guarantee to produce the best score, given the match, 
mismatch, and gap costs, but frequently there are several optimal alignments for a single 
score. For the local alignment in Fig. 13B,. there are several sub-optimal alignments with 
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Figure 14: An alignment path matrix 

scores of 2. Note that the local alignment in Fig. 13B would extend from one.end of each 
sequence to the other if the gap cost were reduced to -1. 

Fig. 14 provides an exercise for the reader. 

While there are an exponential number of potential alignments with gaps between two 
protein or DNA sequences, dynamic programming algorithms are available that can calculate 
the optimal score in O ( M N )  steps. This efficiency is achieved by determining the optimal 
score for each prefix of each string, and then extending each prefix by considering the three 
paths that can be used to extend an alignment: (1) by extending the alignment by one residue 
in each sequence; (2) by extending the alignment by one residue in the first sequence and 
aligning it with a gap in the second; or (3) extending the alignment by one residue in the 
second sequence and aligning it with a gap in the first. This decision must be made for each 
of the MN prefixes of sequences of length M and N. . 

The first algorithm for comparing protein sequences (Needleman & Wunsch, 1970) cal- 
culates a “global” similarity score. A simplified global algorithm is shown in Fig. 15. Since 
a global algorithm requires that the alignment extend from the beginning to the end of the 
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Figure 15: Algorithms for Global and Local similarity scores 

S(0,O) t 0 
forj t 1 toN do 

S(0 , j )  4- S(0,j - 1) + 4 ; 1 

S(i,O) t S( i -  l ,O)+a(  ai - ) 

. I  
for i t 1 to M do 

[ 
for j t 1 to  N do - 

S( i , j )  t max[S(i - 1,j - 1) + a( ai ), S(i  - 1,j) + a( ai - ) ,S(i , j  - 1) + a( ij )] 
b j  

1 
write “Global similarity score is” S ( M ,  N )  

best t 0 
for j t 1 to N do 

S’(0,j) t- S’(0,j - 1) + a( - ) 

[ S’(i, 0) t S‘(i - 1,O) + a( ) 

b j  
for i t 1 to M do 

for j t 1 to N do 

alignment, it is sufficient to report the score in the lower right ( S ( M , N ) )  of the scoring 
matrix. 

Local alignment algorithms must consider alignments that begin and end at each of the 
M N  positions in the alignment matrix. Despite this added complexity, they only add two 
additional steps to the global alignment algorithm. Since every possible starting position 
must be considered, similarity scores cannot fall below zero and a 0 term is added to the 
max comparison in Fig. 15. Since they can end at any position in the matrix, the best score 
must be saved at each step. In practice, global and local comparison algorithms require the 
same amount of computation. 
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2.3 Scoring methods 

The scoring matrices used for protein sequence comparison are much more sophisticated 
than +l for a match and -1 for a mismatch. The most effective matrices are based on 
the actual frequency of substitutions that occur between related proteins. Two different 
approaches have been used to produce these matrices. The original PAM250 matrix (Fig. 8) 
was produced by examining several hundred alignments between very closely related proteins, 
and then calculating the frequency with which each amino-acid residue changed into each 
of the others at a very short evolutionary distance-one where only 1% of the residues had 
kchanged (Dayhoff et al., 1978). This replacement frequency, when corrected for the amino- 
acid abundance, can be used to calcula€e the PAM1 scoring matrix (PAM is “Point Accepted 
Mutation”). If the matrix is multiplied against itself 250 times, a PAM250 matrix, which 
reflects the frequency of change for proteins that have diverged 250%. If a two protein 
sequences have diverged by 250%, it is expected that they will share about 20% sequence 
identity (Fig. 10). Since 20% identity is at the edge of where significant similarity can be 
detected, the PAM250 matrix has been widely used. The PAM250 matrix is based on small 
number of amino acid substitutions; modern extrapolated matrices based both on sequence 
alignments (Jones et al., 1992) and structural alignments (Johnson & Overington, 1993) are 
available. 

Substitution matrices have also been calculated directly by examining “blocks” of aligned 
sequences that differ by no more than X %  (Henikoff & Henikoff, 1992). Thus, the BLO- 
SUM62 matrix, which is used by the BLASTP rapid comparison program, is derived from 
substitution data for blocks of aligned sequences that are no more than 62% identical. BLO- 
SUM62 performs substantially better than extrapolated matrices with BLASTP and FASTA 
(Henikoff & Henikoff, 1993), but both BLOSUM and extrapolated matrices can perform well 
when used with optimal gap penalties (Pearson, 1995). 

Altschul(l991) has provided a information-theory based perspective for evaluating scoring 
matrices in general for alignments without gaps. Using a statistical theory for such alignments 
(Karlin & Altschul, 1990), it is possible to convert any similarity score to a value in “bits” that 
can be used to compare scores produced by different alignments. Unfortunately, the analytical 
formulas that are used for this conversion cannot easily be applied to alignments that contain 
gaps. Collins et al., 1988 and Altschul, 1993 have also pointed out that-different scoring 
matrices are optimal at different evolutionary disances. Thus, short proteins sequences that 
are 50% identical can be more easily identified with a “shallower” PAM matrix, e.g. PAMGO. 

, 

* 

2.4 Heuristic Algorithms 

Two rapid heuristic algorithms are frequently used for searchj,ng protein and DNA sequence 
databases, FASTA (Pearson &. Lipman, 1988) and BLASTP (Altschul et al., 1990). These 
methods are 5-50 times faster than the rigorous Smith-Waterman algorithm, and can produce 
results of similar quality in many cases. 

Fig. 16 summarizes the difference between the FASTA, BLASTP, and Smith-Waterman 
algorithms. BLASTP and FASTA are faster than Smith-Waterman because they examine 
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Figure 16: Heuristic strategies for sequence comparison 
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Table 11: Sequence similarity with BLASTP 

Step 1 For each three amino acids in the query sequence, identify all of the substitutions of each word 
that have a similarity score greater than a threshold score T = 11. In practice,'word-matches 
with scores 3 T are seen on average 150 times per library sequence. 

Step 2 Build a discrete finite automaton (DFA) to recognize the list of identical and substituted three 
letter words. 

Step 3 Use the DFA to identify all of the matching words in sequences in the database. If a match 
is found, attempt to extend the match both forwards and backwards using the BLOSUM62 
matrix to produce a score that is higher than a threshold score. Save all of the high scoring 
regions shared by the query sequence and each library sequence. The best of these scores is 
reported as the best single MSP (maximal segment pair) score. These high scoring regions do 
not contain gaps. 

Step 4 Attempt to combine multiple MSP regions. For each "consistent" combination, calculate the 
probability of obtaining that may consistent matches using either "poisson" or "sum" statis- 
tics.(Karlin & Altschul, 1993) Report the lowest probability score based on statistics used. 

Step 5 Report all of the significant alignments. Frequently, a query and library sequence will contain 
several MSPs because of the requirement that they do not contain gaps. 

only a portion of the potential alignments between two sequences. FASTA focuses on regions 
where there are either pairs (ktup=2) or single aligned ktup=l identities; BLASTP examines 
regions that include triples of conserved amino acids. 

2.4.1 BLAST 

Advances in the statistical theory of sequence alignments without gaps (Karlin & Altschul, 
1990) provided the theoretical basis for the BLASTP program (Altschul et al., 1990). BLASTP 
is now the most widely used program for rapid sequence comparison, in large pa@ because of 
its accurate estimates for the statistical significance of similarity scores (see 8. BLASTP, like 
FASTA, uses a word-based scanning procedure to identify regions of local similarity (11) with 
out gaps. BLASTP is effective because it combines high sensitivity with excellent selectiv- 
ity. BLASTP combines good sensitivity with exceptional selectivity. Except when the query 
sequence contains a low complexity region, BLASTP rarely calculates scores for unrelated 
sequences. 

2.4.2 FASTA 

The current version of FASTA provides several significant improvements over earlier versions. 
FASTA now calculates optimized scores (step 4 in Table 12)) for most of the sequences in 
the database and provides accurate estimates for statistical significance (3). Calculation of 
optimized scores improves substantially the performance of FASTA. Without the calcula- 
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Table 12: Sequence similarity with FASTAv20 

Step 1 Identify, regions shared by the two sequences with the highest density of identities (ktup=l) or 
pairs of identities (kup=2).  

Step 2 Rescan the ten regions with the highest density of identities using the BLOSUM50 matrix. 
Trim’the ends of the region to include only those residues contributing to the highest score. 
Each region is a partial alignment without gaps. 

Step 3 If there are several initial regions with scores greater than the CUTOFF value, check to see 
whether the trimmed initial regions can be joined to form an approximate alignment with 
gaps. Calculate a similarity score that is the sum of the joined initial regions minus a penalty 
(usually 20) for each gap (initn). The score of the single best initial region found in Step 2 is 
also reported (initl). 

Step 4 For sequences with scores greater than a threshold, construct an optimal local alignment of 
the query sequence and the library sequence, considering only those residues that lie in a band 
centered on the best initial region found in Step 2. For protein searches with kup=8  a 16 
residue band is used by default. A 32 residue band is used with ktup=l. This is the optimized 
(opt)  score. 

Step 5 After all (or the first 10-20,000) scores have been calculated, ‘normalize the raw similarity 
scores by regressing the similarity score against ln(1ibrary-sequence length) and calculating the 
average variance in similarity sco~es. Z-values (normalized scores with mean 0 and variance 1) 
are calculated, and the calculation is repeated with library sequences with z-values greater than 
5.0 and less than -5.0 removed. These z-values are used to rank the library sequences. 

Step 6 The Smith-Waterman algorithm (without limitation on gap size) is used to display alignments. 

tion, FASTA performs significantly worse than BLASTP; however, with the calculation of 
optimized scores (and normalization of the scores based-on library sequence length), FASTA 
performs significantly better than BLASTP and almost as well as the Smith-Waterman al- 
gorithm (Pearson, 1995). In addition, FASTA now uses the Smith-Waterman algorithm to  
produce final alignments; previous versions limited the size of gaps, which sometimes led to 
incomplete alignments. 

Every database search for members of a diverse protein family involve a tradeoff between 
sensitivity-the ability to identify distantly related members of the family-and selectivity- 
the ability to avoid high similarity scores for unrelated sequences. Table 3.3 compares how 
effectively the three algorithms maintain this balance for a large protein family-the G- 
protein-coupled receptors. Thus, BLASTP calculates a very highly significant score for the 
closely related opsin and dopamine D2 receptors, and a significant score fo’r the more dis- 
tantly related thromboxane A2 receptor, but it does not detect the similarity between opsin 
and the very distantly related Dictyostelium CAMP (CAR1) receptor. In addition, BLASTP 
would never suggest a relationship between opsin and cytochrome oxidase. FASTA (ktup=2 
does a better job at recognizing the relationship between opsin and thromboxane A2, fails. 
to detect the CAMP-1 receptor, and is more ambiguous about a possible relationship with 
cytochrome oxidase. FASTA with ktup=l and Smith-Waterman calculate statistically signif- 
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icant relationships between opsin and CAMP-1, but also good (but not significant) scores for 
opsin and cytochrome oxidase. 

3 The statistics of sequence similarity scores 

The development of accurate statistical estimates for local sequence similarity scores (Karlin 
& Altschul, 1990; Mott, 1992) has allowed dramatic improvement in our ability to reliably 
recognize distantly related proteins. The statistical estimates calculated by BLASTP are 
used widely in large scale sequence comparison, e.g. to characterize all of the genes on a 
yeast chromosome or all of the genes in a bacterial genome. The incorporation of statistical 
estimates into FASTA and SSEARCH (a Smith-Waterman implementation) have significantly 
improved the performance of these programs as well. 

7 :  

3.1 Sequence alignments without gaps 

The statistics of local similarity scores for alignments without gaps but with an arbitrary 
substitution matrix have been described by Karlin & Altschul, 1990. Local similarity scores 
are described by the extreme value distribution. Using the parameters X and IC, which can 
be derived from the scoring matrix and the amino acid composition of the query sequence, 
the probability that a normalized similarity score: 

(Karlin & Altschul, 1990; Altschul et al., 1994) where m is the length of the query sequence 
and n is the length of the library sequence can be calculated as: 

* 

P(S' 2 z) = 1 - ezp(-e-=) (2) 

Since a typical database search typically involves thousands of pairwise compaxisons, the 
expectation of finding a score S' 2 X for a search of D sequences is: E(S' 2 X) = PD. 
(Thus, searches of highly redundant databases may be less informative, because D is larger 
but the number of different sequences is not.) 

' 

3.2 Similarity scores increase with sequence length 

The normalization in equation 1 shows that scores for alignments without gaps between 
random sequences increase as In IL'mn, or since K and m are fixed for a given search, In n, the 
length of the library sequence. This is seen empirically with scores for alignments that contain 
gaps (Collins et al., 1988; Mott, 1992) and is shown in Fig. 17. For local similarities, the 
variance of the score should be independent of library sequence length. Thus, normalization 
of similarity scores by fitting a Line to the relationship of similarity score to Inn will reduce the 
scores of long, unrelated sequences, and make it possible to detect more distant relationships 
(Pearson, 1995). 
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Figure 17: Simiiarity scores and library sequence length 
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The distribution of Smith-Waterman similarity scores is plotted as a function of log(n), n is 
the length of the library sequence. Filled symbols indicate individual related sequences (only 
the most distant related sequences are shown); open symbols show the average and std. error 
of similarity scores for unrelated sequences. 

3.3 Empirical statistics for alignments with gaps 

Accurate statistical estimates for alignments with gaps can can be calculated by normalizing 
similarity scores to remove the Inn dependence for similarity scores. This can be seen in 
Fig. 5, where the '*'s show the fit of an extreme value distribution to  the observed data 
('==').. FASTA and SSEARCH estimate statistical significance by fitting a line to  S vs Inn 
and calculating the average variance for the scores. The regression line and variance are used' 
to calculate 

The distribution of Z - score's should follow the extreme value distribution, so that: 
Z - score = ( S  - (u + blnn))/var (3) 

1 (4) ~ 

-1.2822-0.5772 P(Z > z) = 1 - eap(-e . 
and, as before, E(Z > z) = PD. 
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Table 13: Search Algorithms and Statistical Significance 

algorithm closely related distantly unrelated 
related related 

dopamine D2a thromboxane A2b CAMP-1' cytochrome oxidased 

' Smith- Waterman 3 x 10-9 2 x 10-4 0.01 0.57 

PRSS(window=20)" 8 x 10-8 0.001 0.23 3.0 

fasta, ktup=l, opt 3 x 10-9 7 x 10-5 0.02 0.39 
fasta, ktup=2, opt 2 x 10-6 10-4 2.2 0.36 

PRSS" 8 x 10-l' 10-4 0.007 0.45- 

BLASTP 2 x 10-22 0.07 > 1.0 > 1.0 

=D2DRHUMAN, bTA2R-MOUSE, 'CARlDICDI, dAPPC_ECOLI 

Expected number of times that a similarity score as high or. higher than that obtained by the 
indicated library sequence would be obtained by chance in a search of Swiss-Prot ( x  43,000 

, entries) with the OPSDHUMAN (human opsin) query sequence. 'Expected times this score. 
would be obtained after 1,000 shuffles of the indicated library sequence with either global 
(prss) or local (window=20) amino acid exchanges. 

3.4 Statistical significance by random shuffling 

Statistical estimates derived from database searches measure the difference between an ob- 
served similarity score and that expected for a sequence with the amino acid composition 
of the database. Such tests may overestimate significance in cases where the query se- 
quence's amino acid composition differs from that of the database. Thus, membrane proteins 
with their hydrophobic transmembrane domains may have statistically significant scores with 
non-homologous membrane proteins. A more challenging test compares the similarity score 
between a query and library sequence with the distribution of scores obtained by comparing 
the query sequence to random sequences with the same length and amino acid composition as 
the library sequence. Such sequences are easily generated by randomly shufEling the library 
sequence, either globally,' by exchanging randomly each amino acid with any other position 
in the sequence, or locally, by performing the exchanges within a window of 10-20 residues. 
Because this Monte Carlo test measures the significance of the order of the two amino acid 
sequences, rather than the difference between the highest scoring sequences and the rest of 
the database, it tends to be more demanding. 

As before, similarity scores for random sequences should follow the extreme value distri- 
bution, and a fit of the distribution of scores can be used to estimate the significance of an 
unshuffled score. However, to extrapolate an expectation value from shuffled sequences to 
that for a library search, the "E()-value" must be multiplied by the ratio of the number of 

. .  
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. ' sequences in the library to the number of shuffled sequences. Thus, in the example below, an 
E()-value from 500 shuffles must be multiplied by 80 to  be comparable to an E()-value from 
the 40,000 entry Swiss-Prot. As expected, the E()-value from the actual search-2 x 10-4-is 
slightly more significant than that from the shuffled distribution-3 x 

Comparison of OOHU (human opsin) with TA2R-MOUSE (thromboxane A2 receptor) 
BLOSUM50 matrix, gap penalties: -12,-2 
unshuffled s - w  score: 160; shuffled score range: 38 - 92 

Lambda: 0.15076 K: 0.017357; P(160)= 7.4282e-08 
For 500 sequences, a score >=I60 is  expected 3.7le-05 times 

Although accurate statistical estimates can be very valuable in interpreting the results 
of similarity searches, they must be evaluated with caution. Distantly related homologous 
sequences often do not share statistically significant similarity. ,Thus, over reliance on statis- 
tical estimates, particularly after a single search, can miss genuine homologies. Conversely, 
sequences with low-complexity regions often share significant similarity but are not homolo- 
gous. Finally, some structures, such as the coiled-coil structure in tropomyosin, share statis- 
tical significance because of a common repeated structure, because of convergence (analogy), 
rather than homology. 

. 

4 Identifying distantly related protein sequences 

In this section, we will examine similarity searches in three diverse families of protein se- 
quences, serine proteases, glutathione S-transferases, and the G-protein-coupled receptors. 
The serine proteases are considered because they provide a classic example of a family of 
proteins with a highly conserved active site; the glutathione transferases are a very diverse 
family where many members do not share significant similarity with all other members, while 
the G-protein-coupled receptors are a very large and diverse family of membrane proteins. 

4.1 Serine proteases 

Serine proteases cleave peptide bonds using a "catalytic triad" of histidine, serine, and as- 
partic acid; these residues are underlined in Fig. 20. Because these residues are so highly 
conserved, patterns that focus on two of the regions (Fig. 18) can be used to identify ev- 
ery member of the serine protease family. Fig. 19 shows the highest scoring unnormalized 
similarity scores. As is often the case for divergent protein families, several members of the 
family do not share statistically significant similarity with bovine trypsin. These sequences 
are italicized in Fig. 19; their membership in the serine protease family is based on common 
three-dimensional structures. As expected from the discussion in section 3.2, several of the 
highest scoring unrelated sequences are substantially longer than genuine serine proteases. 
These scores have much higher (less significant) expectation values when the In n correction 
is used. 
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Figure 18: Patterns for serine proteases 
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TRYPSIN-HIS; PATTERN. 
PS00134; 
Serine proteases, trypsin family, histidine active site. 
[LIVM] - [ST] -A- [STAG] -H-C . 
/TOTAL=l58( 158) ; /POSITIVE=l54( 154) ; /UNKNOWN=2(2) ; /FALSE_POS=2(2) ; 
/FALSE,NEG=ll(ll) ; 
/TAXO-RANGE=??EP? ; /MAX:REPEAT=l; 
/SITE=5 , activesite; 

TRYPSIN-SER; PATTERN. 
PS0013S; 
Serine proteases, trypsin family, serine act’ive site. 
G-D-S-G-G. 
/TOTAL=160(160) ; /POSITIVE=l51(151) ; /UNKNOUN=l(l) ; /FALSE,POS=8(8) ; 
/FALSE,NEG=l6 (16) ; 
/TAXO-RANGE=??EP? ; /MAX-REPEAT4 ; 
/SITE=S,active-site; 

Patterns from PROSITE that identify 152/163 (TRYPSINHIS or 143/159 TRYPSINSER mem- 
bers of the serine protease protein family. 

The absolute conservation of residues in the “catalytic triad” might suggest that similar- 
ities between members of this family are limited to those regions. This is not ‘the case, as can 
be seen in Figs. 20. Similarity in the serine proteases typically extends from one end of the 
protein to the other, with strong conservation throughout the sequence. Indeed, the region 
around one of the residues in the catalytic triad-the apartic acid-is not well conserved. 
While the residues in the catalytic triad is an essential feature of serine proteases, the serine 
protease fold (two domains containing anti-parallel P-barrels) are required to  bring these 
residues together. 

The requirement for a common folded structure in homologous proteins usually causes 
similarities to extend from one end of the protein to the other, or for mosaic proteins, from 
one end of a domain to the other. Fig. 21 displays the locally similar regiois for the related 
and unrelated in Table 19; the highest scoring unrelated sequences tend to  have relatively 
short (< 100 residue) regions of higher similarity ( x  30% identical) while related sequences 
have longer (140-400), though sometimes lower (25%) similarity. In general, shorter, higher 
similarities are less significant than longer, lower similarities. 

’ 
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Figure 19: Serine protease search - high scoring sequences 

LOCUS 

TRBOTR 
TRRT2 
KQHU 
NGMSG 
KQRTTN 
KYBOA 
PLHU 
TRFF 
-KFHU 
ELRT2 
KYBOB 
KFHUl 
WMMS28 
EXBO 
DBHU 
KXBO 
UKHU 
TBHU 
TRSMG 
ClHURB 
HPHUl 
TRPGAZ 
HPRT 
C2HU 
BBHU 
KXBOZ 
TRYXB4 

OKBY8W 
RRIHM2 
IJFFTM 
GNNYE7 
VGIHHC 
QRRBVD 
PRSMBG* 
MMMSB2 
RERTK 
MMMSA 
LNRZ 
PRSMAG* 

Description 

trypsin precursor - bovine 
trypsin I1 precursor - rat 
tissue kallikrein precursor - 
7s NGF gamma chain I 
tonin - rat 
chymotrypsin A precursor - bovine 
plasmin precursor - human 
trypsin-like proteinase 
coagulation factor IXa 
pancreatic elastase '11 
chymotrypsin B precursor - bovine 
coagulation factor XIa 
complement factor D homolog 
coagulation factor Xa 
complement factor D- 
protein C (activated) 
u-plasminogen activator precu 
thrombin precursor - human (fr 
trypsin - Streptomyces griseus 
complement subcomponent Clr  p 
haptoglobin-1 precursor - human 
azurocidin - pig 
haptoglobin - rat (fragments) 
complement C2 - human 
complement factor B - human 
protein Z - bovine I 

alpha-Iytic proteinase 

probable protein kinase YCROO8W 
RNA-directed RNA polymerase 
cadherin-related tumor suppressor 
genome polyprot. - enterovirus 70 
E2 glycoprotein - coronavirus 
VLDL receptor - rabbit 
proteinase B - S. griseus 
laminin chain B2 precursor - mouse 
renin precursor - rat 
laminin chain A - mouse 
lectin precursor - rice 
proteinase A - S. griseus 

len 

229 
246 
262 
237 
235 
245 
790 
256 
46 1 
271 
245 
625 
259 
492 
246 
456 
431 
615 
221 
705 
347 
219 
297 
752 
739 
396 
396 

603 
4488 
5147 
2194 
1173 
873 
185 

1607 
402 

3084 
227 
182 

score 

1559 
1240 
669 
645 
623 
609 
580 
579 
578 
559 
556 
547 
541 
518 
517 
515 
507 
472 
409 
356 
335 
316 . 
289 
198 
169 
142 
107 

107 
99 
99 
98 
96 
96 
96 
95 
94 
93 
90 
89 

E( 10,000) 

0 
0 

4-46 x 10-38 
1.46 x 10-36 
4.09 x 10-35 
3.66 x 10-34 
1.71 x 10-31 
3.73 x 10-32 
1.04 x 10-31 
8.46 x 10-31 
1.15 x 10-30 
1.77 x 10-29 
1.22 x 10-29 
1-01 x 10-27 

1-42 x 10-27 
4.41 x 10-27 
1.45 x 10-24 

7.14 x 10-17 

6.9 x 10-15 
6.1 x 10-13 

0.00014~ 

4.33 x 10-28 

5:03 x 

6.9 x 

1.8 x 

0.0041 . 
0.83 . 

1.3 
37 
42 
20 
14 
10 
1.9 
23 
6.0 
61 
6.0 
5.5 
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Figure 20: Alignment of serine proteases 

TRSMG trypsin (EC 3.4.21.4) precursor - Streptomyces griseus (259 aa) 
Smith-Waterman score: 385; 33.6% identity in 247 aa overlap 

10 20 30 40 
KYBOA CGVPAIQPVLSGLSR--IVNGEEAVPGSWPWQVSLQDKTGFHFCGGSLI~ 

TRSMG MKHFLRALKRCSVAVATVAIAWGLqPVTASAAPNP~GGTRAAQGEFP~V~S--MG---CGGALYAQ 

. . . .  . . . . . . .  . . . . .  ............................... 
10 20 30 - 40 50 60 

50 60 70 80 90 100 I10 
KYBOA NWVVTAAHC----GVTTSDWG~QGSSSEKIQ~I~~SKYNSLTINND_ITLLKLSTAASFS 

TRSMG DIVLTAAHCVSGSGNNTSITATGGWDLQSSSA--VKVRSTKVLqAPGYNGT--GI<D_WALIKL--AQPIN 

. . . . .  .. .. . . . . .  ...... . . .  ........ . . . . . . . . . . . . .  ...................... 
70 80 90 100 I10 120 

120 130 140 150 160 170 180 
KYBOA QTVSAVCLPSASDDFAAGTTCVTTGWGLTRYTNANTPDRLQQAS~LLS~NC~~G~-I~AMICAG 

TRSMG QPTLKIATTTA---YNQGTFTVA-GWGANR-EGGSQQRYLLXANVPFVSDAACRSAYGNELVAICAG 

.... . . . . . . .  . . . . .  . . . . . . . . . . . . . . . . . .  ........................ 
130 140 150 160 170 180 190’ 

190 200 210 220 230 240 
KYBOA ---ASGVSSCMGDSGGPLVCKKNG-AWTLVGIVSWGSSTCSTSTPG~ARVTALVN~QQTL~~ 

TRSMG YPDTGGVDTCQGDSGGPMFRKDNADEWIQVGIVSWGYGCARPGYPGVYTEVSTFASAIASAARTL 
. . . . . . . . . . . . . . . . . . .  . . . . .  ........................... .............. 

200 210 220 230 240 250 I 
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TRBOTR 
TRRT2 
TRDFS 
KQHU 
NGMSG 
KQRTTN 
KYBOA 
PLHU 
TRFF 
KFHU 
KYRTB 
ELRT2 
KYBOB 
KFHU1 
WMMS28 
EXBO 
DBHU 
KXBO 
UKHU 
TBHU 
TRSMG 
ClHURB 
HPHUl 
TRPGAZ 
HPRT 
C2HU 
BBHU 
KXBOZ 
TRYXB4 
OKBY8W 
RRIHM2 
IJFFTM 
GNNYE7 
VGIHHC 
QRRBVD 
PRSMBG* 
MMMSB2 
RERTK 
MMMSA 
LNRZ 
PRSMAG* 

1559 100.0 
1240 74.7 
1070 66.5 
669 41.5 
665 39.7 
623 40.9 
609 42.1 
580 39.7 
579 42.1 
578 40.9 
564 39.5 
559 38.1 
556 . 37.8 
547 37.6 

. 541 35.7 
518 ' 39.4 
517 34.1 
515 37.3 
507 37.0 
472 35.8 
409 35.3 
356 30.4 
335 28.1 
316 30.0 
289 26.0 
198 25.7 
169 25.1 
142 25.2 
107 21.5 
107 33.3 
99 25.9 
99 27.0 
98 29.9 
96 29.8 
96 25.2 
96 24.9 
95 25.3 
94 23.8 
93 25.6 
90 26.1 
89 25.3 

Figure 21: Serine protease alignments 
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Table 14: Glutathione S-transferases 

The best scores are: S-W 

GTBl-MOUSE Glutathione S-transferase GT8.7 1490 
GTBlRAT Glutathione S-transferase YB1 1406 
GTMlHUMAN Glutathione S-transferase 1235 

GTPMOUSE Glutathione S-transferase P 361 
GTAS-MOUSE Glutathione S-transferase Ya . ' 229 
SC2-OCTDO S-crystallin 2 (OL2). 224 
GTAl-MOUSE Glutathione S-transferase GT41A 218 
GTC-MOUSE Glutathione S-transferase Yc 215 
GTHIHUMAN Glutathione S-transferase Al-1 . 206 
GT28SCHHA Glutathione S-transferase 28 kd 203 
GT5A-MOUSE Glutathione S-transferase GST 5.7 183 
GT28SCHJA Glutathione S-transferase 28 kd 169 
GT2DROME Glutathione S-transferase 2 164 
SC1-0 CTVU S-cryst allin 1. 159 
GTAC-CHICK Glutathione S-transferase, CL-3. 144 
SC18-OMMSL S-crystallin SL18. 131 
GTl-MUSDO Glutathione Stransferase 1 122 
GTl-MAIZE Glutathione S-transferase I 120 
ARP-TOBAC Auxin-regulated protein 117 
GT32MAIZE Glutathione S-transferase I11 115 
GTlDROME Glutathione S-transferase 1-1 100 
GTLWHEAT Glutathione S-transferase 1 98 
GTSROMI Glutathione S-transferase GST-6.0 97 
DCMA-METSP Dichloromethane dehalogenase 98 
GTYBJSSOR Glutathione S-transferase Y-2 94 
ARP2-TOBAC Auxin-induced PGNT35/PCNT111. 93 
GTTlRAT Glutathione S-transferase 5 93 
MODS-YEAST tRNA isopentenyltransferase 100 
GT2-WHEAT Glutathione S-transferase 2 92 
MYSP-MO USE Myosin heavy chain, skeletal 81 

YFHE-ECOLI hypothetical 20.1 kd protein in HSCA 86 

GT-ECOLI Glutathione S-transferase 88 
ABFLYEAST ARS-binding 'factor 2 precursor 87 
IMQI - YEA ST Probable ser/ thr-pro tein kinase 92 
EFlGRABIT Elongation factor l7 (EF-17). 92 
ARP3-TOBAC Auxin-induced PCNT103. 87 
CYAABACA N Calmodulin-sens. adenylate cyclase 96 
YJJV-ECOLI hypoth. 23.7 kd protein 86 

GT2-CHICK Glutathione S-transferase 2 954 

LIGEPSEPA ' P-etherase 91 

EFIGHUMAN Elongation factor 17 (EF-17). 94 

Z-score E(43470) 
2006.4 0 
1892.9 0 
1661.9 0 
1282.1 0 
481.2 2.3 x 
302.2 2.2 x 
297.2 4.2 x 10-l' 
287.4 1.5 x lo-' 
283.4 2 . 4 ~  
271.2 1.2 x 
267.6 1.8 x lo-' 
240.1 6.3 x 
221.9 6.4 x 
213.4 2.0 x lo-' 
209.0 3.3 x lo-' 
187.1 0.00056 
163.0 0.012 
158.3 0.023 
155.3 0.033 
151.0 0.058 
148.2 0.082 
128.5 1.0 
124.9 1.6 
124.7 1.7 
122.7 2.2 . 
121.3 2.6 
118.4 -3.7 
117.8 4.1 
117.2 4.4 
114.5 6.2 
113.5 - 7.0 
113.5 7.0 
113.5 7.1 
113.3 7.2 
112.7 7.9 
112.2 8.4 
110.7 10.1 
110.6 10.2 
110.3 10.6 
110.2 10.7 
110.0 11.1 

All of the unitalicized sequences are known to be members of the glutathione transferase 
family. 
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4.2 Glut at hione S-transferases 

The glutathione transferase family of enzymes is a very diverse family of proteins found, in 
various forms, in animals, plants, and prokaryotes. Fortunately, many of the members of this 
family have a common enzyme activity so that they can be recognized by name. Table 14 
shows that for this family, there are many homologues that do not show significant similarity 
when the database is searched with a single query sequence. 

Frequently, clear identification of a distant homology will require several database searches, 
with either different algorithms or additional query sequences. For example, in Table 14, one 
might wish to test the possibility that glutathione S-transferases shares homology with elon- 
gation factors, which are among the high scoring sequences. The result of a search using 
EFIGHUMAN is shown in Table 15. Here, there is a clear relationship between this elongation 
factor and the class-theta glutathione transferases. An additional search with a class-theta 
sequence reveals the most distant relationships in this family more clearly. 

. 

Table 15: Glutathione Transferase Homology with EF17 

The best scores are: s-w %score E(43470) 
EFlGHUMAN 
EFlGXENLA 
EF 1H-Y EAST 
EF 1 G-TRY CR 
SWHUMAN 
GTlMAIZE 
GT32M AIZE 
GTLWHEAT 
GTB-TOBAC 
GTYSJSSOR 
GT2-W H EAT 
HS26SOYBN 
ARP2-TOBAC 
ARP LTOB AC 
ARP3-TOBAC 
GTlDROME 
YIBF-ECOLI 
GTlDROSE 
GTlDROYA 
GTlDROER 
DCMAAIETSP 
GTlDROTE 
PRPlSOLTU 
GTlMUSDO 

Elongation factor l7 (EF-17) 2977 3398.2 
Elongation factor 17 (EF-17) 2370 2703.1 
Elongation factor l7 2 (EF-17) 769 870.4 
Elongation factor l7 (EF-17) 715 808.6 
Val y 1- tRNA synthetase . 440 408.5 
Glutathione S-transferase I 222 250.3 
Glutathione S-transferase I11 193 216.7 
Glutathione S-transferase 1 186 208.4 
Glutathione S-transferase 184 206.7 
Glutathione S-transferase Y-2 175 197.5 
Glutathione S-transferase 2 175 193.5 
Heat shock protein 26A. 171 191.3 
Auxin-induced, PGNT35/PCNT111 169 189.1 
Auxin-induced PGNTl/PCNTllO 166 185.7 
Auxin-induced PCNT103 163 182.3 
Glutathione S-transferase 1-1 162 181.7 
hypoth. '22.6 kd prot. 155 177.6 
Glutathione S-transferase 1-1 155 174.1 
Glutathione S-transferase 1-1 154 173.0 
Glutathione S-transferase 1-1 152 170.7 
Dichloromethane dehalogenase 153 168.4 
Glutathione S-transferase 1-1 150 168.4 
Pathogenesis-related prot. 1. ' 147 166.3 
Glutathione S-transferase 1 138 154.3 
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0 
0 
0 
0 

2.6 x 
1.7 x 10-7 
1.3 x 10-5 
3.7 x 10-5 
4.5 x 10-5 

0.00015 
0.00025 
0.00033 
0.00043 
0.00067 . 0.0010 
0.0012 
0.0019 
0.0030 
0.0034 
0.0046 
0.0062 . 
0.0062 
0.0081 
0.04 



Figure 22: G-protein-coupled receptors 
herpesEC 

mMRG 

bovETA 
I-.. . . 

humM1 

4.3 G-protein-coupled receptors 

The G-protein-coupled receptors (GCRs) are one of the largest known gene families; mem- 
bers of the family transduce signals from light, peptides, cationic amines, lipid mediators, 
odors, and many more small molecules. An evolutionary tree that summarizes the diversity 
of this family is shown in Fig. 22. Based on hydrophobicity plots and the structure of bacteri- 
orhodopsin (a protein that does not share significant similarity with members of this family), 
the GCRs are thought to contain seven transmembrane domains, so that the N-terminus of 
the proteins is extracellular, while the C-terminus is intracellular. 

Because GCRs have transmembrane domains, the highest scoring unrelated sequences 
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Table 16: GCRs distant from human opsin 

The best scores are: s-w Zscore E(43470) 
CARlDICDI 
OLF2-CHICK 
5H2A-CAVPO 
CAR3DICDI 
MASHUMAN 
OLF4XHICK 
OLF5,CHICK 
OLFLCHICK 
PER2MOUSE 
UL33HCMVA 
GU58RAT 
CAR2DICDI 
MSHR-MOUSE 
MSHRHUMAN 
LI VM-ECOLI 
APPC-ECOLI 
BIOXBACSH 
RTARAT 
GU45RAT 
AROP-ECOLI 
PERlHUMAN 
TCRSTAAU 
OLF4,MOUSE 
TCR2BACSU 
CYOB-ECOLI 

CYCLIC AMP RECPT. 1 
OLFACTORY RECPT.-LIKE PROTEIN COR2 
5-HYDROXYTRYPTAMINE.2A RECPT. 
CYCLIC AMP RECPT. 3. 
MAS PROTO-ONCOGENE. 
OLFACTORY RECPT.-LIKE COR4. 
OLFACTORY RECPT.-LIKE COR5. 
OLFACTORY RECPT.-LIKE COR1. 
PROSTAGLANDIN E/EP2 RECPT. 

POSSIBLE GUSTATORY RECPT. 
CYCLIC AMP RECPT. 2 
MELANOCYTE STIM. HORMONE RECPT. 
MELANOCYTE STIM. HORMONE RECPT. 

PROB.CYTOCHROME OXIDASE 
BIOX PROTEIN. 

POSS. GUSTATORY RECPT. PTE45 
AROMATIC AMINO ACID TRANS,. PROT. A 
PROSTAGLANDIN E/EP1 RECPT. 
TETRACYCLINE RESISTANCE PROTEIN. 

TETRACYCLINE RESISTANCE PROTEIN. 
CYTOCHROME 0 UBIQUINOL OXIDASE 

G-PROTEIN COUPLED RECPT. HOMOLOG 

BRANCHED-CHAIN AMINO ACID 

PROB. G PROTEIN-COUPLED RECPT. RTA. 

OLFACTORY RECPT.-LIKE PROTEIN K4 

130 
129 
121 
124 
120 
121 
120 
117 
121 
117 
109 
111 
111 
111 
109 
110 
102 
109 
102 
106 
108 
106 
98 

106 
104 

162.0 
158.1 
153.7 
152.2 
150.2 
147.9 
146.6 
142.4 
140.0 
139.2 , 

138.2 
137.0 
134.9 
134.8 
133.3 
133.1 
131.5 
131.0 
128.8 
128.7 
127.4 
123.9 
123.3 
123.1 
123.0 

0.014 
0.022 
0.040 
0.049 
0.064 . 

0.085 
0.10 
0.17 
0.23 . 
0.26 
0.30 
0.35 
0.45 
0.46 
0.55 
0.57 
0.69 
0.74 
0.99 
1.0 
1.2 
1.9 . 
2.0 
2.1 
2.1 

are frequently other membrane proteins. Table 16 lists sequences from Swiss-Prot that have 
marginally significant matches with a human opsin sequence (there are more than 375 re- 
lated sequences with expectations ranging from 0-0.01 that are not shown). As with most 
divergent families, the question becomes, “how do I know that XXX is/is not a GCR?” This 
is more difficult with the GCRs, because they have long variable length loops in both their 
extracellular and intracellular domains. 

As before, two strategies can be used to evaluate the hypothesis of homology: re-searching 
the library and statistical significance from shuffling. A search of the Swiss-Prot database 
reveals that R T A R A T  shares significant similarity (E(40,OOO) < 0.01) with 120 GCRs; 100 
more high-ranking scores with less statistical come from GCRs as well. In contrast, the 
highest ranking scores from the BIOX-BACSH are: 

The best scores are:  
BIOXBACSH BIOX PROTEIN. 1029 1305.2 0 
POTBECOLI SPERMIDINE/PUTRESCINE TRANSPORT SYSTEM Ill 138.1 0.3027 
PROWECOLI GLYCINE BETAINE/L-PROLINE TRANSPORT SYS 
PITECOLI LOW-AFFINITY’INORGANIC PHOSPHATE TRANSPO 113 130.7 0.7754 

s-w Z-score E(43470) 

112 135.0 0.4493 
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The results from the R T A R A T  and B I O X B A C S H ,  which show that R T A R A T  is clearly a 
member of,the GCR family, contrast with the statistical significance calculated with the 
PRSS program. Comparing the OOHU with R T A R A T  score with the distribution of scores 
calculated after shufRing R T A R A T  1000 times with a local window of 20 suggests that the 
unshuffled score (109 ) is expected 4.6 times in 1000 shuffles. In contrast, the B I O X B A C S U  
score is expected only 0.8 times in 100 shuffles. From this perspective, the B I O X B A C S H U  score 
is more significant, but, in fact, neither similarity score is significant. It is not until R T A B A T  
is compared with other members of the familied, e.g. the angiotensin, Wet-Leu-Phe, IL8, or 
somatostatin receptors with E-values from 10-11-10-6, that the relationship is apparent. 

Table 3.3 compares the statistical significance inferred from database searches with those 
determined by Monte-Carlo shuang. As expected, the significance of the scores when com- 
pared with locally (window) shuffled sequences is 10-fold lower than the comparison with 
globally shuffled scores. It is unclear how to compare the expectation from shuffles with the 
expectation from a search. In the table, the expectation from a search of a 43,000 entry 
library is compared to the expectation from 1,000 shuffles.' For global shuffles, ,the expec- 
tations are quite comparable while local shuffles are more conservative, yet al l  but one of 
the similarity scores judged significant from the database search are still significant when 
compared with the local-shuffle distribution. 

Nevertheless, these examples show both that current statistical models for the similar- 
ity scores of unrelated sequences are quite accurate, but also that homologous sequences 
frequently do not share significant pair-wise similarity scores. Thus, a lack of statistical sig- 
nificance cannot be used to infer non-homology, but strong statistical significance is a good 
indicator of common ancestry. 
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Figure 23: Internal duplications in calmodulin 

140 

1-1 -1 
MCHU calmodulin - human 

5 Repeated structures in proteins 

So far, we have focussed on the identification and statistics of the single most significant 
similarity score shared by two sequences. As can b’e seen in Fig. 13B, however, there are fre- 
quently several non-overlapping local alignments with optimal similarity scores. In addition, 
there can be non-overlapping sub-optimal alignments with significant scores that can be used 
to  infer the duplication events that gave rise to the protein sequence. An algorithm for the 
best N non-overlapping local alignments was described by (Waterman & Eggert, 1987). 

Figs. 23 and 24 show a graphical plot of the local similarities within the calmodulin 
calcium binding protein. Calmodulin contains four EF-hand Ca+-binding domains that are 
well conserved. The highest scoring alignment in Fig. 24 aligns domains A-B with C-D; the 
second highest aligns A-B-C with B-C-D; the third ’aligns A with D. 

A similar pattern of local similarity can be seen in Fig. 25, which shows’the mosaic 
relationship between the EGF-precursor and the LDLreceptor. 

Some non-homologous structures, particularly proteins containing the coiled-coil struc- 
ture, have a periodic structure that is easily seen in local similarity plots. Fig. 26 shows local 
similarities in tropomyosin. All the alignments shown have local similarity scores greater 

I 
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Figure 24: Calmodulin internal a.lignments 

Comparison of: 
(A) >MCHU - Calmodulin - Human, rabbit, bovine, rat, 
(B) >MCHU - Calmodulin - Human, rabbit, bovine., rat, 
using matrix file : BLOSUM50, gap penalties : -14/-4 

- 148 aa 
- 148 aa 

47.7% identity in 65 aa overlap; score: 214 

20 30 40 50 60 70 
MCHU EFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAELQDMINEM~GNGTIDFPEFLTMMA~ 

MCHU EIREAFRVFDKDGNGYISAAELRHVMTNLGEKLTDEEVDEMIREADIDGDGQVHYEEFVQMMTAK 
. . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . .  ................................................... 

90 100 110 120 130 140 . ---------- 
32.4% identity in 102 aa overlap; score: 177 

10 20 30 40 50 60 70 
MCHU AEFKEAFSLFDKDGDGTITTKELGTVM-RSLGQNPTEAELQDMI~MADGNGTIDFP~~M~~~ . . . . . . . . . .  . .  . . . . . . .  .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
MCHU AELQDMINEVDADGNGTIDFPEFLTMMARKMKDTDSEEEIREAFR~KDGNGYISAAELR~-~LGE 

50 60 70 80 90 100 110 

80 90 100 110 
MCHU TDSEEEIREAFRVFDKDGNGYISAAELRHVMT 

MCHU KLTDEEVDEMIREADIDGDGQVNYEEFVQMMT 
. . . . . . . .  .. ..................... 

120 130 140 

36.1% identity in 36 aa overlap; score: 
---------- 

55 

10 20 * 30 
MCHU DQLTEEQIAEF-KEAFSLFDKDGDGTITTKELGTVM 

MCHU EKLTDEEVDEMIREA---DIDGDGQVNYEEFVQMM 
. . . . . .  ..... ............. . . . . . . . . . . . .  
120 130 140 

40.0% identity in 20 aa overlap; score: 53 

70 80 
MCHU LTMMARKMKDTDSEEEIREA 

MCHU MTNLGEKLTDEEMEMIREA 
. .  ..... ............... 

110 120 ---------- 
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Figure 25: Mosaic domains shared by the EGF-precursor and LDL-receptor 
850- 

- 

5 0 1  
I 
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. EGMSMG epidermal growth factor precursor - mouse 

than 120, and each would be significant in a conventional database search. 
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Figure 26: Coiled-coil structures share local similarity ’ . 

TMRBA tropomyosin alpha chain, skeletal 
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6 Summary 

Protein sequence comparison is the most powerful tool available today for inferring structure 
and function from sequence because of the constraints of protein evolution-a protein fold into 
a functional structure. Protein sequence similarity can routinely be used to infer relationships 
between proteins that last shared a common ancestor 1-2.5 billion years ago. Our ability to  
identify distantly related proteins has improved over the past five years with the development 
of accurate statistical estimates, which have provided better normalization methods, and with 
the use of optimized scoring parameters. In using sequence similarity to infer homology, one 
should remember: 

* 

1. Always compare protein sequences if the genes encode proteins. Protein sequence com- 
parison will typically double the look back time over DNA sequence comparison. 

2. While most sequences that share statistically significant similarity are homologous, 
many distantly related homologous sequences do not share significant homology. (Low 
complexity regions display significant similarity in the absense of homology). Homol- 
ogous sequences are usually similar over an entire sequence or domain. Matches that 
are more than 50% identical in a 20-40 amino acid region occur frequently by chance. 

3. Homologous sequences share a common ancestor, and thus a common protein fold. 
Depending on the evolutionary distance and divergence path, two or more homologous 
sequences may have very few absolutely conserved residues. However, if homology has 
been inferred between A and B, between B and C, and between C and D, A and D 
must be homologous, even if they share no significant similarity. 

4. Similarity searching techniques can be. improved either by increasing the ability of a 
method to recognize distantly related sequences-increased sensitivity-or by lowering 
scores for unrelated sequences-increased selectivity. Since there are generally 1000- 
times more unrelated than related sequences in a sequence database, improvements 
that reduce the scores of unrelated sequences can have dramatic effects.. The most 
dramatic improvements in comparison methods recently have used this approach. 
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