ConF- 9507246 - - 4

ISMB-95

ROBINSON COLLEGE,
CAMBRIDGE

Tutorial Programme
Sunday 15 July 1995

TUTORIAL Té6

Protein Sequence Comparisbn
and Protein Evolution

(William R Pearson)

PIETARIRAN AT THIS DOGUMENT IS UNLIMMED hﬂpg ! Ei z
X h . L o




DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.




Protein sequence comparison and Protein evolution

ISMB95 Tutorial

William R. Pearson*

Department of Biochemistry,

Jordan Hall,#440
University of Virginia, Charlottesville, VA 22908, USA

July 16, 1995

Contents

1 Introduction
1.1 Evolutionary timescales . . . . . . . o i i it i i i e e e e e e e e e e
12 Modesof Evolution . . . . .« ¢t v i i ittt i e e e e e e e ..
1.2.1 Conventional divergence from a common ancestor. . . . .. ... ...
1.2.2 Sequence similarity and homology, the H* ATPase . . ... .. .. .. .
1.23 Mosaicproteins . . . . v . .t i ittt e e e e e e . c e
1.3 Introns Early/Late . R I

1.4 DNA vs Protein COmMPaTiSon « « « v v v v v v v v vt e e e et et ee e

2 Alignment methods
2.1 Algorithms- . .............. R
2.2 Dynamic Programming Algorithms . . . . ... ... ... ... .. ... . e
2.3 Scoringmethods ... ... ...ttt e
2.4 Heuristic Algorithms -

................................

24.1° BLAST . . i it e e e e e et e e e
*FAX: (804) 924-5069; email: wrp@virginia.EDU



http://wrpOvirginia.EDU

2.4.2 FASTA . .. i i i ittt e e e e et e e e e e e e e 31

3 The statistics of sequence similarity scores 33
3.1 Sequence alignments without gaps . ... ... ... ... ... . ... ... 33
3.2 Similarity scores increase with sequencelength ... ........ ... ... 33
3.3 Empirical statistics for alignments withgaps .................. 34
3.4 Statistical significance by random shuffling . . . . . ... ... ... ... ... 35

4 Identifying distantly related protein sequences 36
4,1 Serine Proteases . . « ¢ v v ¢ v o v o v o o v bt b bt e 36
4.2 Glutathione S-transferases . . . . . ¢« ¢ ¢ v vt i i ittt i e e 42
4.3 G-protein-coupled 1eCePLOIS . . v v ¢ ¢ v v it i et e et 43

5 Repeated structures in proteins _ 46

6 Summary ' 50

References . 51

7 Suggested Reading 53
7.1 General Proteinevolution ... ...... ... .0t 53

7.1.1 Introns Early/Late . . . .. . ... i v ittt it 53
7.2 Alignmentmethods. . ......... ... .. ... W... 53
7.2.1 Algorithms ............... R 53
7.2.2 Scoringmethods . .........c.0vivien... P 54
7.3 Evaluating matches - statistics of similarity scores . .............. 54

1 Introduction

The concurrent development of molecular cloning techniques, DNA sequencing methods,
rapid sequence comparison algorithms, and computer workstations has revolutionized the
role of biological sequence comparison in molecular biology. As a result, the role of protein
sequence data in molecular biology and biochemistry has dramatically changed. Twenty-five
years ago, protein sequence determination was usually one of the last steps in the characteri-
zation of a protein. Now the process is reversed, so that it is common to clone and sequence a




gene of biological interest—e.g., one that is induced by serum stimulation, or a developmental
change, or a chromosomal rearrangement associated with a disease. This is the fundamen-
tal premise of the human genome project—that one can first sequence all the genes in an
" organism and then infer their function by sequence analysis.

Today, the most powerful method for inferring the biological function of a gene (or the
protein that it encodes) is by sequence similarity searching on protein and DNA sequence
databases. With the development of rapid methods for sequence comparison, both with
heuristic algorithms and powerful parallel computers, discoveries based solely on sequence
homology have become routine. One of the more dramatic discoveries was the identification
of a new tumor suppressor gene in humans that is related to yeast and E. coli DNA repair
enzymes. This discovery, the result of a similarity search, both told the investigators that
they had identified the appropriate gene and demonstrated clearly the nature of the oncogenic
mutation. As entire genomes from bacteria, yeast, and simple eukaryotes become available,
protein sequence comparison will become an even more powerful tool for understanding
biological function. : .

Protein sequence comparison is our most powerful tool for characterizing protein se-
quences because of the enormous amount of information that is preserved throughout the
evolutionary process. For many protein sequences, an evolutionary history can be traced
back 1-2 billion years. Proteins that share a common ancestor are called homologous. Se-
quence comparison is most informative when it detects homologous proteins. Homologous
proteins always share a common three-dimensional folding structure and they often share
common active sites or binding domains. Frequently homologous proteins share common
functions, but sometimes they do not. Our ability to characterize the biological properties
of a protein based on sequence data alone stems almost exclusively from properties con-
served through evolutionary time. Predictions of common properties for non-homologous
proteins—similarities that have arisen by convergence— are much less reliable.

This tutorial examines how the information conserved during the evolution of a protein
molecule can be used to infer reliably homology, and thus a shared protein fold and possibly
a shared active site or function. We will start by reviewing a geological/evolutionary time
scale. Many protein sequences can be used to infer reliably events that happened more than
a billion years ago. Remarkably, some protein sequences change so slowly that they could
be used to “date” events that took place more than 5 billion years ago, had the proteins
existed. Next we will look at the evolution of several protein families. During the tutorial,
these families will be used to demonstrate that homologous protein ancestry can be inferred
with confidence. We will also examine different modes of protein evolution and consider some
hypotheses that have been presented to explain the very earliest events in protein evolution.

The next part of the tutorial will examine the technical aspects of protein sequence
comparison. Both optimal and heuristic algorithms and their associated parameters that are
used to characterize protein sequence similarities are discussed. Perhaps more importantly,
we will survey the statistics of local similarity scores, and how these statistics can both be
used to improved the selectivity of a search and to evaluate the significance of a match.

We will then examine distantly related members of three protein families, the serine pro-
teases, the glutathione transferases, and the G-protein-coupled receptors (GCRs). The serine




proteases are used to emphasize that even when a highly conserved motif is found through-
out a family, similarity extends over a much longer region. The glutathione transferases
and GCRs are very diverse families whose members frequently do not share significant pair-
wise similarity. The relative strengths of strategies to characterize such relationships will be
examined.

Finally, we will discuss how sequence similarity can be used to examine internal re-
peated or mosaic structures in proteins. Such repeated structures can arise from either
divergence—calmodulin EF-hand repeats and EGF-domains—or convergence—tropomyosin
and transcription factor coiled-coil.

This tutorial is directed towards examining protein evolution. Most of the algorithms
and methods that are applied to protein evolution can be used with DNA sequences as
well. However, in general, DNA sequence comparisons are far far less informative than
protein sequence comparisons (see Fig. 8). DNA sequences that do not encode proteins or
structural RNAs (e.g. ribosomal RNAs) diverge very rapidly, so that it is usually difficult
to detect reliably non-coding DNA sequence homologies for sequences that diverged more
than 200 million years ago. In contrast, even the most rapidly changing protein sequences
can detect sequences that are 200 million years old; typically protein sequence comparisons
detect sequences that diverged 1 billion years ago. Thus, the most important lesson from
this tutorial is, when searching sequence databases for homologous sequences, to use protein
sequences whenever possible.

1.1 Evolutionary time scales

When we search for homologous proteins, we are trying to identify proteins that shared a
common ancestor in the past. Fig. 1 shows a general evolutionary tree that reaches back
to the beginning of the earth’s history. The goal of protein sequence comparison is to take
a protein sequence, for example from a human chromosome, and search a protein database
to find homologous sequences, often from very divergent organisms. Thus, if the similarity
search produces significant matches with a protein found in yeast, then an ancestral protein
must-have existed in an organism at least-1 billion years ago and that the descendants of
that organism preserved the sequence in modern day humans and yeast. Likewise, if a yeast
protein is homologous to one found in E. coli, that sequence must have existed in 2 billion
years ago in the primordial organism that gave rise to bacteria and fungi.

When we examine protein or DNA sequences, we are almost always studying modern
(present day) sequences. Thus, it does not make any sense to say that a yeast or bacterial
sequence is more primitive than a mammalian sequence; all sequences are contemporary. As
we will see later, however, there are examples of sequences that are found only in vertebrates,
or only in animals or plants but not both. Such sequences are less ancient than those found
both in mammals and bacteria.

For organisms that diverged within the past 600 Mya, inferences about divergence times
for modern organisms are taken from geological ‘data; more ancient divergence times are
inferred from extrapolations of evolutionary “clocks.” Evolutionary clocks are based both on
slowly changing protein sequences and on ribosomal RNA sequences; such divergence time

4




Figure 1: The tree of life
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Figure 2: Geologic time scales
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estimates require a rate of change that is constant on average. The oldest fossils are of
prokaryotes in rocks about 2.5 billion years old; this geological age is consistent with that
inferred from evolutionary divergence rates.

Table 1: Some Important dates in history

Origin of the universe:

Formation of the solar system
First self-replicating system
Prokaryotic-eukaryotic divergence
Plant-animal divergence
Invertebrate-vertebrate divergence
Mammalian radiation beginning

-10¢
-4.6
-3.5
-1.8
-1.0
-0.5
-0.1

+2

+0.4
+0.5
+0.3

¢Billions of years. From Doolittle et al., 1986.

Table 2: Evolutionary Horizons

PAMs®/100 residues ~ Theoretical
Protein /108 yedrs Lookback time® Horizon
Pseudogenes 400 45°¢ Primates, Rodents
Fibrinopeptides 90 200 Mammalian Radiation
Lactalbumins 27 670 Vertebrates
Ribonucleases 21 850 Animals
Hemoglobins 12 1.5¢ Plants/Animals
Acid Proteases 8 2.3 Prokayrotic/Eukarotic
Triosphosphate isomerase -3 6 Archaen

1 18 .

Glutamate dehydrogenase

“I;AMS, point accepted mutations. *Useful lookback time, 360 PAMs, 15% identity.
“Millions of years. ?Billions of years. Adapted from Doolittle et al., 1986

Table 1 summarizes some important milestones in evolutionary time, and, when consid-

ered with Table 2, gives a better perspective on the the evolutionary horizons provided by
different protein families. The theoretical lookback times in Table 2 are based on the as-
sumption that one can identify proteins that share about 20% sequence identity throughout
their entire length. It will be clear from later examples that if two protein sequences share
25% identity across their lengths, they are homologous, and that in some cases, convincing
evidence of common ancestry can be deduced from similarities as low as 20%. These look-
back times can be confirmed in practice; for example, with sensitive sequence comparison
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a.lgoritl'1ms, significant similarity between plant and animal globins can be found.

1.2 Modes of Evolution
1.2.1 Conventional divergence from a common ancestor

Homologous sequences can be divided into two groups: (1) orthologous sequences — sequences
that differ because they are found in different species; and (2) paralogous sequences — se-
quences that differ because of a gene duplication event. Fig. 3 shows an evolutionary tree for
orthologous cytochrome ‘c’ sequences. The branching pattern, which reflects the differences
between cytochrome ‘c’ sequences, matches the evolutionary relationships of the species that
express the the proteins.

Figure 3: Orthologous sequences — The cytochrome ‘c’ family

CRUSTACEAN p(g.n INSECT VERTEBRATES .
MOLLUSC Garden snoil Fruit fly Human FUNGI
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ANNELID Brendling worm Bakers yeost PROTISTS
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Cytochrome ‘c’s comprise a family of orthologous proteins that are found in all organisms.
This branch of the tree shows the number of differences between different eukaryotes. Thus,
human and chicken cytochrome ‘c’, which diverged about 400 Mya, differ at 13 of 110 posi-
tions. The sequences on this tree are orthologous — two cytochrome ‘c’s are different because’
they are in different species. .

In general, the organismal tree and the sequence tree will not match if the sequences are
paralogous. Members of the globin oxygen binding protein family are both orthologous —
they differ because of speciation — and paralogous — they differ because of gene duplications.
Thus, human a-globin, mouse a-globin, and chicken a-globin are all orthologs, they differ
because of the speciation events that gave rise to humans, rodents, and birds. Mouse S
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Figure 4: Ortho-logy and paralogy — The globin family
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globin and human o globin are paralogous; they differ because of a gene duplication that
created the o and f subunits some 600 Mya. An evolutionary tree based on human «,
chicken o, and mouse § would imply that humans are more closely related to chickens than
to mice. While such a mistake is unlikely in a well-studied family like the globins, it can be
quite common in large, diverse, and poorly characterized families like the G-protein-coupled
receptors (Fig. 22). '

-,

1.2.2 Sequence similarity and homology, the Ht ATPase . N

Our first example of the significant sequence similarity shared by homologous proteins will use

‘one of the chains of the H¥-ATPase, or proton-pump, used to convert energy to ATP in the
mitochrondria and chloroplasts of aerobic organisms. Table 3 reports similarity scores and
their statistical significance from a search of the PIR annotated protein sequence database
(PIR1, release 44, March, 1995) using the human H+-ATPase as a query sequence. There
is excellent agreement between the expected and actual distributions of similarity scores. In
this search, all of the library sequences related (homologous) to the query sequence obtained
scores higher than any of the unrelated sequences. However, a number of unrelated sequences
obtained very high scores; 10 of the 32 sequences with z-scores > 120 (7 standard deviations
above the mean !) are not members of the H4-ATPase family.

1The z-scores plotted have a mean of 50 and a standard deviation of 10.




Figure 5: Searching with human ATP-ase, similarity scores
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Fig. 5 shows the distribution of similarity scores between human H*-ATPase (PIR entry
PWHUS) and each protein sequence in the PIR1 (rel. 44) database. The ‘=’ symbols in the
histogram show the distribution of normalized similarity scores calculated during the search,
thus, 393 sequences in the PIR1 library had scores of 60 or 61. The ‘*’ symbols report the
expected number of sequences with the indicated range of scores for a search of a database
of this size, based on random chance. The basis for the statistical estimates will be discussed
in section 3.

While Table 3 shows that all of the members of this family have siginificant similarity
with the human enzyme, Fig. 6 gives a more realistic perspective of the family’s evolutionary
history by considering every possible pairwise alignment. When the E. coli enzyme is used to
search the database for related Ht-ATPases, the ranking of the different sequences changes,
but sequences distant from the E. coli sequence have more significant similarities than those
distant from the human sequence.

The similarity scores in Figs. 5~7 where calculated using the Smith-Waterman algorithm,
a method that guarantees to calculate the best (optimal) score between any two protein
or DNA sequences, given a scoring matrix and gap penalties. Fig. 8 shows the PAM250
matrix, which was developed almost 20 years ago by Dayhoff and her colleagues (Dayhoff
et al., 1978). The PAM250 matrix, or modern versions such as the BLOSUMS50 matrix used
here, incorporates information about the likelihood that one amino-acid will be mutated into
another over evolutionary time. Thus, changes that are very unlikely to occur in evolution,
for example the substitution of the very small glycine residue for the very large tryptophan
residue, are given large negative scores (—7 in Fig. 8), while conservative changes, such as-the
substitution of lysine by arginine (both have basic side chains), are given positive scores (+3).
The scores for identical matches also vary in the PAM250 matrix, depending on whether the
amino-acids are common (e.g. serine and methionine), and thus likely to be aligned by
chance, or rare (e.g. cysteine and tryptophan). There is a well-developed statistical theory
for substitution matrices (Altschul, 1991), which will be discussed in section 2.3.

For many protein families with a variety of divergence rates, the rate of change over evo-
lutionary time is relatively constant (Fig. 9). These rates can be used to date the divergence
events (e.g. plants and animals) that occurred more than 600 Mya and thus do not have a
fossil record. However, different protein families diverge at different rates, so that, in gen-
eral, the number of differences between a pair of sequences cannot be used to estimate the
time the two sequences diverged. This is particularly frue for paralogous sequences; once
a sequence has duplicated, it may change very rapidly before selective pressure on its new
function slows its rate of change. Thus, in Table 9 there are several members of growth
hormone superfamily—growth hormone, sommatotropin, and prolactin—with different di-
vergence rates.

1.2.3 Mosaic proteins
“Conventional” protein families, e.g. the globins, cytochrome ‘c’s, Ht-ATPases, in which

protein sequences have diverged from a common ancestor in a direct fashion, typically with
only modest changés in the length of the sequence, have been known for more than 30 years.
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Table 3: Searching with human ATP-ase, high-scoring sequences

The best scores are: s-w z-score E(12805) % len
PWHUG6 H--trans. ATP synth.—human mito. 1400 1767.8 0 100.0 226
PWBO6 H--trans. ATP synth.—bovine mito. 1157 14609 O 779 226
PWMS6 H--trans. ATP synth.—mouse mito. 1118 14116 0 75.7 226
PWXL6 H-+—-trans. ATP synth.—frog mito. 745 9406 O 53.3 226
PWFF6Y  H--trans. ATP synth.—fruit fly mito. 473 5971 10~%7 37.8 222
PWFF6 H-+-trans. ATP synth.—fruit fly mito. 471 ° 594.6 10~2%¢ 375 224.
PWBY3 H-t-trans. ATP synth.—yeast mito. 438 551.7 10?5 36.2 232
PWAS6N  H--trans. ATP synth.—aspergillus mito. 365 459.6 10°1° 304 230
PWKQ6 H-+-trans. ATP synth.—Cochliobolus mito. 353 4444 10718 31.3 214
PWWT6  H--trans. ATP synth.—wheat mito. 309 3854 10715 28.9 235
PWNT6M H+-trans. ATP synth.—tobacco mito. 309 3852 10°1° 28.3 . 233
PWZM6M  H-+-trans..ATP synth.—corn mito. 283  355.0 1071° 311 291
LWECS6 H--trans. ATP synth.—E. coli 178 2230 10-¢ 23.3 236
LWRZ6 H+-trans. ATP synth.—rice chloro. 144 .180.8 0.00037 242 231
PWPMA6 H-—trans. ATP synth.—pea chloro. 143 179.5 0.00044 25.0 232
PWYBAA H--trans. ATP synth.—Synechocystis 142 177.3 0.00058 26.5 170
PWSPA6  H-+-trans. ATP synth.—spinach chloro. 138  173.2 0.00098 .24.2 231
PWYCA6 H--trans. ATP synth.—cyanobacteria 127 158.9 0.0062 26.3 167
LWNT6 H--trans. ATP synth.—tobacco chloro. 126 158.1 0.0069 22.1 231 .
LWLV6 H-+-trans. ATP synth.—Marchiantia chloro. 126  158.0 0.0069 24.0 167
PWEGAC H+-trans. ATP synth.—FEuglena chloro. 123 1541 0.011 25.7 214
S17420 ubiquinol-cytochrome-c reductase 113 138.0 0.09 23.4 158
517418 ubiquinol-cytochrome-c reductase 108 131.7 0.20 24.5 208
QXBO2M NADH dehydrogenase (ubiquinone) 107 131.2 0.22 26.1 211
517415 ubiquinol-cytochrome-c reductase 105 127.9 0.33 277 137
DNHUN2 NADH dehydrogenase (ubiquinone) 103 126.1 0.41 20.1 149
QRECAA  amino acid trans. protein—E. Coli 104 125.1 047 234 111
CBHU ubiquinol-cytochrome-c reductase 102 124.1 0.53 26.8 205
S17419 ubiquinol-cytochrome-c reductase 101 1229 0.63 23.4 158
S17407 ubiquinol-cytochrome-c reductase 99 1203 0.87 23.6 140
QQBEN5  integral membrane protein—saimiriine herp 98 119.4 0.99 20.8 202

The horizontal line indicates the separation been the lowest scoring related sequences and
the highest scoring unrelated sequence.
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Figure 6: Phylogeny of H+-ATPases

Human mito. 0/106
Bovine mito. 0/10°6

Mouse mito. 0/10°

- Frog mito. 0/10°6

Fruit fly mito. 1026/0.003
Yeast mito. 1024108

— Cochliobolus mito. 10°18/10°5

L Aspergillus mito. ~ 10719/10°6

' Cornmito. 10713109
| [Wheat mito. 1015108

Rice chloro. 0.0004/10-12

Tobacco chloro,  0.007/10°13
Spinach chloro.  0.001/10°18
Pea chloro. 0.0004/10°12
March. chloro.  0.007/10°11
Cyanobacteria  0.006/10°18

Synechocystis ~ 0.0006/10712
Euglena chloro. 0.01/10°12

E.coli 1060

An evolutionary tree of Ht-ATPases (subunit 6). Sequences were aligned using the GCG
PILEUP program, distances calculated using the GCG DISTANCES program, and the tree
constructed using the Neighbor-Joining algorithsm (GCG GROWTREE). Expectation values
from a search with the human H+-ATPase (PWHUS, Table 3) and a search with the E. coli
sequence are shown.
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Figure 7: Searching with human ATPase, high-scoring sequences

LWEC6 H+-transporting ATP synthase (EC 3.6.1.34) protein - E. coli (271 aa)
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PWEGAC H+-transporting ATP synthase (EC 3.6.1.34) chain (251 aa)
z-score: 154.1 Expect: 0.01133
Smith-Waterman score: 123; 25.7% identity in 214 aa overlap
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Alignments of human H*+-ATPase with the E. coli homologue and a plant chloroplast ho-
mologue. Despite the considerable evolutionary distance (both sequences diverged at least 2
Bya), the pairs of sequence share more than 20% identity across almost their entire lengths.
¢:? symbols denote identities; ¢.” denote conservative substitutions. Searches were performed
with the BLOSUMS50 matrix and gap penalties of -12/-2. .
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Figure 8: The PAM250 matrix

Cys | 12
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Phe -4[-3 -3 -5 -4 -5|-4 -6 -5 -5]|-2 -4 -5 1] 1 2 -1 9

Tyr 0|3 -3 -5 -3 -5|-2 -4 -4 -4 0 4 41-2 -1 -1 2|17 10

Trp 8|2 -5 6 -6 -7T|-4 7T -7 -5]-3 2 -3}-4 -5 -2 6|0 0 17
C|{S T P A GIN D E Q|H R KIM I L V[|F Y W]

In the past 10 years, a more complex type of protein evolution has been observed—proteins
that contain multiple domains from other proteins. These proteins have been' called “mo-
saic” proteins; the domains are frequently inserted through a process called “exon shuffling.”
Table 7 lists a number of human proteins that are comprised of mosaic domains, but such
proteins are not limited to mammals. Similar mosaic structures are common in DNA binding
proteins, both in bacteria and eukaryotes. Fig. 11 shows the structures of some of the mosaic
proteins in Table 7. '

1.3 Introns Early/Late

The occurrence of mosaic proteins and the discovery of the “exon/intron” structure of genes
in the late 1970’s lead several investigators to suggest that the exon structure of genes re-
flected the construction of proteins from modular domains (Gilbert & Glynias, 1993). While
acceptance of this proposal is quite widespread, it is based on very little data. There is no
question that many modern mosaic proteins are constructed by a process of “exon-shuffling”
whereby exons from other genes have been combined to build new structures. In addition, for
some proteins éxons are associated with well defined structural elements. The association of
exons with structural elements may reflect and ancient construction of proteins from primor-
dial exons. Alternatively, introns are also capable of invading genes; thus, the association of
exons with structures may reflect modern invasions that are less disruptive when they occur
between structural elements.

A recent test of the “introns” early hypothesis suggests there is little evidence to support
the association of introns with structural boundaries (Stoltzfus et al., 1994; Fig. 12). shows
one of the figures from this paper, which is used to demonstrate a lack of correspondence
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Figure 9: Rates of change in protein families
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between several structural and the intron/exon boundaries.

1.4 DNA vs Protein comparison

While all of the comparison methods described below work on either protein or DNA se-
quences, one’s ability to identify distantly related sequences is reduced dramatically when
DNA sequences are used. Table 8 compares the statistical significance of the best similarity
scores obtained in a.search of the GenBank DNA sequence database using a mouse glu-
tathione transferase cDNA clone with the significance of the same alignment in a search of
the GenPept protein sequence database (GenPept is derived from GenBank by translating
DNA sequences into the encoded protein sequences). Many DNA sequences encoding clearly
related proteins, e.g. RABGSTB have similarity scores that are expected to occur several
times by chance in a DNA database search. DNA sequences are far less informative, both’
because they lack the inherent biochemical information that is retained in the PAM250 sub-
stitution matrix, and because many changes in DNA sequences (third-base changes) do not

change the encoded protein.

Differences in the performance of sequence comparison algorithms are insignificant com-
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Table 4: Rates of change in protein families

Protein Rate® Protein Rate
Fibrinopeptides 90 Thryrotropin beta chain 74
Growth hormone 37 Parathyrin 7.3
Ig kappa chain C region 37 Parvalbumin 7.0
Kappa casein ‘ 33 BPTI Protease inhibitors 6.2
Ig gamma chain C region 31 Trypsin 5.9
Lutropin beta chain 30 Melanotropin beta - 5.6
Ig lambda chain C region 27 Alpha crystallin A chain 5.0
Complement C3a 27 Endorphin 4.8
Lactalbumin 27 Cytochrome bs 4.5
Epidermal growth factor 26 Insulin 44
Somatotropin 25 Calcitonin ' " 43
Pancreatic ribonuclease 21  Neurophysin 2 - 3.6
Lipotropin beta 21 Plastocyanin 3.5
Haptoglobin alpha chain 20 Lactate dehydrogenase 34
Serum albumin 19  Adenylate cyclase 3.2
Phospholipase Az - 19 Triosephosphate isomerase 2.8
Protease inhibitor PST1 type 18 Vasoactive intestinal peptide 2.6
Prolactin 17  Corticotropin 2.5
Pancreatic hormone 17  Glyceraldehyde 3-P DH 2.2
Carbonic anhydrase C 16 Cytochrome C 2.2
Lutropin alpha chain 16 Plant ferredoxin 1.9
Hemoglobin alpha chain 12 Collagen . 1.7
Hemoglobin beta chain * 12 Troponin C, skeletal muscle 1.5
Lipid-binding protein A-II .10 Alpha crystallin B-chain .15
Gastrin 9.8 Glucagon - 1.2
Animal lysozyme 9.8 Glutamate DH 0.9
Myoglobin 8.9 .Histone H2B 0.9
Amyloid A 8.7 Histone H2A ) 0.5
Nerve growth factor 8.5 Histone H3 0.14
Acid proteases ' 8.4 TUbiquitin 0.1
Myelin basic protein 7.4 Histone H4 0.1

%percent/100 My
From (Nei, 1987; Dayhoff et al., 1978)

pared to the loss of information that occurs when one compares DNA sequences. If the
biological sequence of interest encodes a protein, protein sequence comparison is always the
method of choice. '

17




Figure 10: The limits of sequence similarity
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Table 5: Classification of Protein Families
1. Ancient Proteins

A. First editions. Direct-line descendacy to human and contemporary prokaryotes. Mostly
mainstream metabolism enzymes. Example: triosphosphate isomerase (46%) identical.

B. Second edition. Homologous sequences in human and prokaryotic proteins, but apparently
different functions. Example: human glutathione reductase and pseudomonas mercury
reductase (27% identical).

II. Middle-age proteins. Proteins found in most eurkaryotes but prokaryoti¢ counterparts are
unknown. Example: actin.
III. Modern proteins
A. Recent vintage. Proteins found in animals or plants but not both. Not found in prokary-
otes. Example: collagen.

B. Very recent inventions. Proteins found in vertebrates but not elsewhere. Example: plasma
albumin. :

C. Recent mosaics. Modern proteins clearly the result of exon shuffling. Example: LDL
receptor.

From Doolittle et al., 1986.
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Table 6: Ancient human proteins

A. First edition type

Human protein Prokaryotic homologue

% identity

Triosephosphate isomerase E. coli 46 .
Phosphoglyceraldehylde dehydrogenase B. stearothermophilus 52
Alkaline phosphatase E. coli 31
Dihydrofolate reductase E. coli 30

" Superoxide dismutase (Cu-Zn) P. leiognathi 26
B. Second edition type
Glutathione reductase Mercuric reductase, Pseudomonas 27
Glutamate dehydrogenase (NAD) Glutamate dehydrogenase,E. coli 26
Ornithine transcarbamylase Aspartate ranscarbamylase, E. coli 26
Hypoxanthine-guanine Glutamine phosphoribosyl-PP; 19

phosphoribosyl transferase transferase, F. coli

From Doolittle et al., 1986

Table 7: Mosaic proteins

A. EGF-type B. C9-type

Epidermal growth factor precursor Complement C9

Tumor growth factors LDL receptor

LDL receptor Notch (Drosopkhila)

Factor IX lin-12 (C. elegans)

Protein C

Tissue plasminogen activator C. Fibronectin finger

Urokinase Fibronectin

Complement C9 Tissue plasminogen activator

Notch protein (Drosophila)

lin-12 (C. elegans) D. Protease “Kringle”
Plasminogen
Tissue plasminogen activator
Urokinase
Prothrombin

From Doolittle et al., 1986.
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Figure 11: Structures of mosaic proteins

EGFP —O L cooo— O—00CO——
| O
['4
4 . 1)
LDLR -000000000—t O

TPA oo /o
UK 00—

FX ——
Figere2. Some modern “mosaic” proteins that provide ples of exon shuffling. (EGFP) Epid. 1 growth factor precursor;
(LDLR) fow-density lip i ) fib in; (C9) 1 p C9: (TPA) tissue plasminogen acti-
vator; (UK) urokinase; (FX) blood coagulation Factor X; (MS) membrane spanning units; (*) active site of serine protesses. The
sections labeled x, y, and y have homologous sequences, over and beyond the five modular units described in Fig. 3. (Reprinted
with permission, from Doolittle 1985)

From Doolittle et al., 1986.
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Figure 12: Intron/Exon Boundaries and Structural Features
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Fig. 4. Intron positions of TP! genes in relation to structural features of the 247-residue chicken
muscle enzyme (28). (A) The centrality plot (average centrality, 16.2 A) reveals the regularity of the
B-barrel domain; the eight troughs represent the eight 8 strands that pass near the center, whereas
the zigzagging segments between the troughs show the course of the peptide backbone as it winds
through the peripheral « helices [see also domain A of PK (Fig. 3)]. (B) Elements of secondary
structure. (C) Modules proposed by Go and Nosaka (75). The 14 known intron positions (D) are
represented in four genomic sequences (27) as follows: chicken, 37-1, 78-2, 107-0, 151-1, 180-0,
209~1; maize, 14-0, 37-1, 78-2, 107-0, 1511, 183-0, 209-1, 237-0; Aspergillus, 13-2, 107-0,
132-0, 167-2, 239-1; mosquito, 64-0. Other conventions are as indicated for Fig. 1.

From Stoltzfus et al., 1994.
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Table 8: DNA vs Protein Sequence Comparison

score E(DNA) E(prot)

MUSGLUTA Mouse glutathione S-transferase class mu 5625 0 0
MUSGSTA Mouse, glutathione transferase GT9.3 mu 3953 0 0
HUMGSTAA Homo sapiens glutathione transferase 1257 0 0
MAMGLUTRA M.auratus mu class GST 399 1071 o
RATGSTYD Rat glutathione S-transferase Yb subunit 399 10711
HSGSTM4 H.sapiens GSTM4 gene for GST 390 1071 o
RATGSTY Rattus norvegicus GST 3712 107° 0
HSGSTM1B H.sapiens GSTM1b gene for GST 358 10-° 0
HSGSTMU3 Human GSTmu3 gene for a GST 322 1077
HSGST145 Human GST-1 gene for GST - 308 10-6

BTGST Bovine GST mRNA for GST 249 0.0002 10-16
HSGSTPI1 Human mRNA for anionic GST : 237 0.0008 10~Y7
MUSGTF Mus musculus GST mu 196 0.06
CRUGSTP Chinese hamster GST 196 0.06 10-16
CRUGSTPIE Cricetulus griseus GST pi 196 0.06 10-16
HAMGSTPIE Mesocricetus auratus GST pi . 191 0.1 10-16
RRGTS8 R.rattus mRNA for GST 182 0.2
HUMKAL?2 Human glandular kallikrein gene 170 0.6
HUMTROPIO!  Human iroponin I, slow-twitch isoform 170 0.8
RNGSTYC2F  R.norvegicus GST Yc2 170 0.8 10-7
MMGLUT M.musculus mRNA for GST 168 1.1 10-7
MUSTHYGP Mouse Thy-1.2 glycoprotein 168 - 1.8
HUMLGTH1 Human liver glutathione S-transferase 157 3.4 10-°
ATCON480S1 Rattus norvegicus connezin 155 3.6
HUMAIAR2 Human a-I-antitrypsin-relaied protein 154 8.6
HUMVLDLR Human VLDL protein receplor ‘ 152 4.5
RABGSTB Oryctolagus cuniculus glutathione S-tr- 153 5.1 10-°
HUMHSF1 Human heat shock factor 1 (TCF5) 151 55 -
RATRITA Rat type I reg. subunit of cAMP 151 5.9 -
RNGSTYCIF  R.norvegicus GST Ycl 148 8.5 10-6
RATGSTYC Rat liver glutathione S-transferase Yc 148 8.6 10-6
MUSCX43GA Mouse Cz43 gene, exon 1. 147 11
HUMTANI Human TAN-1 mRNA (homologue of Drosoph 142 12

OCDHPR Rabbit mRNA for dikydropyridine (DHP) 142 12

A01444 Human DNA for 4.6 kb retinoblastoma - 142 12
HUMGSTB Human glutathione S-transferase 144 14
HUMGSTH Human glutathione S-transferase 144 14 106
HUMGST2 Human glutathione S-transferase 2 144 14 10-6
549975 Human glutathione transferase Al-1 144 14 10—

Expectation values for searches against DNA (score, E(DNA)) and protein databases. A mouse glu-
tathione transferase cDNA sequence (MUSGLUTA) was used to search either the primate (GBPRI),
rodent (GBROD), and mammalian (GBMAM) divisions of the GenBank DNA sequence database for
the DNA sequence comparisons. Protein expectations (E(prot)) were calculated from a search the
translated cDNA sequence against the GenPept sequence database, which includes all of translated
GenBank. Unrelated sequences are italicized; E(prot) for unrelated sequences are >> 100.
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2 Alignment methods

.A variety of comparison algorithms and scoring parameters can be used to evaluate protein
or DNA sequence similarity. In general, the choice the of “best” algorithm depends on
the problem to be solved. Thus, algorithms that calculate a local comparison score—i.e.,
they find the strongest similarity between the two sequences, ignoring differences outside
of the most similar region—are usually most appropriate for searching protein and DNA
databases,? while global comparison algorithms are more, appropriate when homology has
been established, as when building evolutionary trees. Pattern-based, rather than similarity-
based, comparison methods may be preferred when searching for functionally conserved non-
homologous domains. '

In searching protein sequence databases to identify distantly related homologous proteins,
it is important to remember that avoiding high similarity scores with unrelated sequences
can be more important as calculating high scores for related sequences. There are more
than 40,000 protein sequences in comprehensive protein databases, while the typical family
of proteins has fewer than 100 members. Thus, comparison algorithms, scoring matrices and
gap penalties that produce the best alignments may not be the most effective for searching
protein sequence databases (Pearson, 1995).

2.1 Algorithms

Two general classes of comparison algorithms are used to calculate similarity scores to infer
sequence homology: rigorous algorithms that are guaranteed to calculate an optimal simi-
larity score, e.g. the NeedlemanWunsch (Needleman & Wunsch, 1970) and SmithWaterman
(Smith & Waterman, 1981) algorithms, and rapid heuristic algorithms that do not guarantee
to calculate an optimal score for every sequence in alibrary, e.g. FASTA (Pearson & Lipman,
1988) and BLAST(Altschul et al., 1990). Table 2.1 summarizes widely used a.lgonthms for
biological :sequence comparison.

Two optimal algorithms for calculating similarity scores have been described, the Needle-
manWunsch algorithm (Needleman & Wunsch, 1970), which calculates a “global” similar-
ity score between two sequences, and the Smith-Waterman algorithm (Smith & Waterman,
1981), which calculates a “local” similarity score. Global scores require the alignment to
begin at the beginning of each sequence and extend to the end of each sequence. Global
alignments cannot be used to detect the relationship between DNA binding domains in
homeobox proteins or the calcium binding domains shared between calmodulin and calpain.
Likewise, global alignment algorithms often do not detect the relationships between mosaic
proteins. Global similarity scores can be calculated with or without penalties for gaps at the
ends of the sequences.

Local alignment algorithms identify the most similar region shared between two sequences.
Thus, homologous calcium binding domains embedded in non-homologous proteins can be
detected with local alignment methods. In addition, a local alignment algorithm can be used

2For genomic DNA sequences, there is no logical alternative.
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Table 9: Algorithmé for comparing protein and DNA sequences .

algorithm value scoring gap time
calculated matrix penalty required

Needleman- global similarity ~arbitrary  penalty/gap O(n?)  Needleman and

Wunsch . q ‘ Waunsch, 1970
Sellers (global) distance  unity  penalty/residue  O(n?)  Sellers, 1974
rk

Smith- local similarity ~ S;; < 0.0 affine O(n?®)  Smith and Waterman, 1981
Waterman q+rk Gotoh, 1982

FASTA approx. local S’,-J- < 0.0 limited gap size O(n?)/K Lipman and Pearson, 1985

similarity g+rk Pearson and Lipman, 1988
BLASTP maximum S;; <0.0 multiple O(n?)/K Altshul et al., 1990
segment score segments

to find the exons in a genomic DNA sequence by aligning it with its encoded mRNA. Local
alignment algorithms are required to identify homologies in mosaic proteins, and they can
be used to detect internal domain duplications as well. Table 10 compares the scores of
global, global without end-gap-penalties, and local similarity scores for a variety of related
and unrelated proteins.

Rigorous sequence comparison algorithms, like the Smith-Waterman algorithm, require
time proportional to O(mXN), where m is the length of the query sequence and N is the
number of amino acids in the protein sequence library. Modern high-performance unix work-
stations can compare a 300 residue protein sequence (human opsin) to the 40,000 entry,
15,000,000 amino acid Swiss-Prot 31 database in less than 10 minutes.

Although very rapid® algorithms are available for calculating optimal global similarity
scores between two sequences, particularly with unit cost scores, such algorithms are rarely
appropriate for biological sequence comparison. Unit cost algorithms must discard the sub-
stantial biochemical information encoded in the PAM250 matrix. Most rapid optimal algo-
rithms calculate only global similarities; such comparisons are not useful for DNA sequence
comparison because tlie “ends” required for a global sequence comparison are usually arbi-
trary.

20(Nd), where N is the length of a sequence and d is the number of differences between the two sequences.
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Table 10: Global and local sequence similarity scores

Similarity Score Distance
PIR Entry Global Local
' End No End
Penalty | Penalty
HBHU vs HBHU Hemoglobin beta-chain—human 725 725 725 0
HAHU Hemoglobin alpha-chain—human 314 320 322 152
MYHU Myoglobin—Human 121 164 166 212
GPYL Leghemoglobin—Yellow lupin 8 28 43 239
LZCH Lysozyme precursor—Chicken -107 16 32 220
NRBO ‘Pancreatic ribonuclease—Bovine. ~124 16 31 280
CCHU Cytochrome c—Human —160 10 26 321
MCHU vs MCHU Calmodulin—Human 671 671 671 0
: TPHUCS  Troponin G, skeletal muscle 395 430 438 161
PVPK2 Parvalbumin beta—Pike —57 103 115 313
CIHUH Calpain heavy chain—Human . —2085 89 100 2463
AQJFNV  Aequorin precursor—Jelly fish —65 48 76" 391
KLSWM  Calcium binding protein—Scallop —89 45- 52 323
QRHULD vs EGMSMG Epidermal growth factor precursor -591 475 655 2549
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Figure 13: Global and local alignment paths
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2.2 Dynamic Programming Algorithms

The algorithms used to calculate the maximum similarity scores between two sequences are
most easily visualized with an alignment matrix or path graph. Figs. 13-14 demonstrate the
correspondence between an alignment path graph and an actual alignment. The goal along
the path is to maximize the similarity score for the alignment that ends-at each potential
vertex. For the figures, similarity scores are increased by +1 for diagonal edges if the the two
residues along the path are identical; the the are different, the diagonal edge cost is —1. The
cost along either a vertical or horizontal edge, which corresponds to an insertion in the top
sequence (vertical edge) or an insertion in the left-side sequence (horizontal edge) is —2. To
produce a global alignment from a path graph, simply begin at the bottom-right corner of
the graph and follow the “active” paths, noted by \, —or ! to the upper-left corner, aligning
the two residues along the diagonal path, or aligning a residue with a gap if a horizontal or
vertical path is taken.

For the global alignment in Fig. 13A, there are two alignments that produce the optimal
score. Optimal comparison algorithms guarantee to produce the best score, given the match,
mismatch, and gap costs, but frequently there are several optimal alignments for a single
score. For the local alignment in Fig. 13B,. there are several sub-optimal alignments with
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Figure'14: An alignment .pa.th matrix

scores of 2. Note that the local alignment in Fig. 13B would extend from one end of each
sequence to the other if the gap cost were reduced to —1. -

Fig. 14 provides an exercise for the reader.

While there are an exponential number of potential alignments with gaps between two
protein or DNA sequences, dynamic programming algorithms are available that can calculate
the optimal score in O(MN) steps. This efficiency is achieved by determining the optimal
score for each prefix of each string, and then extending each prefix by considering the three
paths that can be used to extend an alignment: (1) by extending the alignment by one residue
in each sequence; (2) by extending the alignment by one residue in the first sequence and
aligning it with a gap in the second; or (3) extending the alignment by one residue in the
second sequence and aligning it with a gap in the first. This decision must be made for each
of the M N prefixes of sequences of length M and N.

The first algorithm for comparing protein sequences (Needleman & Wunsch, 1970) cal-
culates a “global” similarity score. A simplified global algorithm is shown in Fig. 15. Since
a global algorithm requires that the alignment extend from the beginning to the end of the

27




Figure 15: Algoritilms for Global and Local similarity scores

5(0,0) 0
for j —~ 1to N do

5(0,5) « 50,5 — 1) +o( b—, )
fori— 1to M do
[ 5(,0) < SGE-1,0)+0( %)

for j — 1to N do

(i, 3) = mas{S(i~L,i )+ o( 3 1 5G=13)+0( &), 565~ 1) +o( )

write “Global similarity score is” S(M, N)

best «— 0
for j «— 1to N do .
5'(0,5) « 80,5 — 1) + o( b_J )
for i « 1 to M do
[ 8%,0)« 8'G-10)+0( ¥)
for j «~— 1to N do
[ 5'(,5) «— maz[0,5'(i - 1,5 — 1) + o Z, %8G —1,5) + o ¥ ), 85,5 — 1) + o( )
best «— maz(S'(<,7),best)

]

write “Local similarity score is” best

alignment, it is sufficient to report the score in the lower right (S(M,N)) of the scoring
matrix.

Local alignment algorithms must consider alignments that begin and end at each of the
MN positions in the alignment matrix. Despite this added complexity, they only add two
additional steps to the global alignment algorithm. Since every possible starting position
must be considered, similarity scores cannot fall below zero and a 0 term is added to the
maz comparison in Fig. 15. Since they can end at any position in the matrix, the best score
must be saved at each step. In practice, global and local comparison algorithms require the
same amount of computation.
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2.3 Scoring methods

The scoring matrices used for protein sequence comparison are much more sophisticated
than +1 for 2 match and —1 for a mismatch. The most effective matrices are based on
the actual frequency of substitutions that occur between related proteins. Two different
approaches have been used to produce these matrices. The original PAM250 matrix (Fig. 8)
was produced by examining several hundred alignments between very closely related proteins,
and then calculating the frequency with which each amino-acid residue changed into each
" of the others at a very short evolutionary distance—one where only 1% of the residues had
kchanged (Dayhoff et al., 1978). This replacement frequency, when corrected for the amino-
acid abundance, can be used to calculate the PAM1 scoring matrix (PAM is “Point Accepted
Mutation”). If the matrix is multiplied against itself 250 times, a PAM250 matrix, which
reflects the frequency of change for proteins that have diverged 250%. If a two protein
sequences have diverged by 250%, it is expected that they will share about 20% sequence
identity (Fig. 10). Since 20% identity is at the edge of where significant similarity can be
detected, the PAM250 matrix has been widely used. The PAM250 matrix is based on small
number of amino acid substitutions; modern extrapolated matrices based both on sequence
alignments (Jones et al., 1992) and structural alignments (Johnson & Overington, 1993) are
available.

Substitution matrices have also been calculated directly by examining “blocks” of aligned
sequences that differ by no more than X% (Henikoff & Henikoff, 1992). Thus, the BLO-
SUM62 matrix, which is used by the BLASTP rapid comparison program, is derived from
substitution data for blocks of aligned sequences that are no more than 62% identical. BLO-
SUMG62 performs substantially better than extrapolated matrices with BLASTP and FASTA
(Henikoff & Henikoff, 1993), but both BLOSUM and extrapolated matrices can perform well
when used with optimal gap penalties (Pearson, 1995).

Altschul (1991) has provided a information-theory based perspective for evaluating scoring
matrices in general for alignments without gaps. Using a statistical theory for such alignments
(Karlin & Altschul, 1990), it is possible to convert any similarity score to a value in “bits” that
can be used to compare scores produced by different alignments. Unfortunately, the analytical
formulas that are used for this conversion cannot easily be applied to alignments that contain
gaps. Collins et al., 1988 and Altschul, 1993 have also pointed out that different scoring
matrices are optimal at different evolutionary disances. Thus, short proteins sequences that
are 50% identical can be more easily identified with a “shallower” PAM matrix, e.g. PAMG60.

2.4 Heuristic Algorithms

Two rapid heuristic algorithms are frequently used for searching protein and DNA sequence
databases, FASTA (Pearson & Lipman, 1988) and BLASTP (Altschul et al., 1990). These
methods are 5-50 times faster than the rigorous Smith-Waterman algorithm, and can produce
results of similar quality in many cases.

Fig. 16 summarizes the difference between the FASTA, BLASTP, and Smith-Waterman
algorithms. BLASTP and FASTA are faster than Smith-Waterman because they examine
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Figure 16: Heuristic strategies for sequence comparison
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Table 11: sequence similarity with BLASTP

Step 1 For each three amino acids in the query sequence, identify all of the substitutions of each word
that have a similarity score greater than a threshold score T' = 11. In practice, word-matches
with scores > T are seen on average 150 times per library sequence.

Step 2 Build a discrete finite automaton (DFA) to recognize the list of identical and substituted three
letter words.

Step 3 Use the DFA to identify all of the matching words in sequences in the database. If a match
is found, attempt to extend the match both forwards and backwards using the BLOSUM62
matrix to produce a score that is higher than a threshold score. Save all of the high scoring
regions shared by the query sequence and each library sequence. The best of these scores is
reported as the best single MSP (maximal segment pair) score. These high scoring regions do
not contain gaps.

Step 4 Attempt to combine multiple MSP regions. For each “consistent” combination, calculate the
probability of obtaining that may consistent matches using either “poisson” or “sum” statis-
tics.(Karlin & Altschul, 1993) Report the lowest probability score based on statistics used.

Step 5 Report all of the significant alignments. Frequently, a query and library sequence will contain
several MSPs because of the requirement that they do not contain gaps.

only a portion of the potential alignments between two sequences. FASTA focuses on regions
where there are either pairs (ktup=2) or single aligned kfup=1 identities; BLASTP examines
regions that include triples of conserved amino acids.

2.4.1 BLAST

Advances in the statistical theory of sequence alignments without gaps (Karlin & Altschul,

1990) provided the theoretical basis for the BLASTP program (Altschul et al., 1990). BLASTP
is now the most widely used program for rapid sequence comparison, in large part because of

_ its accurate estimates for the statistical significance of similarity scores (see 3. BLASTP, like

FASTA, uses a word-based scanning procedure to identify regions of local similarity (11) with

out gaps. BLASTP is effective because it combines high sensitivity with excellent selectiv-

ity. BLASTP combines good sensitivity with exceptional selectivity. Except when the query

sequence contains a low complexity region, BLASTP rarely calculates scores for unrelated

sequences.

2.4.2 FASTA

The current version of FASTA provides several significant improvements over earlier versions.
FASTA now calculates optimized scores (step 4 in Table 12)) for most of the sequences in
the database and provides accurate estimates for statistical significance (3). Calculation of
optimized scores improves substantially the performance of FASTA. Without the calcula-
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Table 12: gequence similarity with FASTAv20

Step 1 Identify regions shared by the two sequences with the highest den51ty of identities (ktup=1) or
pairs of identities (kiup=2).

Step 2 Rescdn the ten regions with the highest density of identities using the BLOSUM50 matrix.
Trim the ends of the region to include only those residues contributing to the highest score.
Each region is a partial alignment without gaps.

Step 3 If there are several initial regions with scores greater than the CUTOFF value, check to see
whether the trimmed initial regions can be joined to form an approximate alignment with
gaps. Calculate a similarity score that is the sum of the joined initial regions minus a penalty
(usually 20) for each gap (initn). The score of the single best initial region found in Step 2 is
also reported (initl).

Step 4 For sequences with scores greater than a threshold, construct an optimal local alignment of
the query sequence and the library sequence, considering only those residues that lie in a band
centered on the best initial region found in Step 2. For protein searches with ktup=2 a 16
residue band is used by default. A 32 residue band is used with ktup=1. This is the optimized
(opt) score.

Step 5 After all (or the first 10-20,000) scores have been calculated, normalize the raw similarity
scores by regressing the similarity score against In(library-sequence length) and calculating the
average variance in similarity scores. Z-values (normalized scores with mean 0 and variance 1)
are calculated, and the calculation is repeated with library sequences with z-values greater than
5.0 and less than -5.0 removed. These z-values are used to rank the library sequences. ‘

Step 6 The Smith-Waterman algorithm (without limitation on gap size) is used to display alignments.

tion, FASTA performs significantly worse than BLASTP; however, with the calculation of
optimized scores (and normalization of the scores based on library sequence length), FASTA
performs significantly better than BLASTP and almost as well as the Smith-Waterman al-
gorithm (Pearson, 1995). In addition, FASTA now uses the Smith-Waterman algorithm to
produce final alignments; previous versions limited the size of gaps, which sometimes led to
incomplete alignments. ‘

-

Every database search for members of a diverse protein family involve a tradeoff between
sensitivity—the ability to identify distantly related members of the family—and selectivity—
the ability to avoid high similarity scores for unrelated sequences. Table 3.3 compares how
effectively the three algorithms maintain this balance for a large protein family—the G-
protein-coupled receptors. Thus, BLASTP calculates a very highly significant score for the
closely related opsin and dopamine D2 receptors, and a significant score for the more dis-
tantly related thromboxane A, receptor, but it does not detect the similarity between opsin
and the very distantly related Dictyostelium cAMP (CAR1) receptor. In addition, BLASTP
would never suggest a relationship between opsin and cytochrome oxidase. FASTA (kiup=2
does a better job at recognizing the relationship between opsin and thromboxane A2, fails .
to detect the cAMP-1 receptor, and is more ambiguous about a possible relationship with
cytochrome oxidase. FASTA with ktup=1 and Smith-Waterman calculate statistically signif-
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icant relationships between opsin and cAMP-1, but also good (but not significant) scores for
opsin and cytochrome oxidase.

3 The statistics of sequence similarity scores

The development of accurate statistical estimates for local sequence similarity scores (Karlin
& Altschul, 1990; Mott, 1992) has allowed dramatic improvement in our ability to reliably
recognize distantly related proteins. The statistical estimates calculated by BLASTP are
used widely in large scale sequence comparison, e.g. to characterize all of the genes on a
yeast chromosome or all of the genes in a bacterial genome. The incorporation of statistical
estimates into FASTA and SSEARCH (a Smith-Waterman lmplementatlon) have significantly
improved the performance of these programs as well.

“ a

3.1 Sequence alignments without gaps

The statistics of local similarity scores for alignments without gaps but with an arbitrary
substitution matrix have been described by Karlin & Altschul, 1990. Local similarity scores
are described by the eztreme value distribution. Using the parameters A and K, which can
be derived from the scoring matrix and the amino acid composition of the query sequence,
the probability that a normalized similarity score:

S'=2S-InKmn (1)

(Karlin & Alts'chul, 1990; Altschul et al., 1994) where m is the length of the query sequence
and n is the length of the library sequence can be calculated as:

P(§' > z) =1— exp(—e~7) (2)

Since a typical database search typically involves thousands of pairwise comparisons, the
expectation of finding a score S’ > X for a search of D sequences is: E(S’' > X) =

(Thus, searches of highly redundant databases may be less 1nforma.t1ve, because D is la.rger
but the number of different sequences is not.)

3.2 Similarity scores increase with sequence length

The normalization in equation 1 shows that scores for alignments without gaps between
random sequences increase as In K'mn, or since X and m are fixed for a given search, In n, the
length of the library sequence. This is seen empirically with scores for alignments that contain
gaps (Collins et al., 1988; Mott, 1992) and is shown in Fig. 17. For local similarities, the
variance of the score should be independent of library sequence length. Thus, normalization
of similarity scores by fitting a line to the relationship of similarity score to In n will reduce the
scores of long, unrelated sequences, and make it possible to detect more distant relationships
(Pearson, 1995).
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Fiéure 17: Simiiarity scores and library sequence length
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The distribution of Smith-Waterman similarity scores is plotted as a function of log(n), n is
the length of the library sequence. Filled symbols indicate individual related sequences (only
the most distant related sequences are shown); open symbols show the average and std. error
of similarity scores for unrelated sequences.

3.3 Empirical statistics for alignments with gaps

Accurate statistical estimates for alignments with gaps can can be calculated by normalizing
similarity scores to remove the Inn dependence for similarity scores. This can be seen in
Fig. 5, where the ‘*’s show the fit of an extreme value distribution to the observed data
(‘=="). FASTA and SSEARCH estimate statistical significance by fitting a line to S vs Inn_
and calculating the average variance for the scores. The regression line and variance are used
to calculate

Z — score = (S —(a + blnn))/var (3)
The distribution of Z — score’s should follow the extreme value distribution, so that:
P(Z > z)=1— exp(— ¢—1:2827-0.5772 (4) -

and, as before, E(Z > z) = PD.
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Table 13: Search Algorithms and Statistical Significance

algorithm closely related distantly unrelated
related related
dopamine D2% thromboxane A2® cAMP-1° cytochrome oxidase®

. Smith-Waterman 3 x 100 2 x 10~ 0.01 0.57

PRSS® 8 x 10710 10~ 0.007 0.45-

PRSS(window=20)° 8x 1078 0.001 0.23 3.0

fasta, ktup=1, opt 3x10°° 7x 1075 0.02 0.39

fasta, ktup=2, opt 2x10°6 10~ 2.2 0.36

BLASTP 2% 1022 0.07 > 1.0 >1.0

sDIDR.HUMAN, *TA2R MOUSE, “CAR1.DICDI, APPC_ECOLI

Expected number of times that a similarity score as high or.higher than that obtained by the
indicated library sequence would be obtained by chance in a search of Swiss-Prot (= 43,000
_entries) with the OPSD_HUMAN (human opsin) query sequence. *Expected times this score -
would be obtained after 1,000 shuffles of the indicated hbrary sequence with either global

(prss) or local (wmdow=20) amino acid exchanges.

3.4 Statistical significance by random shuffling

Statistical estimates derived from database searches measure the difference between an ob-
served similarity score and that expected for a sequence with the amino acid composition
of the database. Such tests may overestimate significance in cases where the query se-
quence’s amino acid composition differs from that of the database. Thus, membrane proteins
with their hydrophobic transmembrane domains may have statistically significant scores with
non-homologous membrane proteins. A more challenging test compares the similarity score
between a query and library sequence with the distribution of scores obtained by comparing
the query sequence to random sequences with the same length and amino acid composition as
the library sequence. Such sequences are easily generated by randomly shuffling the library
sequence, either globally, by exchanging randomly each amino acid with any other position
in the sequence, or locally, by performing the exchanges within a window of 10-20 residues.
Because this Monte Carlo test measures the significance of the order of the two amino acid
sequences, rather than the difference between the highest scoring sequences and the rest of
the database, it tends to be more demanding.

As before, similarity scores for random sequences should follow the extreme value distri-
bution, and a fit of the distribution of scores can be used to estimate the significance of an
unshuffled score. However, to extrapolate an expectation value from shuffled sequences to
that for a library search, the “E()-value” must be multiplied by the ratio of the number of
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" sequences in the library to the number of shuffled sequences. Thus, in the example below, an
E()-value from 500 shuffles must be multiplied by 80 to be comparable to an E()-value from
the 40, 000 entry Swiss-Prot. As expected, the E()-value from the actual search—2x 10~%—
slightly more significant than that from the shuffled distribution—3 x 1073. )

Comparison of O0HU (human opsin) with TA2R_MOUSE (thromboxane A2 receptor)
BLOSUM50 matrix, gap penalties: -12,-2

unshuffled s-w score: 160; shuffled score range: 38 - 92

Lambda: 0.15076 K: 0.017357; P(160)= 7.4282e-08 ‘

For 500 sequences, a score >=160 is expected 3.71e-05 times

Although accurate statistical estimates can be very valuable in interpreting the results
of similarity searches, they must be evaluated with caution. Distantly related homologous
sequences often do not share statistically significant similarity. Thus, over reliance on statis-
tical estimates, particularly after a single search, can miss genuine hémologies. Conversely,
sequences with low-complexity regions often share significant similarity but are not homolo-
gous. Finally, some structures, such as the coiled-coil structure in tropomyosin, share statis-
tical significance because of a common repeated structure, because of convergence (analogy),
rather than homology.

4 Identifying distantly related protein sequences

In this section, we will examine similarity searches in three diverse families of protein se-
quences, serine proteases, glutathione S-transferases, and the G-protein-coupled receptors.
The serine proteases are considered because they provide a classic example of a family of
proteins with a highly conserved active site; the glutathione transferases are a very diverse
family where many members do not share significant similarity with all other members, while
the G-protein-coupled receptors are a very large and diverse family of membrane proteins.

4.1 Serine proteases .
Serine proteases cleave peptide bonds using a “catalytic triad” of histidine, serine, and as-
partic acid; these residues are underlined in Fig. 20. Because these residues are so highly
conserved, patterns that focus on two of the regions (Fig. 18) can be used to identify ev-
ery member of the serine protease family. Fig. 19 shows the highest scoring unnormalized
similarity scores. As is often the case for divergent protein families, several members of the
family do not share statistically significant similarity with bovine trypsin. These sequences
are italicized in Fig. 19; their membership in the serine protease family is based on common
three-dimensional structures. As expected from the discussion in section 3.2, several of the
highest scoring unrelated sequences are substantially longer than genuine serine proteases.

These scores have much higher (less significant) expectation values when the lnn correctlon
is used.
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Figure 18: Patterns for serine proteases

ID TRYPSIN_HIS; PATTERN.

AC  PS00134;

DE Serine proteases, trypsin family, histidine active site.

PA  [LIVM]-[ST]-A-[STAGI-H-C.

NR /TOTAL=158(158); /POSITIVE=154(154); /UNKNOWN=2(2); /FALSE_P0S=2(2);
NR  /FALSE_NEG=11(11);

CC  /TAXO-RANGE=??EP?; /MAX-REPEAT=1;

CC /SITE=b,active_site;

ID TRYPSIN_SER; PATTERN.

AC PS00135;

DE Serine proteases, trypsin family, serine active site.

PA G-D-S-G-G. )
NR /TOTAL=160(160); /POSITIVE=151(151); /UNKNOWN=1(1); /FALSE_P0S=8(8);
NR  /FALSE_NEG=16(16);

CC  /TAXO-RANGE=?77EP?; /MAX-REPEAT=1;

CC /SITE=3,active_site;

Patterns from PROSITE that identify 152/163 (TRYPSIN_HIS or 143/159 TRYPSIN_SER mem-
bers of the serine protease protein family.

The absolute conservation of residues in the “catalytic triad” might suggest that similar-
ities between members of this family are limited to those regions. This is not the case, as can
be seen in Figs. 20. Similarity in the serine proteases typically extends from one end of the
protein to the other, with strong conservation throughout the sequence. Indeed, the region
around one of the residues in the catalytic triad—the apartic acid—is not well conserved.
While the residues in the catalytic triad is an essential feature of serine proteases, the serine
protease fold (two domains containing anti-parallel f-barrels) are required to bring these
residues together. :

The requirement for a common folded structure in homologous proteins usually causes
similarities to extend from one end of the protein to the other, or for mosaic proteins, from
one end of a domain to the other. Fig. 21 displays the locally similar regions for the related
and unrelated in Table 19; the highest scoring unrelated sequences tend to have relatively
short (< 100 residue) regions of higher similarity (=~ 30% identical) while related sequences
have longer (140-400), though sometimes lower (25%) similarity. In general, shorter, higher
similarities are less significant than longer, lower similarities.
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Figure 19: Serine protease search - high scoring sequences

LOCUS

TRBOTR
TRRT2
KQHU
NGMSG
KQRTTN
KYBOA
PLHU
TRFF
KFHU
ELRT2
KYBOB
KFHU1
WMMS28
EXBO
DBHU
KXBO
UKHU
TBHU
TRSMG
C1HURB
HPHU1
TRPGAZ
HPRT
C2HU
BBHU
KXBOZ
TRYXB4

OKBY8W
RRIHM2
IJFFTM
GNNYE7
VGIHHC
QRRBVD
PRSMBG*
MMMSB2
RERTK
MMMSA
LNRZ
PRSMAG*

Description

trypsin precursor - bovine

trypsin II precursor - rat

tissue kallikrein precursor -

7S NGF gamma chain I

tonin - rat

chymotrypsin A precursor - bovine
plasmin precursor - human
trypsin-like proteinase

coagulation factor IXa

pancreatic elastase IT
chymotrypsin B precursor - bovine
coagulation factor XIa
complement factor D homolog
coagulation factor Xa

complement factor D-

protein C (activated)
u-plasminogen activator precu
thrombin precursor - human (fr
trypsin - Streptomyces griseus
complement subcomponent Clr p
haptoglobin-1 precursor - human -
azurocidin - pig

haptoglobin - rat (fragments)
complement C2 - human ’
complement factor B - human
protein Z - bovine

alpha-lytic proteinase

probable protein kinase YCR008W
RNA-directed RNA polymerase
cadherin-related tumor suppressor
genome polyprot. - enterovirus 70
E2 glycoprotein - coronavirus
VLDL receptor - rabbit

proteinase B - S. griseus

laminin chain B2 precursor - mouse
renin precursor ~ rat

laminin chain A - mouse

lectin precursor - rice

proteinase A - S. griseus
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len

229
246
262
237
235
245
790
256
461
271
245
625
259
492
246
456
431
615
221
705
347
219
297
752
739
396
396

603
4488
5147
2194
1173

873

- 185

1607
402
3084
227

182

score

1559
1240
669
645
623
609
580
579
578
559
556
547
541
518
517
515
507
472
409
356
335

316 -

289
198
169
142
107

107
99
99
98
96
96
96
95
94
93
90
89

E(10,000)

0
0

4.46 x 10-38
1.46 x 1036
4.09 x 10-3°
3.66 x 10~3¢
1.71 x 1031
3.73 x 10-32
1.04 x 10-3!
8.46 x 10~31
1.15 x 10-30
1.77x 1072°
1.22 x 1029
1.01 x 1027
4.33 x 10~28
1.42 x 1027
4.41 x 10-27
1.45 x 10-24
5.03 x 10—21
7.14 x 10-7
6.9 x 10~16
6.9 x 10~15
6.1x 10~13
1.8 x 10~96

0.00014

0.0041-

0.83 -

1.3
37
42
20
14
10

1.9
23
6.0
61
6.0
5.5




Figure 20: Alignment of serine proteases

TRSMG trypsin (EC 3.4.21.4) precursor - Streptomyces griseus (259 aa)
Smith-Waterman score: 385; 33.6% identity in 247 aa overlap
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TRBOTR
TRRT2
TRDFS
KQHU
NGMSG
KQRTTN
KYBOA
PLHU
TRFF
KFHU
KYRTB
ELRT?2
KYBOB
KFHU1
WMMS28
EXBO
DBHU
KXBO
UKHU
TBHU
TRSMG
CIHURB
HPHU1
TRPGAZ
HPRT
C2HU
BBHU
KXBOZ
TRYXB4
OKBY8W
RRIEM2
IJFFTM
GNNYE7?
VGIHHC
QRRBVD
PRSMBG*
MMMSB2
RERTK
MMMSA
LNRZ
PRSMAG*

1559
1240
1070
669
665
623
609
580
579
578
564
559
556
547

. b4l
518 -

517
515
507
472
409
356
335
316
289
198
169
142
107
107
99
99
98
96
96
96
95
94
93
90
89

100.0
74.7
66.5
41.5
39.7
40.9
42.1
39.7
42.1
40.9
39.5
38.1

. 378

37.6
35.7
39.4
34.1
37.3
37.0
35.8
35.3
30.4
28.1
30.0
26.0
25.7
25.1
25.2
21.5
33.3
25.9
27.0
29.9
29.8
25.2
24.9
25.3
23.8
25.6
26.1
26.3

Figure 21: Serine protease alignments
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Table 14: Glutathione S-transferases

The best scores are: s-w Z-score  E(43470)
GTB1.MOUSE Glutathione S-transferase GT8.7 1490 2006.4 0
GTB1_RAT Glutathione S-transferase YB1 1406 18929 0
GTM1_HUMAN Glutathione S-transferase 1235 1661.9 0
GT2.CHICK Glutathione S-transferase 2 954 1282.1 0
GTP.MOUSE Glutathione S-transferase P 361 481.2 2.3x10~20
GTA2.MOUSE  Glutathione S-transferase Ya 229  302.2 2.2x10-10
SC2.0CTDO S-crystallin 2 (OL2). 224  297.2 4.2x10°1°
GTAIMOUSE  Glutathione S-transferase GT41A 218 2874 15x10°°
GTCMOUSE  Glutathione S-transferase Yc 215 2834 24x10°?
GTH1 HUMAN  Glutathione S-transferase Al-1 206 2712 1.2x10°8
GT28 SCHHA Glutathione S-transferase 28 kd 203 267.6 1.8x10°8
GT5AMOUSE  Glutathione S-transferase GST 5.7 183 240.1 6.3x10~7
GT28.SCHJA Glutathione S-transferase 28 kd 169 2219 6.4x10°S
GT2.DROME Glutathione S-transferase 2 164 2134 2.0x10°%
SC1.0CTVU S-crystallin 1. 159  209.0 3.3x10"%
GTAC.CHICK  Glutathione S-transferase, CL-3. 144 187.1 0.00056
SC18.0MMSL S-crystallin SL18. 131 163.0 0.012
GT1.MUSDO Glutathione S-transferase 1 122 158.3 0.023
GT1.MAIZE Glutathione S-transferase I 120 155.3 0.033
ARP.TOBAC Auxin-regulated protein 117 151.0 0.058
GT32.MAIZE Glutathione S-transferase III 115 148.2 0.082
GT1.DROME Glutathione S-transferase 1-1 100 128.5 1.0
GT1.WHEAT Glutathione S-transferase 1 98 124.9 1.6
GT_PROMI Glutathione S-transferase GST-6.0 97 124.7 1.7
DCMA.METSP Dichloromethane dehalogenase 98 122.7 2.2 .
GTY21ISSOR Glutathione S-transferase Y-2 94 121.3 2.6
ARP2.TOBAC  Auxin-induced PGNT35/PCNT111. 93 118.4 3.7
GTT1.RAT Glutathione S-transferase 5 93 117.8 4.1
MODS_.YEAST tRNA isopentenyltransferase 100 117.2 44
GT2.WHEAT Glutathione S-transferase 2 92 114.5 6.2
MYSP_MO U.S'Et Myosin heavy chain, skeletal 81 113.5 7.0
LIGE.PSEPA ~ [-etherase . 91 113.5 7.0
YFHE ECOLI  hypothetical 20.1 kd protein in HSCA 86 113.5 7.1
EF1G.HUMAN Elongation factor 1y (EF-17). 94 1133 7.2
GT_ECOLI Glutathione S-transferase 88 112.7 7.9
ABF2_.YEAST  ARS-bindingfactor 2 precursor 87 112.2 8.4
KKQ1.YEAST  Probable ser/thr-protein kinase 92 110.7 10.1
EF1GRABIT Elongation factor 1y (EF-17). 92 110.6 10.2
ARP3_.TOBAC  Auxin-induced PCNT103. 87 110.3 10.6
CYAA_BACAN Calmodulin-sens. adenylate cyclase 96 110.2 10.7
YJJV_ECOLI hypoth. 23.7 kd protein 86 110.0 11.1

"~ All of the unitalicized sequences are known to be members of the glutathione transferase
family.
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4.2 Glutathione S-transferases

The glutathione transferase family of enzymes is a very diverse family of proteins found, in
various forms, in animals, plants, and prokaryotes. Fortunately, many of the members of this
family have a common enzyme activity so that they can be recognized by name. Table 14
shows that for this family, there are many homologues that do not show significant similarity
when the database is searched with a single query sequence.

Frequently, clear identification of a distant homology will require several database searches,
with either different algorithms or additional query sequences. For example, in Table 14, one
might wish to test the possibility that glutathione S-transferases shares homology with elon-
gation factors, which are among the high scoring sequences. The result of a search using
EF1G_HUMAN is shown in Table 15. Here, there is a clear relationship between this elongation
factor and the class-theta glutathione transferases. An additional search with a class-theta
sequence reveals the most distant relationships in this family more clearly.

Table 15: Glutathione Transferase Homology with EFly

S-W

The best scores are: Z-score  E(43470)
EF1G.HUMAN Elongation factor 1y (EF-17) 2977  3398.2 0
EF1GXENLA  Elongation factor 1y (EF-1v) 2370 2703.1 0
EF1H.YEAST Elongation factor 1y 2 (EF-17) 769 870.4 0
EF1G.TRYCR Elongation factor 1y (EF-17) 715  808.6 0
SYV.HUMAN  valyl-tRNA synthetase 440  408.5 2.6x 10716
GT1.MAIZE Glutathione S-transferase I 222 250.3 1.7x10~7
GT32.MAIZE Glutathione S-transferase II1 193 216.7 1.3x10°°
GT1.WHEAT Glutathione S-transferase 1 186 2084 3.7x10°°
GTB_.TOBAC  Glutathione S-transferase 184  206.7 4.5x10-°
GTY21SSOR Glutathione S-transferase Y-2 175 1975 0.00015
GT2.WHEAT Glutathione S-transferase 2 175 193.5 0.00025
HS26.SOYBN Heat shock protein 26A. 171 191.3 0.00033
ARP2.TOBAC Auxin-induced PGNT35/PCNT111 169 189.1 0.00043
ARP1_TOBAC Auxin-induced PGNT1/PCNT110 166 185.7 0.00067
ARP3.TOBAC Auxin-induced PCNT103 163 182.3 . 0.0010
GT1_.DROME Glutathione S-transferase 1-1 162 181.7  0.0012
YIBF_ECOLI hypoth. 22.6 kd prot. 155 177.6 0.0019
GT1.DROSE Glutathione S-transferase 1-1 155 174.1 0.0030
GT1.DROYA Glutathione S-transferase 1-1 154 173.0 0.0034
GT1.DROER Glutathione S-transferase 1-1 152 170.7 0.0046
DCMA_METSP Dichloromethane dehalogenase 153 168.4 0.0062 .
GT1DROTE Glutathione S-transferase 1-1 150 168.4 0.0062
PRP1.SOLTU Pathogenesis-related prot. 1. | 147 166.3 0.0081
GT1.MUSDO Glutathione S-transferase 1 138 154.3 0.04
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Figure 22: G-protein-coupled receptors
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4.3 G-protein-coupled receptors

The G-protein-coupled receptors (GCRs) are one of the largest known gene families; mem-
.bers of the family transduce signals from light, peptides, cationic amines, lipid mediators,
odors, and many more small molecules. An evolutionary tree that summarizes the diversity
of this family is shown in Fig. 22. Based on hydrophobicity plots and the structure of bacteri-
orhodopsin (a protein that does not share significant similarity with members of this family),
the GCRs are thought to contain seven transmembrane domains, so that the N-terminus of
the proteins is extracellular, while the C-terminus is intracellular.

Because GCRs have transmembrane domains, the highest scoring unrelated sequences
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Table 16:. GCRs distant from human opsin

The best scores are: s-w Z-score E(43470)
CARI1.DICDI CYCLIC AMP RECPT. 1 130  162.0 0.014
OLF2_CHICK OLFACTORY RECPT.-LIKE PROTEIN COR2 129  158.1 0.022
5H2A_CAVPO  5-HYDROXYTRYPTAMINE 2A RECPT. 121 153.7 0.040
CAR3.DICDI CYCLIC AMP RECPT. 3. . 124 152.2 0.049
MAS_HUMAN MAS PROTO-ONCOGENE. 120 150.2 0.064
OLF4_CHICK OLFACTORY RECPT.-LIKE COR4. 121  147.9 0.085
OLF5.CHICK OLFACTORY RECPT.-LIKE CORS5. 120  146.6 0.10
OLF1.CHICK OLFACTORY RECPT.-LIKE COR1. 117 1424 0.17
PER2.MOUSE PROSTAGLANDIN E/EP2 RECPT. 121 140.0 0.23
UL33. HCMVA  G-PROTEIN COUPLED RECPT. HOMOLOG 117  139.2 0.26
GU58 RAT POSSIBLE GUSTATORY RECPT. 109  138.2 0.30
CAR2.DICDI CYCLIC AMP RECPT. 2 111 137.0 0.35

MSHR.MOUSE MELANOCYTE STIM. HORMONE RECPT. 111 1349 0.45
MSHR.HUMAN MELANOCYTE STIM. HORMONE RECPT. 111 134.8 0.46

LIVM_ECOLI BRANCHED-CHAIN AMINO ACID 109 133.3 0.55
APPC_ECOLI  PROB.CYTOCHROME OXIDASE 110 133.1 0.57
BIOX_BACSH  BIOX PROTEIN. 102 131.5 0.69
RTA RAT PROB. G PROTEIN-COUPLED RECPT. RTA. 109 131.0 0.74
GU45RAT POSS. GUSTATORY RECPT. PTE45 102 128.8 0.99
AROP_ECOLI AROMATIC AMINO ACID TRANS. PROT. A 106 128.7 1.0
PER1I.HUMAN PROSTAGLANDIN E/EP1 RECPT. 108 1274 1.2
TCR.STAAU TETRACYCLINE RESISTANCE PROTEIN. 106 123.9 1.9
OLF4.MOUSE OLFACTORY RECPT.-LIKE PROTEIN K4 98 123.3 2.0

TCR2.BACSU  TETRACYCLINE RESISTANCE PROTEIN. 106 123.1 21
CYOB_ECOLI = CYTOCHROME O UBIQUINOL OXIDASE 104 123.0 2.1

are frequently other membrane proteins. Table 16 lists sequences from Swiss-Prot that have
marginally significant matches with a human opsin sequence (there are more than 375 re-
lated sequences with expectations ranging from 0-0.01 that are not shown). As with most
divergent families, the question becomes, “how do I know that XXX is/is not a GCR?” This
is more difficult with the GCRs, because they have long variable length loops in both their
extracellular and intracellular domains.

As before, two strategies can be used to evaluate the hypothesis of homology: re-searching
" the library and statistical significance from shuffling. A search of the Swiss-Prot database
reveals that RTA_RAT shares significant similarity (£(40,000) < 0.01) with 120 GCRs; 100
more high-ranking scores with less statistical come from GCRs as well. In contrast, the
highest ranking scores from the BIOX_BACSH are:

The best scores are: s-w Z-score E(43470)
BIOX.BACSH BIOX PROTEIN. 1029 1305.2 0
POTB_ECOLI SPERMIDINE/PUTRESCINE TRANSPORT SYSTEH 111 138.1 0.3027
PROW.ECOLI GLYCINE BETAINE/L-PROLINE TRANSPORT SYS 112 135.0 0.4493
PIT_ECOLI LOW~AFFINITY INORGANIC PHOSPHATE TRANSPO 113 130.7 0.7754
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The results from the RTA_RAT and BIOX_BACSH, which show that RTA.RAT is clearly a
member of the GCR family, contrast with the statistical significance calculated with the
PRSS program. Comparing the 0CHU with RTARAT score with the distribution of scores
calculated after shuffling RTA_RAT 1000 times with a local window of 20 suggests that the
unshuffled score (109 ) is expected 4.6 times in 1000 shuffles. In contrast, the BIOX BACSU
score is expected only 0.8 times in 100 shuffles. From this perspective, the BIOX BACSHU score
is more significant, but, in fact, neither similarity score is significant. It is not until RTA_RAT
is compared with other members of the familied, e.g. the angiotensin, {Met-Leu-Phe, IL8, or
somatostatin receptors with E-values from 10~11-10-, that the relationship is apparent.

Table 3.3 compares the statistical significance inferred from database searches with those
determined by Monte-Carlo shuffling. As expected, the significance of the scores when com-
pared with locally (window) shuffled sequences is 10-fold lower than the comparison with
globally shuffled scores. It is unclear how to compare the expectation from shuffles with the
expectation from a search. In the table, the expectation from a search of a 43,000 entry
library is compared to the expectation from 1,000 shuffles.” For global shuffles, the expec-
tations are quite comparable while local shuffles are more conservative, yet all but one of
the similarity scores judged significant from the database search are still significant when
compared with the local-shuffle distribution.

Nevertheless, these examples show both that current statistical models for the similar- -
ity scores of unrelated sequences are quite accurate, but also that homologous sequences
frequently do not share significant pair-wise similarity scores. Thus, a lack of statistical sig-
nificance cannot be used to infer non-homology, but strong statistical significance is a good
indicator of common ancestry.
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Figure 23: Internal duplications in calmodulin
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5 Repeated structures in proteins

So far, we have focussed on the identification and statistics of the single most significant
similarity score shared by two sequences. As can be seen in Fig. 13B, however, there are fre-
quently several non-overlapping local alignments with optimal similarity scores. In addition,
there can be non-overlapping sub-optimal alignments with significant scores that can be used
to infer the duplication events that gave rise to the protein sequence. An algorithm for the
best N non-overlapping local alignments was déscribed by (Waterman & Eggert, 1987).

Figs. 23 and 24 show a graphical plot of the local similarities within the calmodulin
calcium binding protein. Calmodulin contains four EF-hand Cat-binding domains that are
well conserved. The highest scoring alignment in Fig. 24 aligns domains A-B with C-Dj; the
second highest aligns A-B~C with B-C~D; the third aligns A with D.

A similar pattern of local similarity can be seen in Fig. 25, which shows the mosaic

relationship between the EGF-precursor and the LDL-receptor.

Some non-homologous structures, particularly proteins containing the coiled-coil struc-
ture, have a periodic structure that is easily seen in local similarity plots. Fig. 26 shows local
similarities in tropomyosin. All the alignments shown have local similarity scores greater

3
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Figure 24: Calmodulin internal alignmerts
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Figure 25: Mosaic domain.s shared by the EGF-precursor and LDL-receptor
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than 120, and each would be significant in a conventional database search.
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Figure 26: Coiled-coil structures share local similarity oo
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6 Summary

Protein sequence comparison is the most powerful tool available today for inferring structure
and function from sequence because of the constraints of protein evolution—a protein fold into
a functional structure. Protein sequence similarity can routinely be used to infer relationships
between proteins that last shared a common ancestor 1-2.5 billion years ago. Our ability to
identify distantly related proteins has improved over the past five years with the development
of accurate statistical estimates, which have provided better normalization methods, and with
the use of optimized scoring parameters. In using sequence similarity to infer homology, one
should remember:

1. Always compare protein sequences if the genes encode proteins. Protein sequence com-
parison will typically double the look back time over DNA sequence comparison.

2. While most sequences that share statistically significant similarity are homologous,
many distantly related homologous sequences do not share significant homology. (Low
complexity regions display significant similarity in the absense of homology). Homol-
ogous sequences are usually similar over an entire sequence or domain. Matches that
are more than 50% identical in a 20-40 amino acid region occur frequently by chance.

3. Homologous sequences share a common ancestor, and thus a common protein fold.
Depending on the evolutionary distance and divergence path, two or more homologous
sequences may have very few absolutely conserved residues. However, if homology has
been inferred between A and B, between B and C, and between C and D, A and D
must be homologous, even if they share no significant similarity.

4. Similarity searching techniques can be improved either by increasing the ability of a
method to recognize distantly related sequences—increased sensitivity—or by lowering
scores for unrelated sequences—increased selectivity. Since there are generally 1000-
times more unrelated than related sequences in a sequence database, improvements
that reduce the scores of unrelated sequences can have dramatic effects.- The most
dramatic improvements in comparison methods recently have used this approach.

a
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